• Nenhum resultado encontrado

Archaea diversity in vegetation gradients from the Brazilian Cerrado

N/A
N/A
Protected

Academic year: 2021

Share "Archaea diversity in vegetation gradients from the Brazilian Cerrado"

Copied!
7
0
0

Texto

(1)

h ttp : / / w w w . b j m i c r o b i o l . c o m . b r /

Short

communication

Archaea

diversity

in

vegetation

gradients

from

the

Brazilian

Cerrado

Ademir

Sergio

Ferreira

de

Araujo

a,∗

,

Lucas

Wiliam

Mendes

b

,

Walderly

Melgac¸o

Bezerra

c

,

Luis

Alfredo

Pinheiro

Leal

Nunes

a

,

Maria

do

Carmo

Catanho

Pereira

de

Lyra

d

,

Marcia

do

Vale

Barreto

Figueiredo

d

,

Vania

Maria

Maciel

Melo

c aFederalUniversityofPiauí,AgriculturalScienceCenter,SoilQualityLab.,Teresina,PI,Brazil

bUniversityofSaoPauloUSP,CenterforNuclearEnergyinAgricultureCENA,CellandMolecularBiologyLaboratory,Piracicaba,SP, Brazil

cFederalUniversityofCeara,LaboratóriodeEcologiaMicrobianaeBiotecnologia,Fortaleza,CE,Brazil dAgronomicInstituteofPernambuco,Recife,PE,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received2March2017

Accepted25August2017

Availableonline11February2018

AssociateEditor:ValeriaOliveira

Keywords: Microbialecology Soilmicrobiology 16SrRNA Tropicalsoils

a

b

s

t

r

a

c

t

Weused16SrRNAsequencingtoassessthearchaealcommunitiesacrossa gradientof

Cerrado.Thearchaealcommunitiesdiffered acrossthegradient.Crenarcheotawasthe

mostabundantphyla,withNitrosphaeralesandNRPJasthepredominantclasses.

Eury-achaeotawasalsofoundacrosstheCerradogradient,includingtheclassesMetanocellales

andMethanomassiliicoccaceae.

©2018SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis

anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

SoilmicroorganismsconstituteathirdoftheEarth’sbiomass,

playingimportantecologicalandbiogeochemicalrolesin

ter-restrialecology.Amongthemicroorganismsthatinhabitsoils,

the domainArchaea isparticularlyimportantbecause it is

abundant and plays important roles in C and N cycling.1

Thisdomain constitutes oneofthe threemajor

evolution-ary lineages of life on Earth, and although it has long

beenbelievedthattheseorganismsmainlyinhabitextreme

Correspondingauthorat:SoilQualityLab.,AgriculturalScienceCenter,FederalUniversityofPiauí,Teresina,PI,Brazil.

E-mail:asfaruaj@yahoo.com.br(A.S.Araujo).

environments, previousstudiesdemonstrated thattheyare

widely distributed around the world in different types of

soils.2,3

Sincetherecognitionofthearchaealdomaininthetree

oflife,4studieshavebeenfocusedtoexploretheirpresence

and function in a wide range of environments. With the

advance ofDNA-based molecular toolsand genomic

anal-ysis, the knowledge of this domain has evolved and the

https://doi.org/10.1016/j.bjm.2017.08.010

1517-8382/©2018SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC

(2)

Table1–VegetationdiversityindicesintheCerradoareas.19

Campograminoide Cerradostrictosensu Cerradao Florestadecidual

Plantrichnesse 4.7 11 17 18

Plantdiversityf 0.2 0.85 1.10 1.11

Plantdensityg 4.7 27.1 35.0 51.8

Vegetationh a b c d

a Andropogonfastigiatus;Aristidalongifolia;Eragrostismaypurensis.

b Andropogonfastigiatus;Aristidalongifolia;Terminaliafagifolia;Magoniapubescens;Hymenaeacourbaril;Plathymeniareticulata;Qualeagrandiflora;

Combretummellifluum;Lippiaoriganoides;Anacardiumoccidentale;Simaroubaversicolor;Vataireamacrocarpa.

c Aspidospermadiscolor;Parkiaplatycephala;Terminaliafagifolia;Piptadeniamoniliformis;Plathymeniareticulata;Qualeaparviflora;Anacardium

occiden-tale;Copaiferacoriacea;Thiloaglaucocarpa;Caseariagrandiflora.

d Aspidospermamultiflorum;Aspidospermasubincanum;Campomanesiaaromática;Casearialasiophylla;Caseariaulmifolia;Copaiferacoriacea;

Ephedran-thuspisocarpus;Piptadeniamoniliformis;Pterocarpusviolaceus;Thiloagalucocarpa.

e Species/100m2. f H/100m2. g Individual/100m2. h Speciesofplantspresent.

current archaealclassification israpidly moving. Presently,

20 archaeal phyla are recognized by small subunit RNA

databases;however,ithasbeenreportedthat14phylahave

no cultured representative.5 Most of culturable members

of Archaea belong to the two main phyla Euryarchaeota

and Crenarchaeota. Other new phyla have been proposed

inthelast years,forexample Nanoarchaeota,basedonthe

isolation of a hypertehermophilic symbiont Nanoarchaeum

equitans6andThaumarchaeota.7Mostrecently,two

superphy-lum havebeen proposed, namely(i) TACK, which includes

thephylaThaumarchaeota,Aigarchaeota,Crenarchaeotaand

Korarchaeota,8 and (ii) Asgard, which consist in a sister

group to TACK and are considered more closely related

to the original eukaryote.9 Together with the advance of

Archaea classification, their functional role in the

ecosys-temhasalsobeenthe focus ofrecentstudies.Members of

Archaeacarryoutmanystepsinthenitrogencycle,suchas

nitrate-basedrespirationanddenitrification.10Communities

ofautotrophicand heterotrophicArchaeacatalyzeironand

sulfuroxidation,whichinfluencethereleaserateofmetals

andsulfurtotheenvironment.11 Also,regardingthecarbon

cycle,allknownmethanogenorganismsbelongexclusivelyto

Archaeadomainandaregenerallyfoundinoxygen-depleted

environments.12

InBrazil,studiesregardingthediversityofArchaeahave

beenconductedforsomeimportantecosystems,suchas

Ama-zonianand Atlanticforests,13,14 aswellas inmangroves.15

InthecaseoftheBrazilianCerrado,previousstudies

investi-gatedthediversityofarchaeainsoilsfromtheCentralPlateau

andfoundthatCrenarcheotawasthemostabundantarchaeal

groupintheecosystem.3,16However,ithasbeenhypothesized

thatthevegetationandsoilconditionsintheCerradofrom

NortheasternBrazildiffersfromthoseoftheCentralPlateau.17

Therefore, the pattern of Archaea communities would be

different because the vegetation and soil conditions drive

soilmicroorganisms.Previousstudieshaveshowndifferences

betweenbacterialdiversityinthesoilsobtainedfromCerrado

intheNortheastwhencomparedtothosefromtheCentral

Plateau.18Therefore,weusednext-generationsequencingof

the 16S rRNA gene insoil samples from vegetation

gradi-entsobtainedfromCampograminoide,Cerradostrictosensu,

CerradaoandFlorestadecidualtounderstandthediversityof

ArchaeainthesoilsofCerradoinNortheasternBrazil.

The study was conductedin a preserved Brazilian

Cer-rado within SeteCidades National Park(PNSC) (04◦02-08S

and41◦40-45W),Northeast,Brazil.Thisregionpresentstwo

distinctseasons(wetanddry)withanannualaverage

temper-atureat25◦Candrainfallof1558mmdistributedinFebruary

throughApril.Weevaluatedfourdifferentareas(with1000m2

each one) inagradientofvegetation(‘Campograminoide’,

‘Cerrado stricto sensu’, ‘Cerradao’ and ‘Floresta decidual’)

(Table1;Fig.1).

Each area was separated inthree transects(replication)

wheresoilsampleswerecollectedattopsoillayer(0–20cm

depth;threepointspertransect)inMarch(wetseason),2014.

Allsoilsampleswereimmediatelystoredinsealedplasticbags

andtransportedinaniceboxtothelaboratory.Aportionofthe

soilsampleswasstoredinbagsandkeptat−20◦CforDNA

analysisandanotherportionwasair-dried,sievedthrougha

2-mmscreenandhomogenizedforchemicalanalysesusing

standardlaboratoryprotocols.20

Soil DNA was extracted from 0.5g (total humidweight)

of soil using the PowerLyzer PowerSoil DNA Isolation Kit

(MoBIO Laboratories, Carlsbad, CA, USA), according to the

manufacturer’sinstructions.ThequalityoftheextractedDNA

wascheckedwiththeNanodropND-1000spectrophotometer

(ThermoScientific,Waltham, MA,USA),and itwas

quanti-fiedbyQubit® 2.0fluorometerusingthedsDNABRAssaykit

(InvitrogenTM).TheintegrityoftheDNAwasalsoconfirmedby

electrophoresisina0.8%agarosegelwith1×TAEbuffer.The

ampliconlibraryofthearchaeal16SrRNAgeneswere

ampli-fiedusingtheregion-specificprimers(515F/806R).21Thefirst

step amplificationcomprised 25␮Lreaction containing the

following:14.8␮Lofnuclease-freewater(Certified

Nuclease-free,Promega,Madison,WI,USA),2.5␮Lof10×HighFidelity

PCRBuffer (Invitrogen,Carlsbad,CA, USA),1.0␮Lof50mM

MgSO4, 0.5␮L ofeach primer (10␮Mconcentration, 200pM

finalconcentration),1.0unitofPlatinumTaqpolymeraseHigh

Fidelity(Invitrogen,Carlsbad,CA,USA),and4.0␮Loftemplate

DNA(10ng).TheconditionsforPCRwereasfollows21:94Cfor

4mintodenaturetheDNA,with35cyclesat94◦Cfor45s,50◦C

(3)

Fig.1–MappresentingthegradientofCerradoatSeteCidadesNationalPark,Brazil.

at72◦C.Inthesecondstep,auniquepairofIlluminaNextera

XTindexes(Illumina,SanDiego,CA)wasaddedtobothends

oftheamplifiedproducts.Each50␮Lreactioncontainedthe

following:23.5␮Lofnuclease-freewater(Certified

Nuclease-free,Promega,Madison,WI,USA),5.0␮Lof10×HighFidelity

PCRBuffer(Invitrogen, Carlsbad,CA,USA), 4.8␮Lof25mM

MgSO4, 1.5␮LofdNTP(10mMeach),5.0␮LofeachNextera

XTindex(Illumina,SanDiego,CA,USA),1.0unitofPlatinum

TaqpolymeraseHighFidelity(Invitrogen,Carlsbad,CA,USA),

and5.0␮LofeachproductfrompreviousPCR.Theconditions

forthissecondroundPCRwereasfollows:95◦Cfor3minto

denaturetheDNA,with8cyclesat95◦Cfor30s,55◦Cfor30s,

and72◦Cfor30min,withafinalextensionof5minat72◦C.

Afterindexing,the PCRproductswerecleanedupusing

Agencourt AMPure XP – PCR purification beads (Beckman

Coulter,Brea,CA,USA),accordingtothemanufacturer’s

man-ual,andquantifiedusingthedsDNABRassayKit(Invitrogen,

Carlsbad,CA, USA) on a Qubit 2.0 fluorometer(Invitrogen,

Carlsbad,CA,USA).Oncequantified,differentvolumesofeach

librarywerepooledintoasingletubeinequimolar

concen-tration. After quantification, the molarity of the pool was

determinedanddilutedto2nM,denatured,andthendiluted

toafinalconcentrationof8.0pMwitha20%PhiX(Illumina,

SanDiego,CA,USA)spikeforloadingintotheIlluminaMiSeq

sequencingmachine(Illumina,SanDiego,CA,USA).

SequencedatawereprocessedusingQIIMEfollowingthe

UPARSEstandardpipelineaccordingtoBrazilianMicrobiome

Project22 toproduceanOTUtableand aset of

representa-tive sequences. Briefly,the reads were truncated at240bp

and quality-filteredusing amaximum expectederrorvalue

of 0.5. Pre-filtered reads were dereplicated and singletons

wereremovedandfilteredforadditionalchimerasusingthe

RDPgolddatabaseusingUSEARCH7.0.Thesesequenceswere

clusteredintoOTUsata97%similaritycutofffollowingthe

UPARSEpipeline.Afterclustering,thesequenceswerealigned

andtaxonomicallyclassifiedagainsttheGreengenesdatabase

(version13.8).23 Thesequenceswere submittedtotheNCBI

SequenceReadArchiveunderthenumberSRP091586.

Redundancy Analysis (RDA) was used to determine the

correlationbetweenarchaealcommunitystructureandsoil

physicochemicalproperties.TheOTUtablewasinitially

ana-lyzed using Detrended Correspondence Analysis (DCA) to

evaluatethegradientsizeofthespeciesdistribution,which

(4)

Table2–SoilphysicochemicalpropertiesatdifferentsitesacrossthegradientofCerrado.

Site Moisture(%) Temperature(◦C) TOC(gkg−1) pH P(mgkg−1) K(cmolckg−1) CEC(cmolckg−1)

Campograminoide 7.3c 32a 4.3c 4.5c 3.9c 1.4b 2.28b

Cerradostrictosensu 10.5b 30b 8.3b 4.3b 3.9b 1.8b 2.31b

Cerradao 11.9b 30b 9.1b 4.6b 4.5b 1.6b 2.35b

Florestadecidual 31.8a 28c 15.2a 4.9a 5.3a 3.8a 4.91a

TOC,totalorganicC;CEC,cationexchangecapacity.

Valuesfollowedbythesameletterwithineachcolumnarenotsignificantlydifferentatthe5%level,asdeterminedbyStudent’st-test.

revealingthatthebest-fitmodelforthedatawasRDA. For-ward selection (FS) and the Monte Carlo permutation test wereappliedwith 1000random permutationstoverify the significance of soil chemical properties upon a microbial community.Weusedpermutationalmultivariateanalysisof variance(PERMANOVA)24 totestwhethersamplecategories

harbored significantly different archaeal community

struc-ture.RDAplotsweregeneratedusingthesoftwareCanoco4.5

(Biometrics,Wageningen,TheNetherlands),andPERMANOVA

andalphadiversityindexwerecalculatedwiththesoftware

PAST.25Todeterminethedifferencesinabundanceofarchaeal

groupsamongsoilsamples,theStatisticalAnalysisof

Metage-nomicProfiles(STAMP)softwarepackagewasused.26TheOTU

tablewasusedasinput,andP-valueswerecalculatedusing

thetwo-sidedWelch’st-test,27whileconfidenceintervalswere

calculatedusingDPWelch’sinvertedandcorrectionwasmade

usingBenjamini–Hochbergfalsediscoveryrate.28

In this study, we examined the archaeal structure and

compositioninthesoilsfromvegetationgradientsfromthe

Cerrado.Weused16SrRNAsequencingtoassessthearchaeal

communitiesandcorrelatedthemwithsoilchemical

parame-ters.Ourresultsshowedthatsoilparametersdifferedbetween

thesamplingsites.AreasunderCampograminoide,Cerrado

strictosensuandCerradaopresentedthehighestsoil

temper-atureandthelowestN,P,K,andCECcomparedwithFloresta

decidual(Table2).Soilmoisture,pH,andTOCcontentwere

similarbetweenCerradostrictosensuandCerradao,andthey

werethelowestandhighestinCampograminoideand

Flo-restadecidual,respectively.

Thesemarkedlydifferentsoilconditions,mainlybetween

Campograminoide and Floresta decidual, exist because of

the differences in plant cover and the communities, both

ofwhichcaninfluencesoilproperties.Forexample,Campo

graminoide iscoveredmostly by grasses, whereas Floresta

decidual is covered by trees. RDA showed the differences

betweenthearchaealcommunitiesacrossthegradients(Fig.2)

andindicatedthattheFlorestadecidualwasthemostdistinct

comparedtotheotherareas.

Additionally,RDAshowedthatthecompositionofarchaea

communitieswasstronglycorrelatedwithspecificsoil

prop-ertiesacrosstheCerradogradients.Ourresultsshowedthat

thearchaealcommunityofFlorestadecidualcorrelatedwith

soilmoisture,TOC,CEC,P,K,andN.Ontheotherhand,soil

temperatureandpHcorrelatedwithCampograminoide,

Cer-radostrictosensuandCerradao.Theseresultsindicatethat

the archaeacommunity differs acrossthe gradients ofthe

Cerradoandisinfluencedbysoilconditions.BecauseCampo

graminoide,CerradostrictosensuandCerradaohadsimilar

soilconditions,theirarchaeacommunitiesweremoresimilar

1.0 -0.6 Axis 2 (9.9%) Axis 1 (16.1%) P K N CEC TOC Moisture Temperarure pH* -1.0 1.0

Fig.2–Redundancyanalysis(RDA)ofarchaealcommunity patternsandsoilcharacteristicsfromsamplesofCampo graminoide,Cerradostrictosensu,CerradaoandFloresta decidual.Arrowsindicatecorrelationbetween

environmentalparametersandarchaealprofile.The significanceofthesecorrelationswereevaluatedviathe MonteCarlopermutationtestandisindicatedby*(P<0.05).

toeachother whencomparedtoFlorestadecidual.

Accord-ingtoCatãoet al.3 thesoilconditionsdrivethedifferences

in thediversity ofArchaeain theBrazilian Cerrado. These

authorscomparedandcontrastedCerradodensoandMatade

GaleriafromtheBrazilianCerradoandfounddifferencesin

thecommunitystructuresofArchaea.Thevariedsoil

condi-tionsfoundacrossthegradientsofvegetationhaveinfluenced

the bacterial diversity.18 Interestingly,our results highlight

thesoilpHasasignificantdriverofarchaeacommunitiesin

thesesoils.AccordingtoGorres,29soilpHisthemaindriverof

archaealcommunitystructureinsoils.Thisstrongcorrelation

betweensoilpHandthemicrobialcommunitystructuremay

bebecausepHandtheotherphysicochemicalsoilparameters

aresocloselyrelated.Mostmicroorganismshave

intracellu-larpHthatvariesintherangeofpH7±1;therefore,asmall

variationoftheenvironmentalpHcouldexpose

microorgan-ismstostress.Archaeaweredetectedinallanalyzedsamples

andshowedverylowdiversitycomparedtothebacterial

com-munityfoundinthesamesamples.18Interestingly,Floresta

decidual presented the lowest alpha diversity when

com-paredtotheother areas(Fig.3).Ithasbeensuggestedthat

anenvironmentinequilibrium,suchasforest,theecosystem

functioningismaintainedbasedonlowerlevelsofdiversity,

but high abundance of microorganisms; in contrast,

envi-ronmentsunderstresswouldpresentanincreaseddiversity,

(5)

2.5 2.0 1.5 1.0 Shannon div ersity inde x 0.5 Campo graminoide Cerrado stricto sensu Cerradao Floresta decidual a a b ab

Fig.3–DiversitymeasurementbasedonShannon’sindex ofarchaealcommunitiesinsoilsfromCampograminoide, Cerradostrictosensu,CerradaoandFlorestadecidual.

themaintenanceofessentialecosystemfunctions.30

Consid-ering thatCerrado areas are more proneto environmental

stress,suchashightemperature,lowmoistureand

oligotro-phy,thehigherarchaealdiversitywouldbeexpected.

Atotalof3078reads wereclusteredin33 OTUs

accord-ingtotheGreengenestaxonomical classification.Wefound

Crenarchaeotatobethemostabundantphylaacrossthe

Cer-radogradients,amongwhichNitrosphaeralesandNRPJwere

thepredominantclasses(Fig.4).Organismsbelongingtothe

largely non-thermophilicCrenarchaeotaappeartobe

ubiq-uitousinsoilsystemsand aredominantover euryarchaeal

populationsingrasslandsoils.31

ThesefindingsagreewithpreviousstudiesintheBrazilian

Cerrado, whichhave reportedCrenarcheota asmost

domi-nantphylumandNitrosphaeralesasanimportantgroup.3,16

TherelativeabundanceofNitrosphaeralesandNRPJdiffered

across the regions. Floresta decidual showed the highest

abundanceofNitrosphaerales,whereasCampograminoide,

Cerrado stricto sensu and Cerradao showed the highest

abundanceofNRPJ.Previously,Nicolet al.32 haveindicated

thatCrenarchaeotafromsoilsmayhavespecificassociation

with plant roots, playing an important role in the

rhi-zosphere. Nitrosphaerales are importantammonia-oxidizer

organisms,33andalthoughammoniaoxidationoccursinboth

BacteriaandArchaea,thearchaealgroupdominatesinboth

soil and marine environments.34 Nitrogen-related

microor-ganisms are commonlyfound abundantlyin forestsoils,30

whichmayexplainthehigherabundanceofNitrosphaerales

inourforestsamples.Also,Navarreteetal.35showedthatthe

diversityofammonia-oxidizingarchaealcommunitiestendto

behigherinprimaryforests.Ontheotherhand,theNRPJgroup

wasmoreabundantinCerradosites.Thisgroupbelongsto

theMarineBenthicGroupA,anunculturedarchaealcluster

initiallydescribedfromcoldcontinentalslopeanddeep-sea

sediments.36 Members of this group are commonly found

in oligotrophic soils, such as boreal forests,37 which may

explainitshigherabundanceinourCerradosamples.In

sum-mary,ourresultsshowedahighabundanceofCrenarchaeota

groupsinoursamples,withdifferentialabundancebetween

sites,suggestingthatmembersofthisgroupplaydistinctand

importantrolesinthesoilecosystem.

ThephylumEuryarchaeotaisconsideredthemost

phys-iologically diverse and includes methanogens, halophiles

and thermophile organisms. Members of this phylum

were also found across the Cerrado gradients, including

the classes Metanocellales and Methanomassiliicoccaceae.

Interestingly, the Metanocellales class was detected only

at Campo graminoide, which also had a high

abun-danceofMethanomassiliicoccaceae.Similarly,Cerradostricto

sensu showed high abundance of

Methanomassiliicoc-caceae.Thefamily Methanomassiliicoccaceae comprisesof

a methanogenic lineageof theclass Thermoplasmata,and

members ofthe Methanocellales family are methanogenic

organisms,contributingtotheglobalmethanecycle.38Inthis

sense,ourresultsshowthatimportantgroupsrelatedto

car-bon cycle areabundantinCampograminoide and Cerrado

strictosensu. Euryarchaeota :Methanomassiliicoccaceae Euryarchaeota :Methanocellales Crenarchaeota : NRPJ Crenarchaeota : Nitrosphaerales b ab a a a a a a b b b b 0.01 0.1 1 10 100

Proportion of sequences (log scale)

Campo graminoide Cerrado stricto sensu Ceradao Floresta decidual

Fig.4–AveragerelativeabundanceofthemostabundantarchaealgroupsinsoilsfromCampograminoide,Cerradostricto sensu,CerradaoandFlorestadecidualasrevealedbythe16SrRNAgeneribotyping.Foreachsampletype,thenumberof replicatesisn=9.Differentlowerlettersindicatesignificantdifference(FDR,P<0.05)amongsamples.

(6)

AsshownintheRDA,pHwasthemaindriverofthearchaea

communitiesacrossthegradients.Ithasbeendescribedthat

pHdominatesthevariationofarchaealdiversityand

commu-nitycompositionintropicalsoils.39Inalarge-scalestudy,the

authorsshowedanichespecializationofterrestrialarchaeal

ammoniaoxidizersbasedonpH, showingthatamoA

abun-danceanddiversityincreasedwithsoilpH.40Inoursamples,

thehighsoilpHfoundintheFlorestadecidualareafavoredthe

dominanceofNitrosphaerales,whichissensitivetolowpH.41

Ontheotherhand,ahighabundanceofEuryachaeota,

specif-icallyMetanocellales,intheCampograminoideregionmaybe

relatedtothelowsoilpHfoundinthisarea.AccordingtoHu

etal.,41soilpHisadriverofmethanogenesisandsubsequently

maypromoteshiftsinthearchaealcommunitycomposition

fromCrenarchaeotatomethanogenicEuryarchaeota.

Inconclusion,ourdatashowedthatalthoughthemostof

detectedtaxaaresharedbetweenallfourareas,thearchaeal

structure and abundance differed across these gradients

andwasstronglydrivenbysoilphysicochemicalproperties.

The soil pH was the main driver of archaeal

communi-tiesin the studiedsoils, and this can beexplained bythe

difference between the sites, where Florestadecidual

pre-sentedhighervalueswhileCampograminoidewasmoreacid.

Resultsshowedthat Crenarcheotawas themost dominant

phylum,followedbyEuryarchaeota.Additionally,differential

soilparameters leadto distinct functional potential ofthe

communities,whereFlorestadecidualpresentedhigh

abun-dance ofgroups related to the nitrogen metabolism while

CampograminoideandCerradostrictosensupresentedhigh

abundance of groups related to carbon metabolism. Also,

Nitrosphaeraleswasthemostabundantorderfoundacross

thegradients,andfurtherstudiesareneededtoevaluatetheir

potentialinNcycling.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

Theauthorsthank“Fundac¸ãodeAmparoaPesquisanoEstado

doPiauí”(FAPEPI)forfinancialsupporttothisprojectthrough

ofPRONEX (FAPEPI/CNPq 004/2012). Wethankthe Unidade

Multiusuário doNúcleode Pesquisa eDesenvolvimento de

Medicamentos(UM-NPDM)fromFederalUniversityofCeará

forusingMiSeqIlluminasequencingfacilities.

r

e

f

e

r

e

n

c

e

s

1.SchimelJ.Playingscalesinthemethanecycle:from

microbialecologytotheglobe.ProcNatlAcadSciUSA.

2004;101:12400–12401.

2.SilesJA,MargesinR.Abundanceanddiversityofbacterial,

archaeal,andfungalcommunitiesalonganaltitudinal

gradientinAlpineForestSoils:whatarethedrivingfactors?

MicrobEcol.2016;72:207–220.

3.CataoE,CastroAP,BarretoCC,KrugerRH,KyawCM.

DiversityofarchaeainBraziliansavanasoils.ArchMicrobiol.

2013;195:507–512.

4.WoeseCR,KandlerO,WheelisML.Towardsanaturalsystem

oforganisms:proposalforthedomainsArchaea,Bacteria,

andEucarya.ProcNatlAcadSciUSA.1990;87:4576–4579.

5.SchlossPD,GirardRA,MartinT.StatusoftheArchaealand

Bacterialcensus:anupdate.MBio.2016;7:e00201–e216.

6.HuberH,HohnMJ,RachelR,FuchsT,WimmerVC,Stetter

KO.AnewphylumofArchaearepresentedbyananosized

hyperthermophilicsymbiont.Nature.2002;417:63–67.

7.Brochier-ArmanetC,BoussauB,GribaldoS,ForterreP.

MesophilicCrenarchaeota:proposalforathirdarchaeal

phylum,theThaumarchaeota.NatRevMicrobiol.

2008;6:245–252.

8.GuyL,EttemaTJG.Thearchaeal‘TACK’superphylumand

theoriginofeukaryotes.TrendsMicrobiol.2011;19:

580–587.

9.Zaremba-NiedzwiedzkaK,CaceresEF,SawJH,etal.Asgard

archaeailluminatetheoriginofeukaryoticcellular

complexity.Nature.2017;541:353–358.

10.CabelloP,RoldánMD,Moreno-ViviánC.Nitratereduction

andthenitrogencycleinarchaea.Microbiology.

2004;150:3527–3546.

11.BakerBJ,BanfieldJF.Microbialcommunitiesinacidmine

drainage.FEMSMicrobiolEcol.2003;44:139–152.

12.SpangA,EttemaTJG.ThemethanogenicrootsofArchaea.

NatMicrobiol.2017;2:17109.

13.TaketaniRG,TsaiSM.infuenceofdiferentlandusesonthe

structureofarchaealcommunitiesinAmazoniananthrosols

basedon16SrRNAandamoAgenes.MicrobEcol.

2010;59:734–743.

14.EttoRM,CruzLM,JesusEC,etal.Prokaryoticcommunitiesof

acidicpeatlandsfromtheSouthernBrazilianAtlanticForest.

BrazJMicrobiol.2012;43:661–674.

15.MendesLW,TaketaniRG,NavarreteAA,TsaiSM.Shiftsin

phylogeneticdiversityofarchaealcommunitiesinmangrove

sedimentsatdifferentsitesanddepthsinsoutheastern

Brazil.ResMicrobiol.2012;163:366–377.

16.CastroAP,SilvaMRSS,QuirinoBF,BustamanteMMC,Krüger

RH.MicrobialdiversityinCerradobiome(Neotropical

Savanna)soils.PLoSOne.2016;11:e0148785.

17.CastroAAJF,MartinsFR,FernandesAG.Thewoodyfloraof

CerradovegetationintheStateofPiauí,NortheasternBrazil.

EdinbJBot.1998;55:455–472.

18.AraujoASF,BezerraWM,SantosVM,etal.Distinctbacterial

communitiesacrossagradientofvegetationfroma

preservedBrazilianCerrado.AntovanLeeuw.

2017;110:457–469.

19.OliveiraMEA,MartinsFR,CastroAAJF,SantosJR.Classesde

coberturavegetaldoparquenacionaldesetecidades

(transicaocampo-floresta)utilizandoimagensTM/Landsat,

NEdoBrasil.ProceedingsXIIISimposioBrasileirode

SensoriamentoRemotoAnais.2007;13:1775–1783.

20.TedescoMJ,GianelloC,BissaniCA.Analisesdesolosplantase

outrosmateriais.PortoAlegre:UFRGS;1995.

21.CaporasoJG,LauberCL,WaltersWA,etal.Globalpatternsof

16SrRNAdiversityatadepthofmillionsofsequencesper

sample.ProcNatlAcadSciUSA.2011;108:4516–4522.

22.PylroVS,RoeschLFW,OrtegaJM,etal.BrazilianMicrobiome

Project:revealingtheunexploredmicrobialdiversity–

challengesandprospects.MicrobEcol.2014;67:

237–241.

23.DeSantisTZ,HugenholtzP,LarsenN,etal.Greengenes,a

chimera-checked16SrRNAgenedatabaseandworkbench

compatiblewithARB.AppEnvironMicrobiol.

2006;72:5069–5072.

24.AndersonM.Anewmethodfornon-parametricmultivariate

analysisofvariance.AustEcol.2001;26:32–46.

25.HammerØ,HarperDAT,RyanPD.Past:Paleontological

StatisticsSoftwarepackageforeducationanddataanalysis.

(7)

26.ParksDH,TysonGW,HugenholtzP,BeikoRG.STAMP:

statisticalanalysisoftaxonomicandfunctionalprofiles.

Bioinformatics.2014;30:3123–3124.

27.WelchBL.Thegeneralizationof“Student’s”problemwhen

severaldifferentpopulationvariancesareinvolved.

Biometrika.1947;34:28–35.

28.BenjaminiY,HochbergY.Controlingthefalsediscoveryrate

–apracticalandpowerfulapproachtomultipletesting.J

RoyalStSoc.1995;57:289–300.

29.GorresC-M,ConradR,PetersenSO.Effectofsoilproperties

andhydrologyonArchaealcommunitycompositioninthree

temperategrasslandsonpeat.FEMSMicrobiolEcol.

2013;85:227–240.

30.MendesLW,TsaiSM,NavarreteAA,HollanderM,vanVeen

JA,KuramaeEE.Soil-bornemicrobiome:linkingdiversityto

function.MicrobEcol.2015;70:255–265.

31.NicolGW,GloverLA,ProsserJI.Molecularanalysisof

methanogenicarchaealcommunitiesinman-agedand

naturaluplandpasturesoils.GlobChangeBiol.

2003;9:1451–1457.

32.NicolGW,TscherkoD,EmbleyTM,ProsserJI.Primary

successionofsoilCrenarchaeotaacrossarecedingglacier

foreland.EnvironMicrobiol.2005;7:337–347.

33.StieglmeierM,MooshammerM,KitzlerB,etal.Aerobic

nitrousoxideproductionthroughN-nitrosatinghybrid

formationinammonia-oxidizingarchaea.ISMEJ.

2014;8:1135–1146.

34.LeiningerS,UrichT,SchloterM,etal.Archaeapredominate

amongammonia-oxidizingprokaryotesinsoils.Nature.

2006;442:806–809.

35.NavarreteAA,TaketaniRG,MendesLW,CannavanFS,

MoreiraFMS,TsaiSM.Land-usesystemsaffectarchaeal

communitystructureandfunctionaldiversityinWestern

Amazonsoils.RevBrasCiSolo.2011;35:

1527–1540.

36.VetrianiC,JannaschJW,MacGregorBJ,StahlDA,Reysenbach

A-L.Populationstructureandphylogeneticcharacterization

ofmarinebenthicarchaeaindeep-seasediments.Appl

EnvironMicrobiol.1999;65:4375–4384.

37.JurgensG,LindströmK,SaanoA.Novelgroupwithinthe

kingdomCrenarchaeotafromborealforestsoil.ApplEnviron

Microbiol.1997;63:3090–3095.

38.IinoT,TamakiH,TamazawaS,etal.Candidatus

Methanogranumcaenicola:anovelmethanogenfromthe

anaerobicdigestedsludge,andproposalof

Methanomassiliicoccaceaefam.nov.and

Methanomassiliicoccalesord.nov.,foramethanogenic

lineageoftheclassThermoplasmata.MicrobEnviron.

2013;28:244–250.

39.TripathiBM,KimM,Lai-HoeA,etal.pHdominatesvariation

intropicalsoilarchaealdiversityandcommunitystructure.

FEMSMicrobiolEcol.2013;86:303–311.

40.Gubry-RanginC,HaiB,QuinceC,etal.Nichespecialization

ofterrestrialarchaealammoniaoxidizers.ProcNatlAcadSci

USA.2011;108:21206–21211.

41.HuH-W,ZhangL-M,YuanC-L,etal.Thelarge-scale

distributionofammoniaoxidizersinpaddysoilsisdrivenby

soilpH,geographicdistance,andclimaticfactors.Front

Referências

Documentos relacionados

The abaxial leaf surface of individuals from the campo cerrado showed a higher density of glandular trichomes in comparison to individuals from the cerrado stricto sensu (F

effect of the vegetation gradient formed by Graminoid Field (GRF), Cerrado Sensu Stricto (CSS), Cerradão (CRD) and Semideciduous Seasonal Forest (SSF) on density, diversity

For the herbaceous component, diversity was higher in cerrado sensu stricto , when compared to campo cerrado , and equal in cerradão in relation to the other two physiognomies..

The species was regularly recorded in areas of campo cerrado , campo sujo and cerrado sensu sricto and eucalyptus with understory vegetation between 1985 and 1996 at the

We investigated the existence of an ecotone in the species composition, diversity and vegetation structure in the transition between gallery forest and cerrado sensu stricto

Here we describe for the first time the diversity of archaeal communities from freshwater lake sediments of the Cerrado in the dry season and in the transition period between the

Our results showed that changes in bacterial, archaeal, and fungal community structures in cerrado denso , cerrado sensu stricto , campo sujo , and gallery forest soils

The materials collected at the turn of the 21 st century (we recorded over 300 prose texts, most of which are demonological legends and tales) testify that folk prose tradition