• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número3

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número3"

Copied!
5
0
0

Texto

(1)

The Eet of Grain-Domain-Size on

Levitation Fore of Melt Growth Proessing

YBCO Bulk Superondutors

W. M. Yang 1;3

, L.Zhou 2

, Y. Feng 2

,P.X. Zhang 2

,C.P. Zhang 2

,

Z.M.Yu 2

,X.D.Tang 2

1:

Departmentofphysis,ShaanxiNormalUniversity, Xi'an,Shaanxi, 710062,China

2

NorthwestInstituteforNonferrousMetalResearh,

P.O.Box51,Xi'an,Shaanxi,710016, China

3

LASUP-Laboratorio deAplia~oesdeSuperondutores,

Depto. de Eletrotenia, Esolade Engenharia,UFRJIlhadoFund~ao,

Cx.P. 68515,21945-970, Riode Janeiro, RJ,Brasil

Reeivedon28February,2002

Eetsofgrain-domain-size(GDS)onlevitationforehavebeendiretlyinvestigatedandidentied

inwell-texturedYBCObulks. A single-grain-domain YBCObulk(=30mm)was preparedbya

topseededmeltgrowthproess,thendividedintotwo,threeandfourgrain-domaintoaquirethe

levitationforesofsampleswithdierentGDS.Itisfoundthatthelevitationforeofthesamples

monotonouslydereaseswiththedereasingoftheaverageGDS(orwiththeinreasingofthetotal

lengthgrain-boundariesofthesample). Themaximumlevitationforeforthesingle-grain-domain

sampleisabout1.68,2.05and2.4timeshigherthanthatofthesampleswithtwo,three,andfour

grain-domains. It is onluded that the levitation fore of a single-grain-domain YBCO bulk is

higherthan that of samples with multi-grain-domains. It is also found that the levitation fore

isproportionaltotheaveragegrain-domainradius,butinverseproportionaltothetotal lengthof

grain-boundariesofthesample, asimplephysial modelhasbeenprovidedandwellinterpretthe

experimentresults.

I Introdution

High levitation foreof single-domainYBCO bulk

su-perondutorshasmadeitpossibleforvarious

applia-tions, suh as non-ontated superonduting bearing

[1,2℄, ywheel[3-8℄,magneti levitationtransport

sys-tems [9,10℄and motors [11,12℄. It isbelieved that the

energylossof superonduting magnetiywheelisas

little as 0.1% per hour, only one tenth of that with

onventional bearings. The ommerialization of this

tehnique will not only redue the energy losses, but

alsomaketheeletriityonsumptionmoreeonomial

andreasonabletomeetourdemands.

Thelevitationforebetweenasuperondutorand

amagnetisloselyrelatedwiththeritialurrent

den-sityJandtheradiusRoftheinduedshieldingurrent

loops(ISCL)inasuperondutor. HigherJandlarger

Rareveryimportanttoahievehigherlevitationfore

[13℄. Nowsingle-domain YBCO bulksuperondutors

anbe fabriated in manylabs [14-21℄,soarelatively

larger R of ISCLan beahievedwhile a magnet

ap-isgenerallyaboutseveralentimetersindiameters,and

limitedto10mforhighqualityYBCObulkuptonow,

beauseof thegrains miss-orientation duringthe melt

growthproess.

The levitation fore is also related with many

pa-rameters, suh as thikness of the sample [22℄,

grain-orientation[15,26-28℄,temperature,magnetield

dis-tributions [23-25℄, and the gap between

superondu-tor/magnet[29℄et. Reently,aneletromaglev

exper-imentperformedonasingle-domainYBCObulk(=

30mm)andamultiple bulkomprisedsmallerdisks(

=10mm) [30℄. It is found that the levitation fore of

asinglelargerYBCOdisksissuperiortoassembliesof

smallerdisks,theexperimentsweredonewithdierent

samplesand espeially the geometri shape of the

as-sembledsmallerdissouldnotwellmaththevolume

shapeof the=30mmsingle-domain YBCO sample.

Butthe physial mehanismsgoverningthe levitation

fore assoiated with the grain-domain-size (GDS) or

ISCL are not learly. We annot see any report

(2)

wasdiretlydonebyusingasingle-grain-domainYBCO

bulksuperondutors.Identiationoftherelationship

between the levitation fore and GDS of YBCO bulk

isnotonlyinterested tofundamental studies,but also

veryimportantforpratial.

In this paper, a single-domain YBCO bulk

(=0mm) wasfabriatedanddividedinto two,three,

andfour grain-domains. Thelevitation fore

measure-ments were done on the YBCO samples with a

sin-gle, two, three, and four grain-domainsto investigate

thephysialmehanismsofGDSonthelevitationfore

ofwell-texturedYBCO superondutors,and asimple

physial model has been dedued and well explained

theexperimentaldata.

II Experiments

Samples preparation. X-ray Pure YBa

2 Cu

3 O

y , 4N

purity Y

2 O

3

and PtO

2

powders were weighed and

mixed in the weight ration of 90.5:8.5:1. The

well-mixed powder was uniaxially pressed into

pel-lets of =35mm15mm in a steel mould. The

Nd

1+x Ba

2 x Cu

3 O

y

singlerystalswerepreparedinair

[32℄ and used asseeds in this study. Thepellets with

seedwereputintoafurnaewithatemperature

gradi-ent1-4 o

C/min vertialdiretion. The sampleswere

heated up to 1040-1060 o

C at a rate of 120 o

C/h, and

heldfor2-6hoursforhomogenousmelting. Afterthat,

the samples were ooled to about 1020 o

C at a rate

of 10-30 o

C/h, and further ooled to 940-960 o

C at a

rateofabout1 o

C/h,thenthesampleswere ooledto

room temperature at a rate of 120 o

C/h. Finally the

as-grown samples were annealed at 400-550 o

C for a

week inowingO

2 .

Thetypialphotograph of a single-domain YBCO

bulk (=30mm) is shown in Fig. 1. The

grain-orientation of the sample was investigated by XRD,

optial, SEMand -sanexaminations. All results

in-diate that theYBCO sampleis asingle-domainwith

-axisnormaltoitstopsurfae(resultsnotshownhere).

The sample was rstlydivided into two grain-domain

after levitation fore measurement, and then divided

into three and four grain-domains by a line-saw, so

that we an make four well-textured YBCO samples,

eahof them hasthe samesize (=30mm)and

grain-orientations,butonlywithdierentGDS.Thesamples

with a single, two, three and four grain-domains are

named asa, b, and d respetively, as shematially

shown in Fig. 2. Thevolume and shapeof four

sam-ples are onsidered as the same beause the diameter

1cm

Figure1.Optialphotographofsingle-domainYBCObulk

superondutor.

b

a

c

d

Figure2. ShematidiagramoftheongurationofYBCO

bulksampleswithdierentgrain-domains. a)

Single-grain-domain; b) two grain-domain; ) Three grain-domain; d)

Fourgrain-domain.

Thelevitationforesweremeasuredinahomemade

devie[24,25℄.Amagnetof30mmindiameterwasused

forallthelevitationforemeasurements. Themagneti

eldisabout0.5Tattheenterofthetopsurfae. At

the beginning of eah measurement, the sample was

symmetriallyxedontheaxiallineofthemagnetand

kept50-60mmbelowthemagnet. Afterthesamplewas

ompletelyooledtoliquidnitrogentemperature(zero

eld ooling),then the magnetwasmoved towardsto

andawayfromthesamplebyaontrolledmotor. Thus

the levitation fore as a funtion of distane between

themagnetandthesampleanbeobtained. The

max-imumlevitationforewasmeasuredatagapof0.1mm

(3)

III Results and disussion

Thelevitationfore valuesweremeasuredinzeroeld

ooledstateat77Kforthesamplesa,b,andd,shown

in Fig.3. As weansee fromthis gure,thelevitation

foresaremuhdierentforthesampleswithdierent

GDS.Themaximumlevitationforeis67.5Nobtained

inthesingle-grain-domainsamplea,andtheminimum

oneis28.15Nobtainedinthesampledwithfour

grain-domains. Theurveoflevitationforesisshiftingtothe

leftsideandtheslopoftheurvesisgradually

dereas-ing withthe inreasingofgrain-domainnumbersfrom

onetofourorrespondingtotheurvesa,b,anddin

Fig.3. These mean that the levitationfore dereases

withtheinreasinggrain-domainnumbers(orwiththe

dereasingofgrain size),whiletheshape,size and

vol-ume oftheYBCO bulksarethesame.

-1

0

1

2

3

4

5

6

7

0

20

40

60

80

Magnet:

φφφφ

30mm, B=0.5T

YBCO Sample Shape:

a

b

c

d

L

e

v

itati

o

n

f

o

rc

e

(N

)

Distance (cm)

Figure3.Thelevitationforesversesdistaneat77Kforthe

meltgrownYBCObulksamplewithdierentgrain-domain

size.

In order to make learly the relationship between

the levitation fore and the GDS, the maximum

lev-itation fores of the four samples were olleted and

drawnasafuntionoftheorrespondingaverage

grain-domain radius R, as shown in Fig. 4. As we ansee

fromFig. 4,thelevitationforemonotonouslyinreases

from28.15Nto67.5NwhiletheRinreasesfrom0.75m

to 1.5m, theinreasingfatorisaround2.4. The

ex-perimental showed that the levitation fore is nearly

proportional to the average radius of grain size, this

resultsisinagreementwithreferene[13℄. Butthe

lev-itationforewillnotgotozerowhileRisextrapolated

0.6

0.8

1.0

1.2

1.4

1.6

0

10

20

30

40

50

60

70

L

e

v

ita

ti

o

n

fo

rc

e

(N)

Average grain radius R (cm)

Figure4.Maximumlevitationforeversustheaveragegrain

radius of samples with dierent grain-domainnumbersat

liquidnitrogentemperature.

10

12

14

16

18

20

22

0

10

20

30

40

50

60

70

Experimental data

Calculated results

L

e

v

ita

ti

o

n

fo

rc

e

(N

)

ρρρρ

total

(cm)

0.4

0.6

0.8

1.0

30

40

50

60

70

Le

v

ita

ti

o

n

fo

rc

e

(N

)

ρρρρ

min

/

ρρρρ

total

Figure 5. The maximum levitation fore versus the total

grain-boundarylengthtotalofsampleswithdierent

grain-domainnumbersatliquidnitrogentemperature.

Thegrainboundaryofthesampleinreases

gradu-allywiththeinreasingofgrain-domainnumbersafter

eahutting,theboundariesformedbyuttingwill

en-tirely stop the indued shielding urrent to ross the

narrowuttinggap,andleadto somenewandsmaller

induedshielding urrentloop(ISCL) (omparedwith

that before eah utting), and nally result in a

re-dutionin levitation fore. The total length of

grain-domain boundaries inreasesfrom sample ato d with

inreasingofthegrain-domainnumbers. Letusassume

total

representthetotallengthofgrain-domain

bound-ariesofYBCOsample,then

total =R

s ,2R

s +4R

s ,

2R

s +6R

s

and 2R s+8R

s

forsamplesa,b, andd

respetively, where R

s

is the radiusof sample a. Fig.

5showsthe maximum levitation fore of the samples

with dierent

total

. As we an see from Fig.5, the

levitationforedereasesquiklywiththeinreasingof

total

. Theuxpinningforeisverystrongforthe

well-textured YBCO samples under 0.5 T at 77 K, so the

(4)

layeralongthegrain-domain-boundariesofthesample.

Here the indued urrent an be regarded as only a

onstantsurfaeurrent,sothetotallengthofISCLis

equalto the

total

. Basedonthis,

total

isrelatedwith

thelevitationforeoforrespondingYBCOsamples.

Thelevitationfore Fisproportionaltotheradius

ofISCL [13℄. Howabouttherelationshipbetweenthe

levitationforeand

total

? Consideringasetofsamples

withdierentGDS.LetA denotethetopsurfaearea

of asingle-grain-domainsuperonduting sample, and

thenthesamplewas

n= R

2

r 2

n

(1)

divided into several equivalent smaller grain-domains

(n=1, 2, 3..., represent the numbers of smaller

grain-domains). R and r

n

denote the radius of the

single-domain sampleand the sampleswith n smaller

grain-domain respetively. Then A=nA

n

, where A

n isthe

top surfaeareaof the smallergrain-domains. Sothe

nanbedesribedas:

Thenthetotalgrain-boundarylengthofthesample

withnsmallergrain-domainsanbewrittenas:

total

=n2r

n

(2)

Substitute equation (1) to (2), the average

grain-domainradiusofthesamplewithmultiple

r

n =

min

total

R (3)

grain-domainsanbeformulatedas:

Where

min

is the grain-boundary length (or

perimeter) of the single-grain-domainsample without

any utting.

min

= 2R =

total

, orresponding to

n=1:

AordingtoRef[13℄,thelevitationforeis

propor-tional to the radius r

n

of thegrain-domains, thus the

levitation foreof samplewith n grain-domainanbe

desribedas:

F

n =

min

total F

1

(4)

Where F

1

is the maximum levitation fore of the

single-domain sample orresponding to

total =

min .

This meansthatthelevitation foreis inverse

propor-tionalto

total .

In this experiment,

min

=2R

s ,

total =2R

s +

L;F

1

=67:5N, and R

s

=15mm. L, the lengthof

in-troduedgrainboundariesbyutting,isof0;4R

s ,6R

s

and8R

s

forthesampleswithsingle,two,threeandfour

grain-domainsrespetively. Then, inthis experiments,

thelevitationforeanbeformulatedas:

F

L =

2R

s

2R

s +L

F

1

(5)

Thelevitationfore of thesample withdierentL

in Fig.5. As weansee from Fig.5, the alulated

re-sult is in good agreementwith theexperimental data.

The insert in Fig.5 shows that the experimental data

forms astraight line between the levitation fore and

min =

total

. This onformsthat thelevitation fore is

reallyinverseproportionaltothetotalgrain-boundary

lengthofthesuperondutingsample.

IV Conlusion

A single-grain-domainYBCOsample(=30mm)has

beenpreparedbyatopseededmeltgrowthproessand

separated into two, three and four grain-domains

af-tereahlevitationforemeasurements. Themaximum

levitation fore of the single-domain sample is about

1.68, 2.05 and 2.4 times higher thanthat of the

sam-ples with two, three, and four grain-domains

respe-tively. It is foundthat thelevitation foreof a

single-domain YBCO bulk is muh higher than that of the

same sized samples with smaller gain-domains. The

levitationforeisinverseproportiontothetotallength

ofgrain-boundariesofthesample,and asimple

physi-al model hasbeensuggestedand wellinterpreted the

experimentresults.

This work is supported by the Ministry of

Si-eneand Tehnologyof China(NKBRSF-G19990646),

Projet\973".

Referenes

[1℄ J. R. Hull, E. F. Hilton, T. M. Mulahy, Z. J. Yang,

A.Lokwood, and M. Strasik, J. Appl. Phys.78, 6833

(1995).

[2℄ B. R. Weinberger, L. Lynds, J. R. Hull, and U.

Bal-ahandran,Appl.Phys.Lett.59,1132 (1991).

[3℄ J.R.Hull,Superond.Si.Tehnol.13,R1(2000).

[4℄ J. R.Hull, T.M. Mulahy,K. L. Uherka,R. A. Erk,

andR.G.Abboud,Appl.Superond.2,449(1994).

[5℄ H.Kameno,Y.Miyagawa,R.Takahata,andH.Ueyama,

IEEETrans.Appl.Superond.9,992(1999).

[6℄ H. J. Bornemann, T. Ritter, C. Urban, O. Zaitsev,

K. Weber, and H. Rietshel, Appl. Superond.2, 439

(1994).

[7℄ Q. Y. Chen, Z. Xia, K. B. Ma, C. K. MMihael, M.

Lamb,R.S.Cooley,P.C.Fwler,andW.K.Chu,Appl.

Superond.2,457(1994).

[8℄ T. A.Coombs,A. M. Campbell, I. Ganney, W.Lo, T

Twardowski,andB.DawSon,Matr.Si.Eng.B53,225

(1998).

[9℄ M. Tosa, A. K.Yosihara,Fourth Int. Symp. Magneti

(5)

[10℄ W. M. Yang, L. Zhou, Y. Feng, P. X. Zhang, J. R.

Wang, C. P. Zhang, Z. M. Yu,and X. D. Tang,

Pro-eedings of the Maglev'2000, 2000 in Rio de Janeiro,

Brazil.

[11℄ B.Oswald, M. Krone,M. Soll, T.Strsser,J.Oswald,

K.J.Best, and W.Gawalak,L. Kovalev,IEEETrans.

OnAppl.Superond.9(2),1201 (1999).

[12℄ H.Weh,ProeedingsofMT-15,15 th

international

on-fereneonmagnettehnology,P883(1998).

[13℄ M. Murakumi, MeltProessedHigh-Temperature

Su-perondutors(Singapore: WorldSienti,1992).

[14℄ M. Ullrih, H. Walter, A. Leenders, and H. C.

Frey-hardt,PhysiaC311,86(1999).

[15℄ D. L. Shi, D. Qu, Sagar, and K. Lahir, Appl. Phys.

Lett.70(26),3606 (1997).

[16℄ W. Henning, D. Parks,R. Weistein, R.P.Sawh, and

YRen,Superond.Si.Tehnol.13,1447(2000).

[17℄ C.J. Kim,H.J.Kim, J.H.Joo,G.W.Hong,S.C. Han,

Y.H. Han, T.H. Sung,and S.J. Kim, PhysiaC, 336,

223(2000).

[18℄ A.W. Kaiser,M. Adam,and H.J.Bornemann,

Super-ond.Si.Tehnol.11,26(1998).

[19℄ W. Gawwalek, T.Habisreuther, T. Strasser, M. Wu,

D.Littzkendorf,K.Fisher,P.Gornert,A.Glodum,P.

Stoye,P.Verges,K.V.Ilushin,andL.K.Kovalev,Appl.

Superond.2(7-8),465(1995).

[20℄ A.Endon,H.S.Chauhan,T.Egi,andY.Shiohara,J.

Mater.Res.11,795(1996).

[21℄ W. M. Yang, L. Zhou, Y. Feng, P. X. Zhang, z. M.

Wu,W.Gawalek, andP.Gornert, PhysiaC305,269

(1998).

[22℄ J.Unsworth,J.Du,B.J.Crosby,andJ.C.Mafarlane,

IEEETrans,Magn.29,108(1993).

[23℄ H.Teshima,M.Morita,andM.Hashimoto,PhysiaC

269,15(1996).

[24℄ W. M. Yang, L. Zhou, Y. Feng, P. X. Zhang, J. R.

Wang,C.P.Zhang, Z.M.Yu,andX.Z.Wu,Advanes

inCryogeniEngineering,46(A),663(1999).

[25℄ W. M. Yang, L. Zhou, Y. Feng, P. X. Zhang, J. R.

Wang,C.P.Zhang,Z.M.Yu,X.D.Tang,andW.Wei,

PhysiaC354,5(2001).

[26℄ B.A.Tent,D.Qu,D.Shi,W.J.Bresser,P.Boolhand,

andZ.X.Cai,Phys.Rev.B58(11),761(1998).

[27℄ W.M.Yang,L.Zhou,Y.Feng,P.X.Zhang,Z.M.Wu,

W.Gawalek,P.Gornert,J.R.Wang,C.P.Zhang, and

Z.M.Yu,PhysiaC307,271(1998).

[28℄ W.M.Yang,L.Zhou,Y.Feng,P.X.Zhang,Z.M.Wu,

W.Gawalek,P.Gornert,J.R.Wang,C.P.Zhang, and

Z.M.Yu,PhysiaC319,164(1999).

[29℄ M. Murakumi, Jpn. J. Appl. Appl. Phys. 29, L1991

(1990).

[30℄ Y. Iwasa, H. Lee, M. Tsusda, M. Murakami, and T.

Miyamoto,IEEETrans.onAppl.Superond.9(2),984

(1999).

[31℄ M.Yang,L.Zhou,Y.Feng,P.X.Zhang,C.P.Zhang,

andZ.M.Yu,RareMetalMaterialsandEngneering28

(4),231(1999).

[32℄ Wanmin Yang, Lian zhou, Minzhi Wu, C. Wende,

W.Gawalek, T.Strasser, Yong Feng, Pingxiang Zhang,

Imagem

Figure 1. Optial photograph of single-domain YBCO bulk
Figure 4. Maximum levitation fore versus the average grain

Referências

Documentos relacionados

Similarly to the other two quadrature oscillators, the phase error is, directly, proportional to the resistance and capacitance mismatches and inversely proportional to the

Looking at only the simple resistive losses in the circuit, and recalling that the power loss is directly proportional to the square of the magnitude of the current flowing in the

Tidal analysis of 29-days time series of elevations and currents for each grid point generated corange and cophase lines as well as the correspondent axes of the current ellipses

A área com plantio de Acacia mearnsii, área não minerada, apresentou 13 espécies, a área plantio de Eucalyptus dunnii, área não minerada, apresentou 11 e a área de campo nativo,

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

To satisfy the lacking of a procedural level generation procedure that utilizes smartphones as the primary source of input data and method of control of level parameters, thus

This log must identify the roles of any sub-investigator and the person(s) who will be delegated other study- related tasks; such as CRF/EDC entry. Any changes to

Além disso, o Facebook também disponibiliza várias ferramentas exclusivas como a criação de eventos, de publici- dade, fornece aos seus utilizadores milhares de jogos que podem