• Nenhum resultado encontrado

Wing shape is influenced by environmental variability in Polietina orbitalis (Stein) (Diptera: Muscidae)

N/A
N/A
Protected

Academic year: 2021

Share "Wing shape is influenced by environmental variability in Polietina orbitalis (Stein) (Diptera: Muscidae)"

Copied!
7
0
0

Texto

(1)

REVISTA

BRASILEIRA

DE

Entomologia

AJournalonInsectDiversityandEvolution

w w w . r b e n t o m o l o g i a . c o m

Systematics,

Morphology

and

Biogeography

Wing

shape

is

influenced

by

environmental

variability

in

Polietina

orbitalis

(Stein)

(Diptera:

Muscidae)

Victor

Michelon

Alves

,

Maurício

Osvaldo

Moura,

Claudio

J.B.

de

Carvalho

DepartmentofZoology,UniversidadeFederaldoParaná,Curitiba,PR,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received6May2015 Accepted13February2016 Availableonline2March2016 AssistantEditor:MarcioR.Pie

Keywords: Diptera Geometricmorphometrics Muscidae Phenotypicplasticity

a

b

s

t

r

a

c

t

WemeasuredvariationandcovariationinwingmorphologyinsixpopulationsoftheflyPolietina orbitalis(Stein)(Diptera:Muscidae)totestforgeographicmorphologicalstructure.Additionally,we examinedtheroleofenvironmentalvariablesindetermininggeographicvariationinwingshape.We sampledfivepopulationsinthestateofParaná,southernBrazil(Colombo,Fênix,Guarapuava,Jundiaí doSulandPontaGrossa),andoneinParaguay(Mbaracayú).Wechoose15landmarkstodescribethe wingshapeandsizeand19environmentalvariablestodescribethelocalenvironmentalconditions.Our resultsshowedthatP.orbitaliswingshape,butnotsize,variesgeographically.Acanonicalvariate anal-ysisshowedtheexistenceoftwoclustersofpopulationsbasedonwingshape.Thesegroupscompare populationsinwhichthewingisslenderwithgroupsinwhichthewingsarebroad.Theseshape differ-enceswerecorrelatedwithvariationinelevation,precipitationandtemperaturebutwerenotallometric. Takentogether,theseresultssuggestthatwingshapedifferencesinP.orbitalispopulationsareduetoa plasticresponsetolocalenvironmentalconditions.

©2016SociedadeBrasileiradeEntomologia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Phenotypicplasticityistheabilityofanorganismtoexpress differentphenotypesdependingontheenvironmentalconditions faced (Agrawal, 2001). Such plasticity is therefore the conse-quenceoftheinteractionbetweenenvironmentalvariabilityand thedevelopmentalprogram(genotypic×environmental interac-tion; Scheiner, 1993)and is thus, one solutionto theproblem ofadaptationtoheterogeneousenvironments(Viaet al.,1995). Plasticityarisesbecauseenvironmentalvariabilityinduces devel-opmental changes, which alter the expression and connection betweentraits(Relyea,2004).

Asa developmentalresponse, plastic traits allowspecies to copewithenvironmentalvariability(temporalorspatial),enabling a fitnessoptimization(such as acclimatization)to these condi-tions(Ghalamboretal.,2007).Althoughphenotypicplasticityhas aneffectonfitness,thiseffectcouldbeadaptive,maladaptiveor neutral(Scheiner,1993;Pigliucci,2005;Ghalamboretal.,2007). Becauseanyenvironmentallyinducedplasticityplacesphenotypes intodifferentselectiveregimes,thefitnessconsequence,inboth theshortand longrun,willdeterminewhethertheresponse is adaptive.Forexample,environmentalvariabilitythatispersistent, causingpersistentselectionpressure,mayleadtolocalpopulation

∗ Correspondingauthor.

E-mail:vmichelonalves@gmail.com(V.M.Alves).

adaptation,withfitnesspeaksthataredifferentforeachpopulation (KaweckiandEbert,2004).

Althoughmorphologicaltraitshavebeenoneofthecharacters mostwidelyusedtostudyphenotypicplasticity,anymeasurable trait,suchaslifehistoryfeatures,physiologyandbehaviorcould alsobeused(WhitmanandAnanthakrishnan,2009).Insectbody sizeandshapestronglyrespondtochangesintemperature,with responsesrangingfrompopulationdifferences(e.g.,Hoffmannand Shirriffs,2002)tothermalclinesinbodysize(Griffithsetal.,2005; vanHeerwaardenandSgrò,2011).Assizeandshapeimpact perfor-manceandfitness(vanHeerwaardenandSgrò,2011),thesetraits areofinterestforthestudyofphenotypicplasticity.

Environmentalvariablesarespatiallystructured,andthis struc-turingcouldalsoleadtohierarchicallystructuredmorphological variation that could be either continuous (such as a cline) or discontinuous.Therefore, therecognitionof suchmorphological discontinuitiescanleadtoanunderstandingoftheshapingofnot onlyspeciesboundariesbutalsointraspecificpatternsofvariation andcovariation(Mateusetal.,2013).

Thestudyofmorphologicalvariationhasadvancedatthesame paceasthedevelopmentofthecorrespondinganalyticalmethods, thusallowingforamoreaccuratetreatmentofavarietyof hypothe-ses(Adamsetal.,2013).Somephenotypicalterationcanbevery subtleanddifficulttodetect,andmorphometrycanbeausefultool fordetectingsuchchange,mainlythatinvolvingthesizeandform oforganisms(StraussandBookstein,1982).Themainstrengthof geometricmorphometryovertraditionalmorphometricmethods http://dx.doi.org/10.1016/j.rbe.2016.02.003

0085-5626/© 2016 Sociedade Brasileira de Entomologia. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

1 2 3 6 5 4 100 km

Fig.1.MapshowingsiteswhereP.orbitalispopulationswerecollected:1.Mbaracayú(25◦17S,5449W)inParaguayand2.Fênix(2354S,5158W),3.JundiaídoSul

(23◦26S,5014W),4.Guarapuava(2523S,5127W),5.PontaGrossa(2505S,5009W)and6.Colombo(2517S,4913W)inBrazil.

isitsabilitytodetectevensubtlemorphologicalvariation. Addi-tionally,geometricmorphometrycanseparatethesizeandshape componentsofform(Adamsetal.,2013)bypermittinganalysisina high-dimensionalmorphologicalspace,whichenablesagraphical interpretationofshapechanges.

Dipteraprovide a standard model system tostudy environ-mentally induced phenotypic changes. Several species exhibit variationsinfitness-relatedandmorphologicaltraits(wingsizeand shape)thatcorrelatewithlocalselectivepressures,mainlythermal selection(Reeveetal.,2000;HoffmannandShirriffs,2002;Soto etal.,2007;Aytekinetal.,2007;Marstelleretal.,2009;Devicari etal.,2011;Demircietal.,2012;Kjaersgaardetal.,2013;Hidalgo etal.,2015).However,theseresultsarebiasedtowardgroupsof medicalandveterinaryimportanceaswellasmodelspecies,such asthosebelongingtothegenusDrosophila.Althoughweexpect thatthelifehistorytraitsofallectothermsrespondtotemperature (Angillettaetal.,2004),thoseectothermalspeciesthatarebroadly distributedareexpectedtofacesteeperclimatechangesalongtheir geographicrange.Polietinaorbitalis(Stein,1904)(Diptera: Musci-dae)arebroadlydistributed inforestedareasofSouthAmerica, includingBrazil,Argentina,Bolivia,PeruandParaguay( Löwenberg-neto and de Carvalho, 2013).Thus, thegeographic range of P. orbitalisencompassesseveralbiometypes,eachonedefinedbyaset ofspecificenvironmentalcharacteristics.Additionally,theirrange spanstropicalandsubtropical/temperateclimates.Therefore,this speciesseemsa model candidatetodeterminetheinfluenceof environmentalconditionsonmorphologybecauseitspopulations alongalatitudinal/longitudinalgradientareunderdifferent ther-malregimes.Consequently,weusedgeometricmorphometryto characterizegeographicpatternsinP.orbitalismorphology(wing shape),expectingthem tovaryaccording totheenvironmental conditionsunderwhicheachpopulationevolved.Specifically,we testedforthefollowingpatternsandassociations:(a) morphologi-calinterpopulationalvariation,(b)anassociationofmorphological changeswithlatitudeorlongitudeand(c)theclimaticvariables moststronglycorrelatedwithmorphologicalchanges.

Materialandmethods

WerestrictedouranalysistofemalespecimensofP.orbitalis fromsouthernBrazilandnearbyParaguay.Thegeographicalextent

ofsamplingwasdefinedbytheavailabilityofanadequatesample size,andonlyfemalesweresampledtoavoidtheeffectsofsexual dimorphismandamalesamplesizethatwastoosmall.Thesample comprised thefollowing specimens:28 fromParaguay (Mbara-cayú) andJundiaí do Sul,24from Colomboand 30fromFênix, Guarapuava,andPontaGrossa(Fig.1).

AllthespecimenswerepreviouslycollectedusingMalaisetraps. TheParaguayanpopulationwascollectedattheReservaNatural delBosqueMbaracayú,andtheBrazilianpopulationswere sam-pledwithintheproject“LevantamentodaFaunaEntomológicano EstadodoParaná”(PROFAUPAR),fromAugust1986toJuly1988 (MarinoniandDutra,1993).AllthespecimensbelongtothePadre JesusSantiagoMoureentomologicalcollectionhousedinthe Zool-ogyDepartmentoftheUniversidadeFederaldoParaná(DZUP).

Totestourhypotheses,weusedrightwingsasamorphological proxy.Thewingswerecarefullyremovedandplacedinabsolute alcoholfor20min,xylenefor10minandthenmountedbetween 14mmcoverslipswithEntellan®.Thedorsalsideofthewingwas photographedusingaDino-LitePro® microscopeat15× magni-fication. Voucher specimens, togetherwith wingmounts, were depositedintheDZUP.

We defined the wing shape through the placement of 15 anatomicallandmarksatwingveinintersections(Table1,Fig.2). These15landmarkswerechosenbecausetheycouldcapture mor-phologicalvariationsalongtheentirewingarea(thebase,center andtipofthewing).AllthelandmarksweredigitizedusingtpsDig version2.16(Rohlf,2010)andtpsUtilversion1.53(Rohlf,2012), freesoftwareavailableathttp://life.bio.sunysb.edu/morph/.

Thelandmarkconfigurationsweresuperimposedusing gener-alizedProcrustesanalysis(GPA,Rohlfand Slice,1990).Thefirst stepofGPAistocentereachlandmarkconfigurationattheorigin thatisaligningallthelandmarkconfigurationstotheircentroids, eliminatingtheeffectofposition.Then,thelandmark configura-tionisscaledtounitcentroidsize,thuseliminatingtheeffectof size. Next, thelandmark configurationsare rotated around the origintominimizethesummedsquaredistancebetween homol-ogouslandmarks,whichremovestheeffectoforientation.After this procedure, thedistances(Procrustesdistance) betweenthe superimposedconfigurationscorrespondtotheextentstowhich theconfigurationsdifferinshape,andthesuperimposed coordi-natescontain information regardingthe shape. Toquantify the

(3)

Numberanddescriptionofthe15anatomicallandmarksusedtocharacterizewing shapeinP.orbitalis.

Anatomicallandmark Description(intersectionbetweenveins)

1 Cwithh 2 CwithSc 3 CwithR1 4 CwithR2+3 5 CwithR4+5 6 CwithM 7 bm-cuwithM

8 bm-cuwithRear1

9 R4+5withr-m

10 Mwithr-m

11 R2+3withR4+5

12 Mwithdm-cu

13 CuA1withdm-cu

14 CuA1withCuA2

15 A1withCuA2

Abbreviations:A1,anal1;C,costa;CuA,anteriorcubital;CuA1,anteriorcubital1; CuA2,anteriorcubital2;M,medial;R,radial;R1,radialanterior1;R2+3,radial2+3; R4+5,radial4+5;Sc,subcosta;bm-cu,basalmediancubital;dm-cu,distalmedian cubital;h,humeral;r-m,radialmedial.

1

A

B

2 3 4 5 6 7 8 10 9 11 12 13 14 15

Fig.2.DorsalsideoftherightwingofP.orbitalisshowing(A)the15(numbered points)anatomicallandmarksand(B)thegeneralshapeofthewingbasedontheir positions.

measurementerror,eachwingwasdigitizedthreetimeson sep-aratedays. Wethen applieda multivariateanalysisofvariance (MANOVA)totestfordeparturefromrandommeasurementerrors amongthereplicates.

Asageneralmeasureofwingsize,weusedthecentroidsizeof eachspecimen,whichisthesquarerootofthesumofthesquared distancesofallthelandmarksfromtheircentroid,thecenterof eachconfiguration(Bookstein,1991).Totestthepopulationsfor differencesin averagesize, we compared wingsizeamong the populationsusingananalysisofvariance(ANOVA).Toassessthe degreeofcorrelationbetweensizeandshape,wefitalinear regres-sionbetweentheProcrustescoordinatesandthecentroidsize.

Thepopulationswereorderedinareducedspaceusing canon-icalvariableanalysis(CVA).CVA isa techniquethat maximizes theseparationofpopulationsbecauseeachaxisisconstrainedto representthemaximumbetween-groupvariance.Totestwhether thepopulationshavedivergedinshape,weusedaMANOVAwith theProcrustescoordinates astheresponse variable.The differ-encebetweengroupswascharacterizedbydiscriminantfunction

minedbycross-validation.

Wetestedforaneffectofclimateonphenotypicchangesusing a two-blockpartialleastsquares(PLS)analysis.ThisPLS analy-sistestedforcovariationbetweenblocksofvariables(wingshape withinpopulations),usingtheProcrustescoordinatesand environ-mentalvariables(RohlfandCorti,2000).Climatewassummarized by19variablesrepresentingvariationsintemperatureand rain-fall: (1)annual meantemperature; (2) meandiurnal range;(3) isothermality;(4)temperatureseasonality;(5)maximum temper-ature of warmest month;(6) minimum temperatureof coldest month;(7) annualtemperaturerange; (8)averagetemperature ofthewettestand(9)driestthree-monthperiods;(10)average temperatureofthehottestquarter;(11)averagetemperatureof thecoldestquarter;(12)annualprecipitation;(13)precipitation in the wettest and (14)driest months; (15) seasonal variation inprecipitation; and (16)precipitationin thewettest,(17) dri-est,(18)hottestand(19)coldestquarters.Elevation,latitudeand longitudewerealsoincludedintheenvironmentalmatrix.These climaticvariables representa 50-year mean trend in historical data(1950–2000)andwereobtainedfromtheWorldClimdatabase (http://www.worldclim.org/)usingDIVA-GISversion7.5(Hijmans et al., 2001). Allthe variables were standardized before analy-sis. All analysis was performed using MorphoJ® version 1.05d (Klingenberg,2011)andPAST®version2.17b(Hammeretal.,2001).

Results

Theerrorduetolandmarkdigitizationwasrandomfor both shape (ANOVA; p=0.971, SS=0.004, F=0.36, df=32) and size (ANOVA; p=0.988, SS=1905, F=0.010,df=2); thus, any differ-encesbetweenpopulationswereunrelatedtoimageordigitization errors.Therewasnosize(wingcentroidsize)variationbetween among the P.orbitalis populations (ANOVA; F=0.004, p=0.998, df=2),withthesizerangingfrom5to6mm.Incontrastwithwing size,wingshape differedamongall thepopulations(MANOVA; Wilks’=0.030,p<0.001,df=150, F=5.38).Therewasno allo-metriccomponentbecausetheshapeandsizevariableswerenot correlated(r=0.02,p=0.1873).Therefore,thewingshape differ-enceamongthepopulationswasindependentofthesizeofthe specimens.

The ordination of the populations by CVA showed that the firstandsecondcanonicalvariablesjointlyexplained81%ofthe observedvariation.Thefirstcanonicalaxis(accountingfor51%of thevariance)orderedthepopulationsinawidertonarrowerwing shapegradient.Thepopulationswithpositiveloadings(positive CV1values,Fig.3),suchasPontaGrossa,GuarapuavaandColombo, hadcertainlandmarksofthecostalmargin(landmarks1,2and3) andoftheposteriorwingmargin(landmarks8and15)displaced towardthecenterofthewing.Additionally,landmarks4 and7 displacedtowardthewingtip.Together,theselandmark displace-mentsshortenthewingblade,resultinginanarrowwing(Fig.4). ThepopulationswithnegativeloadingsonCV1,suchasMbaracayú andFênix(Figs.3and4),showedacontrastingwingshape com-paredwiththoseinthepositivequadrant.Thedisplacementofthe costal(landmarks1,2and3)andposterior(landmarks8and15) wingmarginlandmarksexpandedthewingblade(Fig.4). Addi-tionally,landmarks4and7movedtowardthewingbase.These rearrangementsresultedinanenlargedwing.

Thesecondcanonicalaxis(CV2,accountingfor30%ofthe vari-ance)showedonlylocalchanges(Fig.5),incontrastwithCV1,for whichthemorphologicalchangeswereglobal.Thelandmark dis-placementoccurredmostlyinthebasalregion(landmarks1,2,and 11).Thewingsofpopulationsloadedwithpositivescores(Fênix, ColomboandGuarapuava)hadaslightexpansionoftheanterior

(4)

4 2 Fênix Jundiaí do sul Mbaracayú - Ponta grossa - Guarapuava - Colombo Canonical v a ri ate 2 (30%) 0 –2 –4 –6 –4 –2 0 Canonical variate 1 (51%) 2 4 6

Fig.3.PositionoftheP.orbitalispopulationsinthespacedeterminedbythefirst twocanonicalaxes.Theellipsesindicate95%confidenceintervals.

1 2

A

B

3 9 11 12 14 15 8 4 3 2 1 11 9 5 6 7 10 13 14 12 15 CV1 8 13 10 7 6 5 4

Fig.4.Graphicreconstructionofthewingshapeofindividualswith(A)positiveand (B)negativescoresonthefirstcanonicalaxis(CV1,increased10times).Thelinesin grayrepresenttheaverageconfigurationofthewing,andthoseinblackrepresent thecanonicalfirstvariable.

Table2

PercentcorrectclassificationofpopulationsofP.orbitalisbasedonwingmorphology anddiscriminantfunctionanalysis(DFA).

Population Allocationvalue(%)

Colombo 97 Fênix 95 Guarapuava 99 JundiaídoSul 98 Mbaracayú 97 PontaGrossa 96

region(landmarks1and2)andatlandmark11inamoreapical position.ThepopulationswithnegativeloadingsonCV2 (Mbara-cayúandPontaGrossa)showedlessbasalareathanthatshown bypopulationsonthepositiveCV2quadrantduetothebasal dis-placementoflandmark11andaslightlyposteriordisplacement oflandmarks1and2.Thecrossvalidationtestsindicatedthatan averageof97%(rangingbetween95%and99%)ofindividualswere correctlyallocatedtotheirrespectivepopulations(Table2).

AlldimensionsofthePLSanalysis(Table3)werestatistically significant(allwithp<0.01),butthePLS1axisaloneexplained92%

1 2 3 4 5 6 4 8 7 10 9 11 12 14 13 15 2 3 9 11 12 14 13 10 7 5 6 8 CV2 15

A

B

Fig.5.Graphicreconstructionofthewingshapeofindividualswith(A)positiveand (B)negativescoresonthesecondcanonicalaxis(CV2,increased10times).Thelines ingrayrepresenttheaverageconfiguration,andthoseinblackrepresentthesecond canonicalvariable.

ofthevariationintheshapevariables.Elevationandprecipitation inthedriestmonthwerenegativelycorrelatedwithPLS1(−0.79 and−0.20,respectively),whereastheminimumtemperatureof thecoldestmonth andaveragetemperatureof thedriest quar-terwerepositivelycorrelated(0.23and 0.25,respectively)with PLS1(Fig.6).Thepopulationsclusteredintwogroupsalongthis axis:Guarapuava,PontaGrossa and Colomboin onegroupand Mbaracayú,FênixandJundiaídoSulinanother.Thevariationin shapewasindependentoflatitudeandlongitude.Thus,higher ele-vationsandgreaterrainfallwereassociatedwithnarrowerwings, andlowerelevationsandtemperaturewereassociatedwithwider wings(Fig.7).

Discussion

OurresultsshowedthatP.orbitaliswingshapevaries geograph-ically,butnosuchvariationwasdetectedforwingsize(centroid size). Additionally, all the populations differed in wing shape, whichledtoahighsuccessrate(anaverageof97%)in predict-ingthepopulationinwhicheachindividualbelonged.Although allthepopulationshadaveragewingshapesthatdifferedfromone another,theCVAshowedtwoclustersofpopulationsbasedonwing shape(narrowwingandbroadwingclusters),withtheshapeof bothgroupscorrelatedwithelevation,precipitationand tempera-turebutnotwithwingsize.Takentogether,thesefindingssuggest thatshapedifferencesinP.orbitalisresultfromaplasticresponse tolocalenvironmentalconditions.

Althoughelevationwasthesinglevariablethatmostinfluenced thePLSaxis,ingeneral,theaxiscouldbeviewedasa tempera-ture/precipitationgradientbecauseelevationandtemperatureare negativelycorrelated.Temperatureisoneofthemostimportant driversofphenotypicplasticityininsects(LomônacoandPrado, 1994;Imashevaetal.,1995;WhitmanandAnanthakrishnan,2009). Thetemperature-sizeruleproposesthatinsectsdevelopingunder hightemperaturehaveasmallersize(Atkinson,1994).Aswingsize correlateswithbodysize,wewouldexpectsmallerwingsathigh temperatures,ahypothesiswerejectbecausewedidnotfindany differenceinwingsizeamongthepopulations.However, temper-aturealsoaffectswingload(GilchristandHuey,2004),whichis dependentontheshapeofthewing.Thus,wewouldexpectthat apopulationfromcoolerareaswouldhaveareducedwingload

(5)

PLSresultbetweentheshapeandenvironmentalvariables.NoticethatthegreaterPLS1hasthestrongestcorrelation(allp<0.01). Variable Dimension 1 2 3 4 5 Latitude 0.033 −0.083 0.057 −0.067 0.227 Longitude −0.051 −0.059 −0.054 0.159 −0.091 Altitude −0.790 0.254 0.090 0.145 0.089

Annualmeantemperature 0.178 0.007 0.064 0.123 0.091

Meandiurnalrange 0.117 −0.005 0.409 −0.221 0.111

Isothermality 0.011 −0.104 0.279 −0.264 0.233

Temperatureseasonality 0.121 0.304 −0.197 0.129 −0.282

Maximumtemperatureofwarmestmonth 0.149 0.057 0.090 0.142 −0.038

Minimumtemperatureofcoldestmonth 0.235 −0.056 −0.038 0.392 0.167

Temperatureannualrange 0.111 0.106 0.146 0.032 −0.128

Averagetemperatureofwettestquarter 0.116 −0.007 0.060 0.158 0.029

Averagetemperatureofdriestquarter 0.253 −0.094 0.145 0.063 0.407

Averagetemperatureofwarmestquarter 0.163 0.064 0.040 0.134 −0.031

Averagetemperatureofcoldestquarter 0.184 −0.036 0.145 0.144 0.101

Annualprecipitation −0.007 0.156 −0.206 −0.154 0.384

Precipitationwettestmonth 0.057 0.097 −0.454 −0.244 −0.055

Precipitationdriestmonth −0.201 0.420 −0.060 0.542 0.319

Precipitationseasonality 0.141 −0.521 −0.298 0.165 0.214

Precipitationofwettestquarter 0.034 −0.011 −0.332 −0.096 −0.097

Precipitationofdriestquarter −0.122 0.442 −0.000 −0.028 0.221

Precipitationofwarmestquarter 0.007 −0.105 −0.404 −0.130 0.364

Precipitationofcoldestquarter −0.045 0.314 0.032 −0.349 0.249

Singularvalues 0.00138 0.00040 0.00011 0.00007 0.00001

Covariation(%) 92 7 0.6 0.3 0.1

Correlations 0.678 0.401 0.315 0.362 0.213

Coefficientofassociationbetweenblocksis0.2179.

tocompensateforreducedflightperformanceduetothesmaller adultsize(Dudley,2000).Areducedwingloadingcouldbeachieved byincreasingthewingarea(Dudley,2000),butpopulationsfrom colderclimates(positiveCVAquadrantandnegativecorrelations withPLS)hadlongandslenderwings,whichdidnotmatchthe pre-dictionofthewingloadhypothesis.Thus,thewingshapechanges wedescribedarenottotallyrelatedtoanaerodynamichypothesis. Ourfindingshighlightthecomplexinteractionbetweengenotype andenvironment.

Variationsinsizebetweenpopulationscanbeassociatedwith alterationsinshape (Dujardin, 2008);however,we didnotfind thistrend.Theabsenceofallometryassociatedwithgeographical variationsinwingshape hasalsobeenfoundinDrosophila ser-rataMalloch(1927)(HoffmannandShirriffs,2002).Therefore,this absenceofallometricpatternsmeansthatfactorsotherthan allom-etryareinfluencingwingshape.Additionally,thePLSanalysisdid notshowsignificantcorrelationbetweenshapeandgeographical

distance,asobservedinotherstudies(Motokietal.,2012),perhaps asa resultofsamplingalargergeographicareainthosestudies comparedwiththatsampledbyourstudy(Monroyetal.,2003).

An effect of elevation has been reported in other studies. For instance, Belen et al. (2004) found that Phlebotomus pap-atasi(Scopoli,1786)populationsfromahigherelevationformed a distinct group.In studieswithCulex theileriTheobald(1903), Demircietal.(2012)alsofoundwingshapemodificationsin popu-lationsbetweenelevationsof808and2130m.Whileevaluatingthe traditionalandgeometricalmorphometryofDrosophila mediopunc-tataDobzhansky&Pavan(1943),Bitner-Mathéetal.(1995)also observedanassociationofformwithelevation,indicatingclinal variationwithelevationinthisspecies.Additionally,wecan estab-lishamorphologicalpatterninP.orbitalisrelatedtoelevation,in thatbeloworaboveanelevationof900m, populationsshowed abroad-orthin-wingphenotype,respectively.Thestandardthin wingfoundinpopulationsat higherelevations couldconferan

0.30 1 0.20 0.10 0.10 0.00 –0.10 0.00 –0.10 Bloc k 2 PLS 1 Block 1 PLS 1 –0.20 –0.30 3 2 5 1 2 3 4 5 6 100 km 6 4

Fig.6.ResultsofthePLSanalysis,withColombo(6),Guarapuava(4)andPontaGrossa(5)showingnegativevaluesandFênix(2),JundiaídoSul(3)andMbaracayú(1) showingpositivevalues.

(6)

0.30 A B 1 (229m) 3 (534m) 2 (700m) 5 (933m) 6 (929m) 4 (1128m) 0.20 0.10 0.00 –0.10 –0.10 0.00 Block 1 PLS 1 Bloc k 2 PLS 1 0.10 –0.20 –0.30

Fig.7.ComparisonbetweenthePLSanalysis(withelevation)andCVA(CV1)showingthatindividualswithawiderwingphenotypeoccurinpopulationslivingatamaximum elevationof700m(A)andthosewithathinnerwingphenotypeoccuratelevationsover900m(B).Localitiesareasfollows:1.Mbaracayú,2.Fênix,3.JundiaídoSul,4. Guarapuava,5.PontaGrossaand6.Colombo.

advantagebecausethereductionof airdensityat higher eleva-tionscaninterferewiththeaerodynamicforces ofinsectwings (Dudley,2000).Forpopulationsatlowerelevations,the character-isticbroad-wingphenotypecanleadtoanincreasedflightenergy cost(Ayalaetal.,2011).However,theorganismscanslowdown thewingtomaintainsustentationflight,whicheconomizesenergy (Dillonetal.,2006).

Intheaforementionedmanner,themorphometricvariations thatwefoundinP.orbitalisarebasicallyassociatedwith organ-ismalalterationsinthefaceofenvironmentalmodifications.Our resultsshowedtwobasicwingshapes(narrowandbroad),which arecorrelatedwithelevation,precipitationandtemperatureand donotscaleallometricallywithsize.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

We thank two anonymous reviewerswho greatly improved anearlier version of themanuscript. Funding wasprovided by Conselho NacionaldeDesenvolvimento CientíficoeTecnológico (CNPq), an M.Sc. scholarship (V.M.A.); research grant (C.J.B.C.) [304713/2011-2], research grant (M.O.M.) [307947/2009-2]and Fundac¸ãoAraucaria,researchgrant(M.O.M.)[686/2014].

References

Adams,D.C.,Rohlf,F.J.,Slice,D.E.,2013.Afieldcomesofage:geometric morpho-metricsinthe21stcentury.Hystrix24,7–14.

Agrawal,A.A.,2001.Phenotypic plasticityintheinteractionsandevolutionof species.Science294,321–326.

Angilletta,M.J.,Steury,T.D.,Sears,M.W.,2004.Temperature,growthrate,andbody sizeinectotherms:fittingpiecesofalife-historypuzzle.Integr.Comp.Biol.44, 108–140.

Atkinson,D.,1994.Temperatureandorganismsize–abiologicallawforectotherms? Adv.Ecol.Res.3,1–58.

Ayala,D.,Caro-Hiano,H.,Dujardin,J.P.,Rahola,N.,Simard,F.,Fontenille,D.,2011. Chromosomalandenvironmentaldeterminantsofmorphometricvariationin naturalpopulationsofthemalariavectorAnophelesfunestusinCameroon.Infect. Genet.Evol.5,940–947.

Aytekin,A.M.,Alten,B.,Caglar,S.C.,Ozbel,Y.,Kaynas,S.,Simsek,F.M.,Kasap,O.E., Belen,A.,2007.Phenotypicvariationamonglocalpopulationsofphlebotomine sandflies(Diptera:Psychodidae)insouthernTurkey.J.VectorEcol.32,226–234.

Belen,A.,Alten,B.,Aytekin,M.,2004.Altitudinalvariationinmorphometricand molecularcharacteristicsofPhlebotomuspapatasipopulations.Med.Vet. Ento-mol.18,343–350.

Bitner-Mathé,B.C.,Peixoto,A.A.,Klaczko,L.B.,1995.Morphologicalvariationina nat-uralpopulationofDrosophilamediopunctata:altitudinalcline,temporalchanges andinfluenceofchromosomeinversions.Heredity75,54–61.

Bookstein,F.L.,1991.MorphometricToolsforLandmarkData:Geometryand Biol-ogy.CambridgeUniversityPress,Cambridge.

Dillon,M.E.,Frazier,M.R.,Dudley,R.,2006.Intothinair:physiologyandevolution ofalpineinsects.Integr.Comp.Biol.46,49–61.

Demirci,B.,Lee,Y.,Lanzaro,G.C.,Alten,B.,2012.Altitudinalgeneticand morphomet-ricvariationamongpopulationsofCulextheileriTheobalt(Diptera:Culicidae) fromnortheasternTurkey.J.VectorEcol.37,197–209.

Devicari,M.,Lopes,A.R.,Suesdek,L.,2011.DimorfismosexualdeAedesscapularis (Diptera:Culicidae).BiotaNeotrop.11,165–169.

Dudley,R.,2000.TheBiomechanicsofInsectFlight:Form,Function,andEvolution. PrincetonUniversityPress,Princeton.

Dujardin,J.P.,2008.Morphometricsappliedtomedicalentomology.Infect.Genet. Evol.8,875–890.

Ghalambor,C.K.,Mckay,J.K.,Carroll,S.P.,Reznick,D.N.,2007.Adaptiveversus non-adaptivephenotypicplasticityandthepotentialforcontemporaryadaptation innewenvironments.Funct.Ecol.21,394–407.

Gilchrist,G.W.,Huey,R.B.,2004.Plasticandgeneticvariationinwingloadingasa functionoftemperaturewithinandamongparallelclinesinDrosophila subob-scura.Integr.Comp.Biol.44,461–470.

Griffiths,J.A.,Schiffer,M.,Hoffmann,A.A.,2005.Clinalvariationandlaboratory adap-tationintherainforestspeciesDrosophilabirchiiforstressresistance,wingsize, wingshapeanddevelopmenttime.J.Evol.Biol.18,213–222.

Hidalgo,K.,Dujardin,J.P.,Mouline,K.,Dabiré,R.K.,Renault,D.,Simard,F.,2015. Seasonalvariationinwingsizeandshapebetweengeographicpopulationsof themalariavectorAnophelescoluzziiinBurkinaFaso(WestAfrica).ActaTrop. 143,79–88.

Hijmans,R.J.,Cruz,M.,Rojas,E.,Guarino,L.,2001.DIVA-GIS,Version7.5.A Geo-graphic Information System forthe Management and Analysisof genetic resourcesdata.Manual.InternationalPotatoCenterandInternationalPlant Genetic Resources Institute, Lima, Available at: http://www.diva-gis.org/ (accessed4.05.13).

Hoffmann,A.A.,Shirriffs,J.,2002.GeographicvariationforwingshapeinDrosophila serrata.Evolution5,1068–1073.

Hammer,O.,Harper,D.A.T.,Ryan,P.D.,2001.PAST:paleontologicalstatistics soft-warepackageforeducationanddataanalysis.Palaeontol.Electron.4,1–9. Imasheva,A.G.,Bubli,O.A.,Lazebny,O.E.,Zhivotovsky,L.A.,1995.Geographic

differ-entiationinwingshapeinDrosophilamelanogaster.Genetica96,303–306. Kjaersgaard,A.,Pertoldi,C.,Loeschcke,V.,Blanckenhorn,W.U.,2013.Theeffect

of fluctuating temperatures during development on fitness-related traits of Scatophaga stercoraria (Diptera: Scathophagidae). Environ. Entomol. 5, 1069–1078.

Kawecki,T.J.,Ebert,D.,2004.Conceptualissuesinlocaladaptation.Ecol.Lett.7, 1225–1241.

Klingenberg,C.P.,2011.MorphoJ:anintegratedsoftwarepackageforgeometric morphometrics.Mol.Ecol.Resour.11,353–357.

Lomônaco,C.,Prado,A.P.,1994.MorfometriadeMuscadomesticaL.degranjasde galinhaspoedeiras.An.Soc.Entomol.Bras.23,171–178.

Löwenberg-neto,P.,deCarvalho,C.J.B.,2013.Muscidae(Insecta:Diptera)ofLatin AmericaandtheCaribbean:geographicdistributionandcheck-listbycountry. Zootaxa3650,1–147.

(7)

trastingpatternsofwithin-speciesmorphologicalvariationintwocactophilic Drosophilaspecies(Diptera:Drosophilidae).Neotrop.Entomol.42,384–392. Marsteller,S.,Adams,D.C.,Collyer,M.L.,Cordon,M.,2009.Sixcrypticspeciesona

singlespeciesofhostplant:morphometricevidenceforpossiblereproductive characterdisplacement.Ecol.Entomol.34,66–73.

Marinoni,R.C.,Dutra,R.R.C.,1993.LevantamentodafaunaentomológicanoEstado doParaná.I.Introduc¸ão.Situac¸ãoclimáticaeflorísticadeoitopontosdecoleta. Dadosfaunísticos deagosto de1986 ajulhode 1987.Rev. Bras.Zool. 8, 31–73.

Monroy,C.,Bustamante,D.M.,Rodas,A.,Rosales,R.,Mejía,M.,Tabaru,Y.,2003. GeographicdistributionandmorphometricdifferentiationofTriatomanitida Usinger1939(Hemiptera:Reduviidae:Triatominae)inGuatemala.Mem.Inst. OswaldoCruz98,37–43.

Motoki,M.T.,Suesdek,L.,Bergo,E.S.,Sallum,M.A.M.,2012. Winggeometryof AnophelesdarlingiRoot(Diptera:Culicidae)infivemajorBrazilianecoregions. Infect.Genet.Evol.12,1246–1252.

Pigliucci,M.,2005.Evolutionofphenotypicplasticity:wherearewegoingnow? TrendsEcol.Evol.20,481–486.

Relyea,R.A.,2004.Integratingphenotypicplasticitywhendeathisontheline: insightsfrompredator–preysystems.In:Pigliucci,M.,Preston,K.(Eds.),The EvolutionaryBiologyofComplexPhenotypes.OxfordUniversityPress,Oxford, pp.176–194.

Reeve,M.W.,Fowler,K.,Partridge,L.,2000.Increasedbodysizeconfersgreater fit-nessatlowerexperimentaltemperatureinmaleDrosophilamelanogaster.J.Evol. Biol.13,836–844.

superimpositionoflandmarks.Syst.Zool.39,40–59.

Rohlf,F.J.,Corti,M.,2000.Useoftwo-blockpartialleast-squarestostudycovariation inshape.Syst.Biol.49,740–753.

Rohlf, F.J., 2010. TpsDig,Version 2.16.Department of Ecology and Evolution, StateUniversity of NewYork at StonyBrook, Available at: http://life.bio. sunysb.edu/morph/bibr28(accessed20.04.13).

Rohlf,F.J.,2012.TpsUtil,FileUtilityProgram.Version1.53.Departmentof Ecol-ogyandEvolution,StateUniversityofNewYorkatStonyBrook,Availableat: http://life.bio.sunysb.edu/morph(accessed25.04.13).

Scheiner,S.M.,1993.Geneticsandevolutionofphenotypicplasticity.Annu.Rev. Ecol.Syst.24,35–68.

Strauss,R.E.,Bookstein,F.L.,1982.Thetruss:bodyformreconstructionin morpho-metrics.Syst.Zool.31,113–135.

Soto,I.M.,Carreira,V.P.,Fanara,J.J.,Hasson,E.,2007.Evolutionofmalegenitalia: environmentalandgeneticfactorsaffectgenitalmorphologyintwoDrosophila siblingspeciesandtheirhybrids.BMCEvol.Biol.7,1–11.

vanHeerwaarden,B.,Sgrò,C.M.,2011.Theeffectofdevelopmentaltemperature onthegeneticarchitectureunderlyingsizeandthermalclinesinDrosophila melanogasterandD.simulansfromtheeastcoastofAustralia.Evolution65, 1048–1067.

Via,S.,Gomulkiewicz,R.,deJong,G.,Scheiner,S.M.,Schlichting,C.D.,Tienderen,P.H., 1995.Adaptivephenotypicplasticity:consensusandcontroversy.TrendsEcol. Evol.10,212–217.

Whitman,D.,Ananthakrishnan,T.N.,2009.PhenotypicPlasticityofInsects: Mecha-nismsandConsequences.SciencePublishers,Enfield.

Referências

Documentos relacionados

Através de questionários com perguntas abertas e analisadas qualitativamente, aplicados no segundo semestre de 2011, foi possível conhecer a situação do ambiente, bem como

Furthermore, the results show that the quasi-isotropic laminates experienced more warpage than cross ply laminates for wings with equal thickness along the wing span.. The results

Este relatório aborda, entre outros tópicos, as características dos sistemas político e partidário, as barreiras colocadas à entrada de novos partidos no parlamento

Esse outro amor há de amargar-me tanto Como o pão que se come entre estranhos, no exílio, Amassado com fel e embebido de pranto.... Romeu

teve como objetivo avaliar isolados de fungos do gênero Trichoderma spp., quanto à eficiência na produção de celulases, determinando sua atividade enzimática pela quantificação

In Drosophila’s larvae hemolymph it’s possible to distinguish three classes of differentiated hemocytes in circulation: Plasmatocytes, Lamellocytes and Crystal cells (Fig..

To test these predictions we study asymmetry in wing shape of five populations of Drosophila antonietae collected throughout the distribution of the species using fluctuating

The result of this communication was to propose two general aspects, one functional and the other technical-aesthetic with ten criteria evaluation of quality,