• Nenhum resultado encontrado

Seleção Natural e Deriva Genética. Seleção Natural e Deriva Genética. Seleção Natural e Deriva Genética. Seleção Natural e Deriva Genética

N/A
N/A
Protected

Academic year: 2021

Share "Seleção Natural e Deriva Genética. Seleção Natural e Deriva Genética. Seleção Natural e Deriva Genética. Seleção Natural e Deriva Genética"

Copied!
6
0
0

Texto

(1)

Seleção Natural e Deriva Genética

• Deriva induz mudanças aleatórias na freqüência gênica, logo o 2otermo dessa equação deve variar em sinal de uma geração para outra.

– Não esperamos um aumento ou diminuição dos efeitos da seleção.

– Fisher então considerou que deriva tinha papel secundário a menos que populações fossem muito pequenas, ou estivéssemos lidando com novas mutações.

(outra) p a w p p= A+Δ Δ

Seleção Natural e Deriva Genética

Como seleção e deriva lidam com novas mutações: P(fixação)(u0) de um novo alelo neutro é 1/2N. Seleção muda tal probabilidade. Suponhamos que w:

aa = 1 Aa = 1+s AA = 1+2s

Neste caso, aA> 0 para qualquer p. Mas tem deriva… P(fixação)de alelo favorável será:

s N s N N ev ev e e u 4 2 1 1 − − − − = Nev= N Ns s e e u 4 2 1 1 − − − − =

Seleção Natural e Deriva Genética

No limite em que s→ 0, temos que u ≈ 2s/4Ns = 1/2N. Ou seja, a P(fixação)neutra é um caso especial da equação

acima quando s é pequeno.

À medida que s aumenta, deriva e seleção interagem para influenciar adaptação. Produto Ns é a razão entre a força da seleção e o impacto da deriva.

Ns s e e u 4 2 1 1 − − − − =

Seleção Natural e Deriva Genética

s = + 0.01

À medida que N aumenta, seleção causa maiores desvios do esperado na neutralidade. Contudo P(fixação)tende a 1-e-2sem grandes populações.

Quando s é pequeno, 1-e2s≈ 2s.

Quando s=0.01, 98% o alelo favorável será perdido! Isso ocorre porque a deriva sobrepuja a seleção.

Ns s e e u 42 1 1 − − − − =

Seleção Natural e Deriva Genética

É possível que deriva venha a fixar alelos que sejam deletérios. Suponhamos que w:

aa = 1 Aa = 1+s AA = 1+2s

Neste caso, aA< 0 para qualquer p. Mas tem deriva...

1 1 4 2 − − = Nss e e u

u será positivo para qualquer valor de N.

À medida que N aumenta, seleção e deriva agem em conjunto para eliminar alelos raros, deletérios.

Seleção Natural e Deriva Genética

s = + 0.01 s = - 0.01 Ns s e e u 4 2 1 1 − − − − = 1 1 4 2 − − = Nss e e u

(2)

Seleção Natural e Deriva Genética

Fisher considerou deriva como limitadora da quantidade de variação genética que entra no pool gênico. Uma vez que variante tenha aumentado de freqüência, o

processo adaptativo seria dominado pela seleção. Wright pensou que interações adaptativas importantes

entre seleção e deriva poderiam ocorrer, quando existisse uma paisagem adaptativa complexa:

– Papel da deriva em determinar as condições iniciais; – Papel da deriva em permitir que populações mudem de um

pico seletivo para outro violando FFTNS.

Seleção Natural e Deriva Genética

Deriva pode criar uma diversidade de condições iniciais para conjuntos alélicos que são neutros em um ambiente, mas que influenciam o processo adaptativo quando o ambiente é alterado.

Seleção Natural e Deriva Genética

Deriva interage com seleção para permitir processos adaptativos que seriam impedidos se apenas seleção estivesse operando. Deriva e seleção permitem que ocorram mudanças de pico adaptativo que não ocorreriam por seleção em grandes populações

Seleção Natural e Deriva Genética

Em geral, a direção da evolução é enviesada pela direção da seleção. Contudo, nem todas populações seguem o caminho da seleção, o que torna impossível prever o resultado final.

Seleção Natural, Deriva e Fluxo Gênico

• Seleção em certas situações serve como impedimento à adaptação.

• Adaptação é restrita em populações isoladas com

Nevbaixo, apesar do maior poder da deriva. • Input de fluxo gênico pode resolver a situação, se

na medida certa (Nm ~1).

• Fluxo gênico auxilia na manutenção da diversidade genética local, o que permite que deriva e seleção operem.

Seleção Natural, Deriva e Fluxo Gênico

• Uma vez que deme alcance domínio de pico mais alto, há alteração no balanço entre seleção e deriva. • Lembrem-se que o importante é o balanço das forças,

logo, em pico mais alto, deriva e fluxo gênico têm efeito menor do que em picos mais baixos.

• Mudança é mais provável de pico de valor adaptativo mais baixo para outro mais alto.

• Apesar da seleção natural ser a única força necessária para adaptação, Wright argumenta que adaptação é mais efetiva quando outras forças também estejam

(3)

Seleção Natural, Deriva e Fluxo Gênico

• Há ainda uma nova mudança no balanço do fluxo gênico relativo à seleção e à deriva.

• À medida que o tempo passa, mais e mais demes estarão em picos mais alto, o que aumenta freqüência alélica de melhores alelos. Fluxo gênico deixa de ser processo contra picos mais altos, para ser neutro e finalmente força enviesada para picos mais altos.

• Fluxo gênico pode ser ainda mais eficiente se houver interação entre seleção e quantidade de fluxo gênico.

Seleção Natural, Deriva e Fluxo Gênico

• Wright chamou a este modelo da teoria do balanço alternado (shifting balance theory).

• Evidências escassas de sua generalidade na natureza. • Condições podem não ser tão restritas assim, como

em metapopulações, que podem ajuda a espalhar adaptação superior através de eventos fundadores sucessivos.

• SBT requer equilíbrios seletivos múltiplos separados por vales.

Seleção Natural, Deriva e Fluxo Gênico

• Fisher rejeitou modelo de Wright e propôs modelo próprio, o hiperespaço adaptativo.

Seleção Natural, Deriva e Fluxo Gênico

• No modelo de Fisher, seleção natural garantiria que a população estivesse próximo ao equilíbrio.

• Único motivo pelo qual a população não estaria no ponto ótimo seria pela ausência da variação genética apropriada.

• Logo, mecanismo aleatório responsável pela exploração da paisagem adaptativa seria a mutação.

Seleção Natural, Deriva e Fluxo Gênico

• Mutações aleatórias em um fenótipo qualquer podem ou não ser favoráveis

+1 +2

+3

Seleção Natural, Deriva e Fluxo Gênico

• Mutações de efeito pequeno são material principal para mudança adaptativa.

• Arquitetura genética seria de muitos genes de pequeno efeito, sem muita interação.

• Wright concorda com vários genes, mas discorda da falta de epistasia no modelo.

• Até recentemente tínhamos pouca informação sobre a arquitetura genética da maioria de caracteres quantitativos.

(4)

Seleção Natural, Deriva e Fluxo Gênico

• Domínio do modelo de Fisher que desconsidera epistasia tem mais a ver com conveniência matemática e estatística do que com a realidade. • Como o exemplo de resistência à malária nos

indica, grande maioria de caracteres complexos tem interações epistáticas fortes.

• Quando epistasia e pleiotropia são investigados, geralmente são encontrados.

• Modelo Fisheriano de muitos genes de pouco efeito aditivo parece ter pouca relevância para qualquer sistema genético.

Seleção Natural, Deriva e Mutação

• O balanço entre deriva e mutação influencia a taxa de substituição mutacional (μ) e o nível esperado de polimorfismo (θ).

• Várias propriedades do processo coalescente na neutralidade são influenciados por θ, que também são afetados pela seleção natural.

• Isso permite o uso de certos métodos para a detecção da seleção natural.

Seleção Natural, Deriva e Mutação

• Taxa de mutação neutral determina taxa de divergência interespecífica e quantidade de polimorfismo intraspecífico.

• Taxa de divergência interespecífica é proporcional a μ, quanto heterozigosidade esperada é θ/(1+θ)≈ θ quando θ é baixo.

• Portanto, a razão do polimorfismo intraspecífico à divergência interespecífica é proporcional a θ/ μ = 4Nei.

• Tal estatística não depende da taxa neutra de mutação. Podemos contrastar vários genes.

Seleção Natural, Deriva e Mutação

• Podemos contrastar vários genes, e com árvores filogenéticas podemos ainda mais.

• Teste de contingência de neutralidade de DNA:

– McDonald Kreitman.

• Contrastam polimórficos (dentro da espécie) X fixados (entre as espécies) e assim testam premissa básica da relação entre μ e θ.

• Fixados persistiram no tempo, polimórficos ainda não. Se existe seleção, estas classes devem comportar-se diferentemente.

• Contrastaram mutaçoes sinônimas e não-sinônimas.

Seleção Natural, Deriva e Mutação

• Árvore define teste de contingência de homogeneidade entre categorias.

• Árvore pode dar mais informações do que apenas estas classes.

• Templeton usou este teste para contrastar pontas e interiores – torna independente de contraste com outras espécies. Evolução da Citocromo Oxidase II Hsa6 Hsa5 Hsa1,3,4 Hsa2 Ppa1 Ppa2 Ppa3 Ptr1 Ptr2,4 Ptr3 Homo sapiens Pan troglodytes Pan paniscus

Replacement Substitutions Silent Substitutions 1 Mutational Change Ptr5 Ppa4 Ggo1 Ggo3 Ggo4 Ggo2 Ggo6 Ggo5 Gorilla gorilla Tips

]

7 12 Ponta C-term (Sítio Ativo) Interior 12 2 2 53 Fixado Prob = 0.004 Prob = 0.27 (0.23) 6 60 Fixado 3 10(9) Interior 2 8(9) Ponta N-term (trans- mem-brana) Subst Sil Posição Região

(5)

Seleção Natural, Deriva e Mutação

• Pode ser usado para uma gama de contrastes relevantes na molécula.

• Fornece informações relevantes sobre padrão de evolução da molécula.

• Tais testes de contingência podem ser usados para contrastar diferentes loci – teste de HKA.

Seleção Natural, Deriva e Mutação

• Balanço da mutação e deriva na neutralidade é medida por θ = 4Neμ.

• Existem formas diferentes de se medir θ. • Heterozigosidade esperada = θ/(θ+1) ≈ θ.

• Lembrem-se que quando medimos heterozigosidade em nucleotídeos a distância é substituída por conceito de não-ibd.

Seleção Natural, Deriva e Mutação

πijé o número de diferenças de nucleotídeos entre seqüencias i e j de uma amostra de n genes. Estimativa de θ é média do número de diferenças de

nucleotídeos entre todos pares de seqüências:

)

1

(

2

2 1

Σ

Σ

=

Π

= =

n

n

ij n j j i

π

Seleção Natural, Deriva e Mutação

Logo Π é estimador de θ baseado na heterozigosidade média de nucleotídeos.

Sob neutralidade, θ também está relacionada a S, o número esperado de eventos mutacionais até a coalescência no ancestral comum mais recente (MRCA). No modelo de sítios infinitos, S equivale ao número de sítios de nucleotídeos segregando variação). Ou seja, θ pode ser estimado:

i

S

k

n

S

n i n k

1

)

(

1

1 1 1 1 − = − =

Σ

=

Σ

=

Θ

Seleção Natural, Deriva e Mutação

Sob neutralidade, Π e Θ estão estimando o mesmo parâmetro. Tajima criou teste de neutralidade baseado na diferença entre os dois:

) (Π−Θ Θ − Π = Var D

Se seleção natural está ocorrendo, D não deverá ter valores próximos a zero.

Seleção Natural, Deriva e Mutação

Suponha que mutação surja e seja rapidamente selecionada. Hitchhiking deverá ocorrer em regiões próximas a este sítio o que pode levar a um selective

sweep.

Tal seleção direcional reduz variação no DNA, mas mutação cria nova variação e deve criar sítio novo segregante.

Logo, Θ deve se recuperar rapidamente, mas não Π.

D deve ser negativo nestas situações. ) (Π−Θ Θ − Π = Var D

(6)

Seleção Natural, Deriva e Mutação

Por outro lado, se seleção natural favoreve a manutenção de polimorfismos, existirão mais polimorfismos com freqüências intermediárias. Haverá maior impacto sobre variabilidade genética do

que sobre novos variantes sendo criados. Logo, Π deve ter valor maior do que Θ e D deve ser

positivo.

Diferenças significativas entre Π e Θ mostram não apenas seleção, mas a natureza da seleção!

) (Π−Θ Θ − Π = Var D

Seleção Natural, Deriva e Mutação

Diferenças significativas entre Π e Θ mostram não apenas seleção, mas a natureza da seleção! Contudo, D é sensível também à estrutura genética, ao

contrário do teste de HKA.

Gargalo evolutivo ou eventos fundadores também reduzem variação, causando fixação em vários sítios. Quando variação é recriada por mutação, S aumenta mais rápido do que a heterozigosidade média – D < 0.

Quando D é rejeitado significa que neutralidade ou estabilidade populacional foi violada.

Seleção Natural, Deriva e Mutação

Por isso vários outros testes de neutralidade têm sido criados.

Fay e Wu sugeriram uma forma de separar processos seletivos de demográficos ao criar uma nova estimativa: ) 1 ( 2 2 1 1 − Σ = − = nn i Si n i H θ

Em que S é o número de variantes derivados encontrados i vezes em uma amostra de n seqüências.

Seleção Natural, Deriva e Mutação

Fay e Wu usam informação de grupo externo para determinar ancestralidade da mutação, o que não havia sido considerado nos testes anteriores aqui descritos.

Variantes com alta freqüência são importantes neste teste (i2), enquanto haplótipos de freqüência intermediária são importantes no teste anterior. Isso porque este teste dá peso extra a alelos novos com

alta freqüência, e não a alelos antigos com alta freqüência. ) 1 ( 2 2 1 1 − Σ = − = nn i Si n i H θ

Seleção Natural, Deriva e Mutação

Fay e Wu mostram que crescimento populacional após um gargalo não tende a tornar variantes derivados comuns, portanto, excesso de haplótipos derivados em alta freqüência é padrão unicamente associado a seleção direcional recorrente.

H = Π – θH

H mostra que a informação da idade relativa de um

variante em conjunto com informação de freqüência pode ser indicação de seleção positiva.

) 1 ( 2 2 1 1 − Σ = − = nn i Si n i H θ

Seleção Natural, Deriva e Mutação

Seleção natural altera relação entre mutação e deriva. A genética molecular é bastante informativa sobre

como seleção interage com mutação e deriva, o que pode ser evidenciado por vários testes estatísticos. Tais testes têm permitido identificar várias regiões

sujeitas à seleção e fornecem importante ferramenta na detecção de regiões funcionalmente importantes. Análise evolutiva da interação entre seleção, mutação e

deriva fornece ferramenta útil para análises populacionais.

Referências

Documentos relacionados

Em 2018, o fundo serviu para apoiar 37 associações locais de Oio e 4 projetos da ADPP Guiné-Bissau na mesma região, nomeadamente a Escola Vocacional, o Projeto de

Este artigo é resultado de uma pesquisa, documental, de abordagem quantitativa, com o objetivo de delinear o perfil dos usuários do Centro de Atenção Psicossocial (CAPS) e do

Amplos contextos de ensino, formais e informais, favorecem a aplicação da mediação da aprendizagem visando à recuperação antecipada de cons magnos pela conscin criança, podendo

ASSINATURAS: Francisco Flavio Lima Furtado – Prefeito Municipal e ordenador de despesas da Secretária Municipal de Administração, Finanças e Infraestrutura -

•  As salas limpas e os am?ientes controlados associados proporcionam o controle da contaminaço por part$culas em suspenso no ar em n$'eis apropriados para

O desenvolvimento dos meios técnico-táticos individuais ofensivos sugere melhoria da qualidade do jogo coletivo ofensivo, pela compreensão das trajetórias e suas

As situações de superioridade numérica mais utilizadas durante o período da aplicação do método situacional eram executadas de uma maneira progressiva de

A relação entre as estruturas variáveis e a complexidade do cenário técnico-tático reside na modelagem de tal cenário a partir das ações dos jogadores, que está ligada a