• Nenhum resultado encontrado

Synergistically enhanced stability of laccase immobilized on synthesized silver nanoparticles with water-soluble polymers

N/A
N/A
Protected

Academic year: 2021

Share "Synergistically enhanced stability of laccase immobilized on synthesized silver nanoparticles with water-soluble polymers"

Copied!
11
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Colloids

and

Surfaces

B:

Biointerfaces

j ou rn a l h om epa ge :w w w . e l s e v i e r . c o m / l o c a t e / c o l s u r f b

Protocols

Synergistically

enhanced

stability

of

laccase

immobilized

on

synthesized

silver

nanoparticles

with

water-soluble

polymers

M.N.M.

Cunha

a

,

H.P.

Felgueiras

a,∗

,

I.

Gouveia

b

,

A.

Zille

a

a2C2T,CentreforScienceandTextileTechnology,DepartmentofTextileEngineering,UniversityofMinho,CampusofAzurém,4800-058Guimarães,

Portugal

bUniversityofBeiraInterior,FibEnTech,FiberMaterialsandEnvironmentalTechnologies-R&DUnit,Covilhã,Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received20October2016

Receivedinrevisedform6March2017 Accepted9March2017

Availableonline12March2017 Keywords: Silvernanoparticles Polymerstabilizer Laccase Synergisticeffect Enzymaticstability

a

b

s

t

r

a

c

t

Silvernanoparticles(AgNPs)weresynthesizedbycitratereductionmethodinthepresenceofpolymers, poly(ethyleneglycol)(PEG),poly(vinylalcohol)(PVA)andchitosan,usedasstabilizingagents,andan oxidoreductaseenzyme,laccase(Lac),withthegoalofexpandingtheNPsantimicrobialaction.

AgNPswerecharacterizedbyUV–visspectrometry,dynamiclightscatteringandtransmissionelectron microscopy.Asprotectingagents,PEGandPVApromotedtheformationofsphericaluniformly-shaped, small-sized,monodispersedAgNPs(≈20nm).HighMwpolymerswereestablishedasmosteffectivein producingsmall-sizedNPs.Chitosan’sviscosityledtotheformationofaggregates.Despitethedecreasein Lacactivityregisteredforthehybridformulation,AgNPs-polymer-Lac,asignificantaugmentinstability overtime(upto13days,at50◦C)wasobserved.Thisnovelformulationdisplaysimprovedsynergistic

performanceoverAgNPs-Lacorpolymer-Lacconjugates,sinceintheformertheLacactivitybecomes residualattheendof3days.Byenablingmanyionicinteractions,chitosanrestrictedthemasstransfer betweenLacandsubstrateand,thus,inhibitedtheenzymaticactivity.

ThesehybridnanocompositesmadeupofinorganicNPs,organicpolymersandimmobilized antimicro-bialoxidoreductiveenzymesrepresentanewclassofmaterialswithimprovedsynergisticperformance. Moreover,theLacandtheAgNPsdifferentantimicrobialaction,bothintimeandmechanism,mayalso constituteanewalternativetoreducetheprobabilityofdevelopingresistance-associatedmutations.

©2017ElsevierB.V.Allrightsreserved.

1. Introduction

Silvernanoparticles(AgNPs)displayuniqueoptical,electrical and thermal properties, makingthem exceptional agents tobe incorporatedintoproductsofelectrical,textile,cosmetic, biolog-icalorevenmedicaluses[1–3].Sincethe20thcentury,AgNPshave

beenusedinthebiomedicalfieldasantimicrobialagents[4].AgNPs acteffectivelyinthemicroorganismmetabolismbyattachingtothe cellmembraneanddrasticallydisruptingitsproperfunctions,such aspermeabilityandrespiration.Recentstudiessuggesttheprimary mechanismofantibacterialactionofAgNPstobetherelease of silverions(Ag+)[5].Ag+ ionscaninteractwiththethiolgroups

ofvitalenzymesinactivatingthemand,ultimately,affectingthe abilityofthecell’sDNAtoreplicate[6].AgNPspossess remark-ableantisepticproperties,broadrangeofactivityagainstbacteria (gram-negativeandgram-positive),fungiandvirus,are

bactero-∗ Correspondingauthor.

E-mailaddress:helena.felgueiras@2c2t.uminho.pt(H.P.Felgueiras).

static(growthinhibition)andbactericidal,arebiocompatibleand, atlowconcentrations,areharmlesstothehumancells[3,7].In com-parisontootherantibiotics,bacterialresistanttoAgNPshasbeen observedonlyrarelyanddoesnotconstituteacomplication[4].In addition,severalnewandcheapermethodstoproduceAgNPshave beendevelopedinthelastyears,whichisofgreatimportancefor largescaleproduction[3,7].

TheAgNPsantimicrobialnatureisdescribedassize-and shape-dependent.IthasbeenestablishedthatsmallerNPsdisplaybetter antimicrobialactivityastheycanpenetrateeasilythecell mem-brane and reach the nuclear content [6,8]. Concerning shape, althoughtruncated-triangular-shapedNPshavebeenreportedas themostbactericidal[9],sphericalNPsremainthebestsuitedfor practicalapplicationsineithercolloidalformorimmobilizedstate [10,11].Manymethods,chemical,physical,photochemicaland bio-logical,havebeenusedtosynthesizeAgNPswithcontrolledsize, shape,distributionandstability[12].Chemicalmethodsare per-hapsthemostcommonlyused,astheyprovideasimplewayto synthesizeAgNPsinsolution.Generally,thechemicalsynthesisof AgNPsrequiresthreemaincomponents:ametalprecursor,a reduc-http://dx.doi.org/10.1016/j.colsurfb.2017.03.023

(2)

ingagentandastabilizingagent[3].Thereducingagentreduces Ag+andpromotestheformationofmetallicsilver(Ag0).Thisis

fol-lowedbyagglomerationintooligomericclustersthateventually generatecolloidalAgNPs.TostabilizethedispersiveNPs,prevent aggregationorbinding,sedimentationand lossofsurface prop-erties,astabilizingagentisaddedduringAgNPsproduction[12]. Formanyyears,organicandinorganiccompounds,likecitratesor surfactants,wereusedtostabilizethedispersivenatureofAgNPs. However,problemswithcost,scalability,controlofparticlesize, sizedistributionand/orparticleaggregationwereverydifficultto solve[13].Recently,polymerssuchaspoly(ethyleneglycol)(PEG) orpoly(vinylalcohol)(PVA)havebeenrecognizedaseffective sta-bilizingagentsbyimplementingaprotectionmechanismbasedon stericrepulsion.Abalanceisestablishedbetweenattractiveand repulsiveforcesthatdependonthepolymer’schainlengthand adsorptionmode[4,14,15].ThesepolymersgovernnotonlytheNPs sizebutalsotheirsurfacechargeandbiologicalresponses, includ-ingadsorption,distribution,metabolism,andexcretionoftheNPs [12,16].Naturaloriginpolymerslikechitosan,whichexhibit bet-terbiocompatibilitythanthesyntheticreferred,havebeenusedas well[17,18].

Inthepresentstudy,thestabilityofAgNPsproducedby chem-icalreductionmethodusingPEG,PVAandchitosanasstabilizers wasfollowed.Thepolymerswereappliedatdifferentmolecular weights(Mw)andconcentrations,andtheirinfluenceontheAgNPs size,shapeanddistribution(formationofaggregates)was estab-lished.StabilizingAgNPswithwatersolublepolymersisveryuseful toimprovethedispersionstabilityandantimicrobialperformance oftheNPs[19,20].Also,sinceAgNPsiscytotoxicandgenotoxic inhighconcentrations, itis important tofabricateantibacterial surfaceswithcontrolledrelease of Ag+.Systems prepared with

polymericmatricescanpreventthedirectcontactofAgNPswith theskinandallowapreciseandlocalreleaseofAg+[21].

To enhance AgNPs antimicrobial action and safety, an oxi-doreductaseenzyme,laccase(Lac),wasalsocombinedwiththe polymer-stabilizedAgNPs.Lacisa multicopperoxidaseenzyme withgreat, but littleexplored, potentialas a therapeuticagent in thefightagainstmicrobial organisms and biofilmformation, mainlyduetoitsuniquespecificity,highactivityandselectivity [22].Lacisknowntocatalyzereactionsthatleadtothe genera-tionofantimicrobialspeciesinthepresenceofmediators,oxyacids, phenols,iodine,andbromine[23,24].Directantimicrobial activ-ity ofcrude Lac hasbeenobserved and primarilyattributedto theelectrochemicalmodeofaction,which consistsin penetrat-ingthecellwallofthemicroorganisms,therebycausingleakage ofessentialmetabolitesandphysicallydisruptingothermicrobial keycellfunctions[25–27].Themajorlimitationsofusingenzymes astherapeuticagentsaretheinabilityofkeepingthemactive,their rapidelimination,lowconcentrationatsiteandavailability[28]. ImmobilizingLaconacarrierislikelytosolvealltheseproblems [29].TherehavebeenmanyreportsontheimmobilizationofLac ona varietyofsupportmaterials,includingalginatebeads[30], magnetic-chitosan[31],Amberlite[32],SiO2nanocarriers[33]and

variousmetallicNPs[34–36],towhichLacrevealedgreat stabil-ity.However,noneofthoseresearchesinferredabouttheindirect antimicrobialeffectofLacinpresenceofAgNPsanditspotentialto thebiomedicalfield.Infact,verylittleresearchhasbeenconducted onthissubject.Lateefetal.haspublishedoneofthefewstudiesin whichtheantimicrobialcapacitiesofLacimmobilizedontoAgNPs wereassessed[37].Theyreportedeffectiveinhibitionagainst clini-calisolatesofEscherichiacoli,PseudomonasaeruginosaandKlebsiella pneumoniae.Inapreviouswork,wehavealsoshowntheindirect antimicrobialeffectofLacimmobilizedontobacterial nanocellu-loseagainstgram-positive(92%)andgram-negative(26%)bacteria and itsacceptable cytotoxicityfor wound dressing applications [38].TheeffectivenessofLacasantimicrobialreliesontheoxidation

ofasubstratethatisfurthertransformedinanantimicrobialagent. Thus,anenhancedactivityandstabilityinanimmobilizedenzyme isoneofthemostimportantfeaturestobeattained.Theinnovation behindthisresearchfocusonthecombinationoftheLacenzyme withpolymer-stabilizedAgNPs,whichtotheauthors’knowledge hasnotyetbeenresearched.TheactivityatdifferentpHs, temper-aturesand substrates,andthestabilitywithtime ofthecreated complexwerefollowedwiththefinalgoalofachievingimprove performances.Inthiscontext,hybridnanocompositesmadeupof inorganicNPs,organicpolymersand immobilized antimicrobial enzymesrepresentanewclassofmaterials[39,40].Thesenovel materialscombinethe benefitsof enhanced antibacterial prop-erties of polymer-stabilized NPs, that allow a better-controlled release ofionsratherthanthebulk material,withthesafeand unspecificactionofenzybiotics,andthusreducingthepotential hazardinfluenceofAgNPsinthehumanbody[41,42].

2. Materialsandmethods

2.1. Materials

Silver nitrate(AgNO3,Sigma), trisodium citrate(Na3C6H5O7,

Sigma)and sodiumhydroxide(NaOH, Merck)wereusedin the production of the AgNPs. The synthesis of polymer-stabilized AgNPs wasperformed using PEG (Sigma), PVA (Sigma) or chi-tosan(Chitoclear®,Primex,Iceland)atdifferentmolecularweights (Mw): PEGat Mw 1500 and 10,000,PVA at Mw 9000, 13,000, 31,000and85,000,andchitosanat800Cps(∼320Mw)and1600 Cps (∼350Mw). A commercial Lac (18g protein L−1) obtained fromMyceliophthorathermophila(NS51003,Novozymes,Denmark, kindlysuppliedbyProfessorMoldes’researchgroupfrom Univer-sityof Vigo,Spain)wasused asprovided bythemanufacturer. Thisenzymewasselectedbecauseofitswell-established antimi-crobial activity[43].The activityofthe enzymeLacwastested against the substrates 2,2 -azino-bis(3-ethylbenzothiazoline-6-sulphonicacid)(ABTS),3,4-dimethoxyphenol(DMP)andcatechol usingthebufferscitrate-phosphate(citricacid,C6H8O7 and

dis-odium phosphate, Na2HPO4·7H2O), phosphate (Na2HPO4·7H2O

and sodium phosphate monobasic, NaH2PO4) and

carbonate-bicarbonate (sodium carbonate anydrous, Na2CO3, and sodium

bicarbonate,NaHCO3),allpreparedwithreagentsfromSigma(the

detailedbuffers’compositionisprovidedinTableS1fromthe Sup-portinginformation).Allwaterusedwasdistilled(dH2O).

2.2. SynthesisofAgNPs:bareandpolymer-stabilized

AgNPscolloidal dispersion,atan approximate concentration of0.02mgL−1,wassynthesizedinlaboratorybyamodified step-wisemethodoftheconventionalcitratereductiontechnique(also knownasTurkevichmethod[44]),aspreviouslydescribed[45].The aboveconcentrationwasestablishedforcomparisonpurposeswith thecommerciallyavailableAgNPs(Sigma),whichconcentrationis 0.02mgL−1.Fortheentireprocess,thesolutionswerestirredat constantspeedandthepHadjustedwith0.1MofNaOH.

2.2.1. BareAgNPs

A100mLof1mMAgNO3washeatedtoboilingpointina250mL

flask.Tothissolution,10mLof1%Na3C6H5O7wereaddeddropwise

(3.8mMfinalconcentration).ThepHofthesolutionwasadjusted to7.7 withnitricacid(HNO3)orNaOH.Becauseofevaporation,

dH2Owasaddedtorestoretheinitialvolume.Thesolutionwas

heatedagaintoboilingtemperatureuntilthecolourchanged(pale yellow).Then,itwasremovedfromtheheaterandstirreduntil reachingroomtemperature(RT).TheAgNPswerestoredat4◦C

(3)

for12hpriortousetoreducethethermo-instabilityofthecitrate emulsion.

2.2.2. Polymer-stabilized:PVA,PEGandchitosan

1%,3%and5%m/vsolutionsofPVAandPEG,atdifferentMw, werepreparedin dH2O andheated at 70–80◦C for a complete

homogenization.Eachsolutionwascombinedat 90/10v/vratio witha10mMAgNO3solutionindH2O(pH8),toavolumeof100mL.

Themixturewasheateduntiltheboilingpointwasreached.10mL of1%m/vNa3C6H5O7wereaddeddrop-by-drop.Thesolutionwas

lefttoboiluntilthecolorchanged.After,theheatingwasturned-off butthestirringwaskeptuntilthesolutionreachedRT.

ThefirststepsoftheAgNPssynthesisinchitosan(deacetylation degreeof84.8±1.2%)wereequaltothosedescribedinthe pre-vioussub-chapter(BareAgNPs):1mMAgNO3washeatedand1%

Na3C6H5O7 wasaddeddropwise.Then,1.14mLofacetonewere

addedtothemixturetogetherwith0.5,0.75or1gof chitosan, repeatedforeachMw,toproducea0.5%,0.75%and1%chitosan contentintheAgNPssolution.Theheatingwaskeptuntilthe chi-tosanwascompletelydissolved.ThemixturewasstirreduntilRT wasreached.

2.3. Spectrophotometricmeasurements

UV–visspectraofAgNPssynthesizedinthepresenceorabsence ofpolymerswereacquiredusingaUnicanUV–vis2equipment. Aliquotswerecollectedfromeachmixtureatdifferenttimepoints totesttheAgNPsstability.Theyweredilutedat1:2,1:4or1:8when necessarytopreventdeviationfromBeer’sLawlinearity.

2.4. Dynamiclightscattering(DLS)andzetapotential measurements

The AgNPs size distribution, polydispersity index and zeta potentialweremeasuredbydynamic light scattering(DLS)and electrophoretic light scattering (ELS) using a Zeta Sizer-Nano (MalvernInstruments).Datawascollectedafter30scansata con-stanttemperatureof25±1◦C.Zetapotentialsweremeasuredin solutionatamoderateelectrolyticconcentration.Eachvaluewas obtainedbyaveragingmeasurementsofthreesamples.

2.5. Transmissionelectronmicroscopy(TEM)

TheAgNPsmorphologywasobservedusingaJEOLJEM1400 transmissionelectronmicroscope(TEM,Japan)operatingat120kV. NPssamplesweresubmittedtoglowdischarged carbon-coated coppergridsfollowedbynegativestainingwith1%(w/v)uranyl acetate.Thissolutionwasused toimproveAgNPscontrast and toeasilyvisualizeweakerelectroncontrastcompounds,suchas theusedpolymersandthedegradedortransformedAgspecies. ImagesweredigitallyrecordedusingaGatanSC1000OriusCCD (USA)digitalcamera.AverageNPscorediameter,sizedistributions andstandarddeviations(SD)werecalculatedforeachNPssample byapplyingImageJsoftwareanalysis(developedattheNational InstitutesofHealth,USA)tothecollectedTEMimages.

2.6. Lacimmobilizationonbareandpolymer-StabilizedAgNPs Bareorpolymer-stabilizedAgNPs,at0.02mgL−1,were immo-bilizedwithLacdiluted1:1000intheappropriatebuffertoafinal protein concentration of 18mg protein L−1, by simple immer-sionfor15minandRT,understirringconditions.Priortoenzyme activitymeasures the non-immobilizedLac wasremoved from solution by centrifugation for 5min at 10,000rpm (Eppendorf, Centrifuge5415D)and re-suspended inthe appropriatebuffer

(citrate-phosphateatpH3forABTSandpH6forDMP).The the-oreticalratiobetweenLacandNPswasestimatedas≈0.9gofLac permgofAgNPs.

2.7. Enzymaticactivity

Lacactivity,relativeandspecific,wasdeterminedby measur-ing the slope of the initial linear portion of the kinetic curve usingABTS,DMPandcatecholassubstratesatthetemperatureof 50◦C. Thereactionwasstartedwiththeadditionof1mLofthe enzymediluted1:1000 intheappropriate 0.2Mbuffer (citrate-phosphatepH3–6;phosphatepH7–8;carbonate-bicarbonatepH 9–11) combinedwith1mLof 0.5mM substratesolution(ABTS, DMPor catechol) in a quartz cuvette(final enzyme concentra-tionof9mgmL−1ina2mLvolume).Thespectrophotometerwas zeroedwithbuffer, theappropriate amountofpolymer(0,1,3, 5%)andthesubstratewithoutenzyme[46,47].Substrateoxidation wasmonitoredbymeasuringtheabsorbanceat420nmforABTS (␧=36,000M−1cm−1),468nmforDMP(␧=49,600M−1cm−1),and 450nmforcatechol(␧=2211M−1cm−1),attheappropriate dilu-tionfactor(1:30000ABTS,1:60000DMPand1:1000catechol).The catalyticactivitywasdeterminedbymeasuringtheslopeofthe initiallinearportionofthekineticcurve.Oneunit(U)ofenzyme activitywasdefinedas theamountofenzyme requiredto oxi-dize1␮molof usedsubstrate. Lacactivitieswere expressedin ␮molmin−1mL−1 of enzymesolution. RelativeLacactivity was expressedastheratiobetweentheactivityatagiventime and theinitialactivity.Allactivitieswerereportedasaverage±SDof threeindependentmeasurements.

2.8. Enzymaticstability

Free Lac stability at different pHs (2–9, using different buffers:citrate-phosphatepH3–6;phosphatepH7–8; carbonate-bicarbonatepH9–11)andtemperatures(20–70◦Cmeasuredevery 10◦C)wasdeterminedusingABTS,DMPandcatecholassubstrates. Thermalstabilityinfunctionoftimeforthefreeenzymewas inves-tigatedbyincubatingLacinABTS(pH3),DMP(pH6)andcatechol (pH7)for60minat50◦C(pHandtemperaturepre-establishedas optimal).Lacthermalstabilityinfunctionoftimeinthepresenceof bareAgNPs,polymerorpolymer-stabilizedAgNPswasmeasured inDMP(pH6)at50◦Cfor13days.Thesolutionswerekeptinan ovenat50◦Candtheactivitymeasuredeachdayatthesame tem-perature.Enzymaticactivitywasmeasuredfollowingthemethod alreadydescribedinthepreviouschapter.Datawerereportedas average±SDofthreeindependentmeasurements.

3. Resultsanddiscussion

3.1. BareAgNPscharacterization

ThesizedistributionandthecolloidaldispersionoftheAgNPsis determinedbytherateofNPsnucleation,subsequentgrowthand aggregation.Fig.1AshowstheUV–visspectraofthebareAgNPs. Theverydistinctandbroadpeakdetectedat412nmputstherange ofNPssizesbetween30and80nmandsuggestsahigh polydis-persityoftheAgNPs[10,48].DLSspectra(Fig.S1intheSupporting information)corroboratethesedata.ItestimatestheaverageAgNPs sizeat≈54nmandthepolydispersityindexat0.3,indicatinga mul-timodaldistribution[4].Thezetapotential(␨)oftheAgNPs,which givesasuggestionofthepotentialstabilityofthecolloid,was deter-minedat−30mVand,thus,consideredrelativelystable.Indeed, iftheparticles’valuesaremorepositivethan+30mVormore negativethan−30mVthecolloidsareconsideredstable[49].Also, itindicatestheAgNPsrelativestabilityinthedispersiontoresult

(4)

Fig.1.(A)UV–visspectraofAgNPscolloidalsuspensionwithdilutionfactorof8(D8x).(B)TEMmicrographoftheAgNPs(scale200nm).

fromtheelectricrepulsionofthenegativechargeofthecitrateions adsorbedontheNPssurface[50].

TheTEMimagefromFig.1Bshowstwofamiliesofspherical AgNPs,oneformedofsmall-sizedNPs,≈30nm(≈85%),andanother formedoflarger-sizedNPs,≈80nm(≈12%).Athird,verylittle fam-ilyofrod-shapedAgNPsranging910nm(≈3%)wasalsodetected. DLSspectra(Fig.S1in theSupportinginformation)corroborate thesedata.Theaveragediametercalculatedby TEMwas deter-minedat34.5±30.1nm,demonstratingthehighpolydispersityof thecolloidalAgNPsdispersion.Thesizedistributionofcolloidal dispersionofsolidparticlesisdeterminedbytheratiobetweenthe ratesofnucleationofthesolidcores,theirsubsequentgrowth,and aggregation.Asthereagentsinitialconcentrationswereelevated,a considerablenumberofnucleiwerequicklygenerated,consuming themetallicspecimensinthesystemandresultingintheformation ofsmallNPs,withrelativeuniformsizedistribution[51].Yet,awide distributionofparticlesizeandshapes,fromspheresandcubesto rodsandpolygonsarealsoobserved.Thisfeatureistypicalforsilver colloidspreparedbycitratereductionusingweakreducingagents, liketrisodiumcitrate[10,52].

3.2. Polymer-stabilizedAgNPscharacterization

ToobtainhighlystableNPs,withsmalldiametersand unifor-mityofshape, theAgNPswere synthesizedwithPEG,PVA and chitosanatdifferentMwandconcentrations.Thesepolymerswere usedasstabilizingagentsbecauseoftheirpolymerizationdegree andchainlength,whichisknowntoprotecttheNPsfrom aggre-gating[53,54].Thelevelof interferenceofthepolymersonthe AgNPsadsorptionspectrawastakenintoconsiderationbyusing therespectivePEGandPVAMwandconcentrationasbackground duringUV–vismeasurements.ChitosanwasexcludedfromUV–vis testingsinceitshighviscositymadethereadingunfeasible.

Adsorptionpeaksweredetectedat≈420nm,indicatingthe for-mationofAgNPsbothinthepresenceofPEGandPVA(Fig.2).Data showsaclearinterferenceofthepolymersonthepositionofthe peaks,which havebeen shiftedfromtheoriginal412nm(bare AgNPs),but moreimportantlyin theirintensity.Insomecases, namelyPVA Mw85,000,nopeaksweredetected.Thecomplete disappearanceoftheAgNPscharacteristicpeaksisanindicatorof thefullyaggregatedstateinwhichthePVA-AgNPscanbefound. EqualobservationsweremadebyKvíteketal.[4].TEMcapturesin Fig.3confirmthisstatement.

The DLS and ␨ of the polymer-stabilized AgNPs were not obtainedduetothehighviscosityandscatteringeffectofthe poly-mersolution,whichinterferedwiththereading.Instead,TEMwas usedtoanalysetheNPssizeandshape.Formostcases,the associ-ationoftheAgNPswithPEGorPVAreducedtheNPsheterogeneity

Table1

Averagediameter(±SD,n=numberofNPsin3images/condition)oftheAgNPs synthesizedwithPEGandPVAatdifferentMwandconcentrationof5%m/v.

Polymer AverageDiameter±SD(nm)

AgNPs(Control) 34.5±30.1 PEGMw1500 25.9±6.2 PEGMw10,000 21.5±5.1 PVAMw9000 21.6±4.6 PVAMw13,000 22.3±4.6 PVAMw31,000 18.8±2.7

bothinsizeandshape,asexpected[16].Thepolymerssurroundthe

NPs(lightgreyareainturnoftheNPsdarkerspot,veryclearinthe firstimageofFig.3),protectingandconferringtheNPstheability toberecognizedindividually.Fig.3showsmanyofthePEG-and PVA-AgNPstobemonodispersedandtodisplayaspherical-like morphology;rod-shapedNPsarehardlyobserved.Withinthese groups,theaveragesizeandparticularlythepolydispersitywere reducedwhencomparedtothebareAgNPs(Table1).Generally, highMwledtotheformationofmoreuniformlyshapedNPswith smallersizes.Ithasbeenshownthatpolymerswithlargernumber offunctionalgroupshavetheabilitytoincreasetheinteractions withAg+ duringnucleation.Asmorebindingsitesareprovided

forAg(0)atomstoaggregateduringreduction,astrongerphysical barrierofpolymericchainssurroundingtheAgNPsisgenerated. Thispreventsuncontrolledaggregationandleadstothe forma-tionofmonodispersedAgNPs[55].Contradictingthisnotionarethe resultsfromPVAMw85,000.Here,aggregateswereveryfrequent. AstheMwincreasessodoestheviscosityofthesolution.Asaresult, theAgNPsbecomeentrappedwithinthepolymericmatrixandare mostdifficulttoidentifyindividually.Thesamewasobservedfor chitosan800Cpsand1600Cps,alsoaveryviscouspolymer.

DifferencesinconcentrationbetweenequalMwpolymerswere neglectedfromthisanalysis,sincetheywerefoundnotsignificant. Onlythehighestconcentrationstestedweretakeninto considera-tion.

3.3. Lacactivityandstability

CharacterizingtheLackineticsasfunctionofpH,temperature andsubstrateprovidesimportantinformationabouttheenzyme stabilitywithtimeanditssaturationpoint,whicharecrucialto pre-dictitsbehavior.Lacwasdilutedinappropriatebuffersat1:30,000 forABTS,1:60,000forDMPand1:1000forcatecholsubstrates,and itsoptimalrelativeandspecificactivitywasestablished. Accord-ingtothecollecteddata(Fig.4),Lacdisplaysoptimalactivityat pH3inABTS,pH6inDMPandpH7incatechol.Itsspecific activ-itywasthehighestinABTSandthelowestincatechol[27].The

(5)

Fig.2.UV–visspectraofPEG-andPVA-AgNPswithrespectivedilutionfactor(Dnx)appliedperconcentration.

same wasobserved during temperature testing (Fig.5A). Once theoptimumpHforeachsubstratewasestablished,thekinetics oftheenzymewastestedagainstarangeoftemperatures,from 20◦Cto70◦C.Asexpected,atlowtemperatures(20◦C)the activ-itywastheslowestsincethereisabreakinthekineticenergyof themoleculesinthesystem[56].Theenzymaticactivityincreases rapidlyasthetemperaturerisesto≈50◦C.Afterthispoint,asthe

riskofdenaturationincreases,theenzymaticactivitydecreases sig-nificantly.Indeed,afteracertaintemperature,whichforLacisclose to60◦C[57],enzymeslosetheirnativestructureorconformational integrityandirreversiblelossesinfunctionarelikelytooccur[58]. Theoptimaltemperatureforthethreesubstrateswasestablished at50◦C.

ThestabilityoftheenzymeLacwasfollowedfor1hat50◦C, withdatabeingcollectedevery10min(Fig.5C).TheABTS sub-stratewastheonepromotingthehighestenzymaticactivityinthe veryfirstmoments.However,itsstabilitywascompromisedvery

quickly(10min),becominginactiveafter1h.Thishappensbecause LacoxidizesABTStoformABTS+andABTS++.Lacisquitestablein

thepresenceofABTS+;however,thedivalentcationsdestabilize

theenzymewithtimeastheygenerateconditionsunsuitedtoits performance[59].Althoughcatecholwasthesubstratewiththe higheststabilityafter1htesting,DMPwastheselectedsubstrate becauseofitssimilarlygoodstabilitywithtimeandhigherspecific activitycomparedtocatechol(Figs.4and5).

3.4. LacactivityandstabilityinDMPonpolymer-stabilized AgNPs

The processof immobilizing enzymesor proteinsonNPs is known to alter their conformation and ionization/dissociation states[60].Byusingpolymersasstabilizingagents,randomintra andintermolecularcross-linksaregeneratedwiththesemolecules providinggreatstabilityduringimmobilization[61].

(6)

Fig.3. TEMmicrographiesofthePEG-,PVA-andchitosan-AgNPsat5%concentration(scale100nmforPVAMw9000and200nmforallothersamples).

Fig.4.LacrelativeandspecificactivityasfunctionofpHinABTS,DMPandcatechol(SD,n=3).

Lacandpolymer-stabilizedAgNPswereincubatedat50◦Cand theenzymeactivitywasmeasureduntilitwasinexistentor resid-ual,using DMP assubstrate (Fig.6).The maximum incubation period was established at 13days, at which point most tested groups ceased theiractivity.Afterday 1,all polymer-stabilized AgNPsgroupsexhibitedspecificactivity,howeverlowerthanthe controls(Fig.6A).Thehighestactivitywasregisteredby1%PVA Mw9000andMw 31,000,3%PVA Mw13,000and5%PEGMw 1500. After 3days of incubations, Lac lost its activity in most polymer-stabilizedAgNPswithonly1%PVA85,000and3%PVAMw 9000registeringactivityabove100U/mL.Pastthispoint,the Lac-AgNPscontrolgroupbecameinactive,whilethefreeLacremained active untilday 9, however ata much lower level. Atthe end of6daysbothPVAMw9000and31,000losttheiractivity com-pletely,whichoccurredatday10forPEGMw10,000andchitosan 1600Cps.

In theory,it would be expectedPEG torepel Lacdue toits antifoulingnature.Yet,theinteractionwassuccessful.Recent stud-ieshaveshownthatPEGbindstoproteinsundercertainconditions [62].Protein-PEGinteractionsinsolutiondisplaya temperature-dependent behaviour, which becomes more favourable as the temperaturerisesabove37◦C.Thetemperatureusedto synthe-sizetheAgNPswas100◦CandalltheLacactivitymeasurements wereconductedat50◦C.PEGchainsegmentscanalsoadopt multi-pleconfigurationsanddifferentconformerswhileinteractingwith watermoleculesandNPs.Hence,PEGinteractionswithwater, pro-teinandNPscannotbereducedtoasimplepolymertheory,such astheexcludedvolume,sincethereisnotheoreticalmodelthat adequatelypredictsthebehaviourofPEG[63].

Aparticularkineticsofenzymaticactivitywasobservedwith PEGMw1500andMw10,000andPVAMw13,000andMw85,000: a slowdecrease in activitywasfollowedby a suddenincrease,

(7)

Fig.5.(A)Lacrelativeandspecificactivityasfunctionoftemperatureand(B)Lacstabilityasfunctionoftime,inABTS,DMPandcatechol(SD,n=3).

whichwasfinallysucceededbyanevenquickerdrop.This phe-nomenonisexplainedbythepolymerswater-solubleproperties. Asthepolymerlosesitsstabilityinwater,theenzyme immobi-lizeddetachesfromthepolymericmicelleand,consequently,an increaseinitsspecificactivityisdetectedbythesystem.However, becausetheenzymelosesitspolymericprotection,itsactivity can-notstandanddecaysveryquickly[64].Inmostgroups,atapolymer concentrationof5%,theLacactivityislost(orbecomesresidual) attheendof3days.Theamountofpolymerinteractingwiththe enzymepreventsitsaccessbytheDMPsubstrate.Lacrevealedgreat stabilityinthepresenceofPVAMw13,000,particularlyat1% con-centration,expressingactivityevenafter13days(upto18days, datanotshown).Formostpolymers,abalancebetweenthehighest andthelowestconcentration,3%,wasseentobethemosteffective inpromotingLacactivity.

Incontrastwiththeotherpolymers,chitosaninstigatedvery littleenzymaticactivity.Withtheexceptionof1%chitosanat800 Cps,therestwerebarelynoticed.Chitosanbeingapolyelectrolyte ofpositivechargeiscapableofdestabilizingtheenzymeactivity andsignificantlyinfluencetheimmobilizationprocess.Initslinear polyglucosaminechainsofhighMw,chitosanpossessesreactive aminoandhydroxylgroupsamenableofchemicalmodifications.Its singularalkalineproperties,whichconferapositivecharge,allow chitosantoefficiently interactwithpolyanioniccompoundslike proteins[65].Thus,byenablingmanyionicinteractions,chitosan restrictsthemasstransferbetweenthesubstrateandLac.Despite theclearinterferenceofchitosaninthestabilityandactivityofthe enzyme,therepulsionbetweentheAgNPsandthechitosanpositive chargesallowsforsomemobility.Thismayberesponsibleforthe residualactivitymanifestedafterday3inthepresenceofAgNPs butnotinitsabsence(Fig.6C).

In the absence of AgNPs (Fig. 6C), Lac activity only lasted 3days regardlessthe polymer in useand concentration tested.

Thekinetics ofactivitywas alsosimilar,starting highat day1 andcontinuouslydecreasinguntilday3.Theseresultsattestto theefficacyofthepolymer-stabilizedAgNPstopromoteLac activ-ityandstabilitythroughouttime.Datasuggeststhattheenzyme becomes protectedonce incontact withthepolymer-stabilized AgNPs,whichguaranteesitsstability.Lac-AgNPsorfreeLac (con-trols)showedlowstabilities [66,67].Althoughextrapolymeris presentinthesolutionandcaninteractwiththeNPsorenzyme, itsprotectionisnotaseffectiveaswhenthepolymerisconjugated withAgNPs.Thepolymersarenotcapableofstabilizingtheenzyme bynon-specificinteractions[68].Itisnecessarytheformationof astablehydrogelstructuretowhichtheenzymebindsstrongly, avoidingdiffusionintothesurroundingmedia,acquiring protec-tionfromdenaturingfactorsand,simultaneously,obtainingaccess totheactivesites,thuspotentiallyenhancingitsoperational stabil-ity[69].Underthesepremises,itislikelythePVAorPEGtoregulate notonlytheNPssizeandshapebutaswelltolimitthedeleterious effectoftheAg+releaseontheenzymestructure.Datafromthe

con-trolgroups(Fig.6A),showthatLacactivityonlylasts3daysinthe presenceofAgNPs,whileinitsabsence,freeLac,remainsinaction foranothersixdays,howeveratamuchlowerlevel(≈130U/mL), andonlyceasesatday9 (≈5.1U/mL).Theenhanced stabilityof AgNPsdispersionsprovidedbywater-solublepolymersisusually basedonthestericrepulsionof thepolymersthatare immedi-atelyadsorbedatthephaseinterphase.Thebalancebetweenthe attractiveandtherepulsiveforcesis stronglydependentonthe thicknessoftheadsorbedlayer,which,onitsturn,isfunctionof thechainlengthandadsorptionmodeoftheusedpolymer[70]. ThiscouldexplaintheincreaseinLacactivitymanifestedbythe hybridAgNPs-polymer-Lacwithtime.Thedecreaseindiameterof thepolymericcoatingsurroundingtheNPsmayfavorthe detach-mentanddiffusionoftheenzymeinsolution,untiltheprotection offeredistooweaktopreventtheAg+fromreleasingand

(8)

dena-Fig.6.LacactivityandstabilityinDMP(A)asafreeagentorassociatedwithAgNPs(controls),(B)onPEG-,PVA-andchitosan-AgNPsand(C)inthepresenceofonlythe polymersPEG,PVAandchitosan(withoutAgNPs)(SD,n=3).

(9)

Fig.6. (Continued)

turingtheenzyme[66].Thisbehaviornotonlyrevealsasynergistic effectontheLacstabilitybutalsoallowsatime-dependentactionof theantimicrobialsinwhich,firsttheLacandsecond,afterenzyme denaturation,theAg+acttoreducetheriskofresistance-associated

mutations.

AquickanalysisoftheLacactivityonpolymer-stabilizedAgNPs inthepresenceofABTS(pH3)substratewasalsoconducted(Fig.S2 intheSupportinginformation).Datacollectedrevealedverylittle activitythroughouttimeregardlessthepolymerusedasprotecting agent.ThedifferencesinoptimalpHbetweenABTSandthe pheno-licsubstrateDMPreflectthedifferenceinLacoxidationmechanism foreach substratethat mayaffectthestability of complex sys-temslikethosein study[71].Evenso,intheabsenceofAgNPs, LacdemonstratedgreateractivitythanwithDMP.Thisisexplained bythefactthattheoxidationof ABTStothestablecation

radi-caldoesnotinvolveprotons,andthuspossessesaredoxpotential independentofpH.Ontheotherhand,Lacisgreatlyaffectedby thedifferenceinpHduetothecontributionoftheOH−inhibition. AnotherexplanationcanbeattributedtotheenhancedAg+

solu-bilityandhighdegreeofaggregationoftheAgNPsinpresenceof dissolvedO2atlowpHvalues[72,73].

4. Conclusions

SynthesisofAgNPsbycitratereductionmethodusingpolymeric reducingagents,PEG,PVAandchitosan,resultedintunableAgNPs sizesandshapes.Asprotectingagents,PEGandPVApromotedthe formation ofspherical uniformly-shaped,small-sized, monodis-persedNPs.WiththeexceptionofPVAMw85,000,whichgenerated aggregates(highviscosity),highMwpolymerswereestablishedas

(10)

mosteffectiveinproducingsmall-sizedNPs.Chitosan’sviscosity impairedthisphenomenon.

Lacactivityandstability werestimulatedin thepresenceof DMP.AdecreaseintheenzymaticactivitywasdetectedonceLac wasimmobilizedonthePEG-andPVA-AgNPs.This,however,was promptlydisregardedasthepolymer-stabilizedAgNPsincreased theenzymestabilityovertimeandwerecapableofmaintainingits activityupto13days.Atthispoint,thepolymerslosttheirstability inwaterandtheenzymelostitsprotection.Athighpolymer con-centrations(5%),however,Lacactivitywaslostafter3dayssince thepolymerpreventedtheaccessbyDMP.Byenablingmanyionic interactions,chitosanrestrictedthemasstransferbetweenLacand substrateand,thus,promotedverylittleenzymaticactivity.

Generally,theefficacyofthepolymer-stabilizedAgNPsin pro-motingLacstabilitywithtimewasestablished.Byimplementing this strategy,thelimitations of usingboth AgNPsandenzymes as therapeutic agents in the fight against microbial organisms andbiofilmformationcouldbeovercome,andanew antimicro-bialsynergisticapproachwithpromisingbiomedicalapplications uncovered.Moreover,sincethereleaseoftheLacandAg+

antimi-crobialeffectsaredifferentintime,thishybridallowsasuperior antimicrobialeffectreducing theriskoftheappearanceofdrug resistance-associatedmutations.

Atthismoment,microbiologyexperimentsusinggram-positive andgram-negativebacteriaareatcoursewiththegoalof proof-ingthis concept. Differentmethods are beingusedtoestablish theantimicrobialsynergisticeffectofLac,polymerstabilizersand AgNPs, and its cytotoxic profile is being outlined recurring to humanfibroblasts.Inanearfuture,areportofthedataacquired willbepublished.

Competingfinancialinterests

Theauthorsdeclarenocompetingfinancialinterest.

Acknowledgements

Thisworkwasfunded byPortugueseFoundationforScience andTechnologyFCT/MCTES(PIDDAC)andco-financedbyEuropean funds(FEDER)throughthePT2020program,research projectM-ERA-NET/0006/2014.A.ZilleandH.P.Felgueirasalsoacknowledge fundingfromFCTwithinthescopeoftheproject POCI-01-0145-FEDER-007136andUID/CTM/00264.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.colsurfb.2017.03. 023.

References

[1]R.GhoshChaudhuri,S.Paria,Core/shellnanoparticles:classes,properties, synthesismechanisms,characterization,andapplications,Chem.Rev.112 (2011)2373–2433.

[2]A.H.Lu,E.e.L.Salabas,F.Schüth,Magneticnanoparticles:synthesis, protection,functionalization,andapplication,Angew.Chem.Int.Ed.46 (2007)1222–1244.

[3]Q.H.Tran,A.-T.Le,Silvernanoparticles:synthesis,properties,toxicology, applicationsandperspectives,Adv.Nat.Sci.Nanosci.Nanotechnol.4(2013) 033001.

[4]L.Kvitek,A.Panáˇcek,J.Soukupova,M.Kolar,R.Vecerova,R.Prucek,M. Holecova,R.Zboril,Effectofsurfactantsandpolymersonstabilityand antibacterialactivityofsilvernanoparticles(NPs),J.Phys.Chem.C112(2008) 5825–5834.

[5]A.Ivask,A.ElBadawy,C.Kaweeteerawat,D.Boren,H.Fischer,Z.Ji,C.H.Chang, R.Liu,T.Tolaymat,D.Telesca,J.I.Zink,Y.Cohen,P.A.Holden,H.A.Godwin, Toxicitymechanismsinescherichiacolivaryforsilvernanoparticlesand differfromionicsilver,ACSNano8(2014)374–386.

[6]J.R.Morones,J.L.Elechiguerra,A.Camacho,K.Holt,J.B.Kouri,J.T.Ramírez,M.J. Yacaman,Thebactericidaleffectofsilvernanoparticles,Nanotechnology16 (2005)2346–2353.

[7]M.Kosti ´c,N.Radi ´c,B.M.Obradovi ´c,S.Dimitrijevi ´c,M.M.Kuraica,P. ˇSkundri ´c, Antimicrobialtextilepreparedbysilverdepositionondielectricbarrier dischargetreatedcotton/polyesterfabric,Chem.Ind.Chem.Eng.Q./CICEQ14 (2008)219–221.

[8]G.Martinez-Castanon,N.Nino-Martinez,F.Martinez-Gutierrez,J. Martinez-Mendoza,F.Ruiz,Synthesisandantibacterialactivityofsilver nanoparticleswithdifferentsizes,J.Nanopart.Res.10(2008)1343–1348. [9]S.Pal,Y.K.Tak,J.M.Song,Doestheantibacterialactivityofsilvernanoparticles

dependontheshapeofthenanoparticle?Astudyofthegram-negative bacteriumEscherichiacoli,Appl.Environ.Microbiol.73(2007)1712–1720. [10]S.Agnihotri,S.Mukherji,S.Mukherji,Size-controlledsilvernanoparticles

synthesizedovertherange5–100nmusingthesameprotocolandtheir antibacterialefficacy,RSCAdv.4(2014)3974–3983.

[11]B.Khodashenas,H.R.Ghorbani,Synthesisofsilvernanoparticleswithdifferent shapes,Arab.J.Chem.(2015),http://dx.doi.org/10.1016/j.arabjc.2014.12.014. [12]S.Iravani,H.Korbekandi,S.Mirmohammadi,B.Zolfaghari,Synthesisofsilver nanoparticles:chemical,physicalandbiologicalmethods,Res.Pharm.Sci.9 (2014)385–406.

[13]D.Steinigeweg,S.Schlücker,Monodispersityandsizecontrolinthesynthesis of20–100nmquasi-sphericalsilvernanoparticlesbycitrateandascorbicacid reductioninglycerol–watermixtures,Chem.Commun.48(2012)8682–8684. [14]C.Luo,Y.Zhang,X.Zeng,Y.Zeng,Y.Wang,Theroleofpoly(ethyleneglycol)in

theformationofsilvernanoparticles,J.ColloidInterfaceSci.288(2005) 444–448.

[15]Z.Mbhele,M.Salemane,C.VanSittert,J.Nedeljkovic,V.Djokovic,A.Luyt, Fabricationandcharacterizationofsilver-polyvinylalcoholnanocomposites, Chem.Mater.15(2003)5019–5024.

[16]J.-J.Lin,W.-C.Lin,R.-X.Dong,S.-h.Hsu,Thecellularresponsesand

antibacterialactivitiesofsilvernanoparticlesstabilizedbydifferentpolymers, Nanotechnology23(2012)065102.

[17]H.Huang,Q.Yuan,X.Yang,Preparationandcharacterizationof metal–chitosannanocomposites,ColloidsSurf.B:Biointerfaces39(2004) 31–37.

[18]D.Long,G.Wu,S.Chen,Preparationofoligochitosanstabilizedsilver nanoparticlesbygammairradiation,Radiat.Phys.Chem.76(2007) 1126–1131.

[19]R.A.Sperling,W.J.Parak,Surfacemodification,functionalizationand bioconjugationofcolloidalinorganicnanoparticles,Philos.Trans.R.Soc.A: Math.Phys.Eng.Sci.368(2010)1333–1383.

[20]K.S.Kumar,V.B.Kumar,P.Paik,Recentadvancementinfunctionalcore-shell nanoparticlesofpolymers:synthesis,physicalproperties,andapplicationsin medicalbiotechnology,J.Nanoparticles2013(2013)1–24.

[21]R.deLima,A.B.Seabra,N.Durán,Silvernanoparticles:abriefreviewof cytotoxicityandgenotoxicityofchemicallyandbiogenicallysynthesized nanoparticles,J.Appl.Toxicol.32(2012)867–879.

[22]K.M.G.Hossain,M.D.González,G.R.Lozano,T.Tzanov,Multifunctional modificationofwoolusinganenzymaticprocessinaqueous–organicmedia,J. Biotechnol.141(2009)58–63.

[23]N.Grover,C.Z.Dinu,R.S.Kane,J.S.Dordick,Enzyme-basedformulationsfor decontamination:currentstateandperspectives,Appl.Microbiol.Biotechnol. 97(2013)3293–3300.

[24]J.Kulys,I.Bratkovskaja,R.Vidziunaite,Laccase-catalysediodideoxidationin presenceofmethylsyringate,Biotechnol.Bioeng.92(2005)124–128. [25]A.Othman,A.Elshafei,M.Hassan,B.Haroun,M.Elsayed,A.Farrag,

Purification,biochemicalcharacterizationandapplicationsofpleurotus ostreatusARC280laccase,Br.Microbiol.Res.J.4(2014)1418–1439. [26]S.Christie,S.Shanmugam,AnalysisoffungalculturesisolatedfromAnamalai

Hillsforlaccaseenzymeproductioneffectondyedecolorization, antimicrobialactivity,Int.J.PlantAnim.Environ.Sci.2(2012)143–148. [27]L.M.P.Sampaio,J.Padrão,J.Faria,J.P.Silva,C.J.Silva,F.Dourado,A.Zille,

Laccaseimmobilizationonbacterialnanocellulosemembranes:antimicrobial, kineticandstabilityproperties,Carbohyd.Polym.145(2016)1–12. [28]A.A.Vertegel,V.Reukov,V.Maximov,Enzyme–Nanoparticleconjugatesfor

biomedicalapplications,in:S.D.Minter(Ed.),EnzymeStabilizationand Immobilization:MethodsandProtocols,Springer,2011,pp.165–182. [29]S.Guo,H.Li,J.Liu,Y.Yang,W.Kong,S.Qiao,H.Huang,Y.Liu,Z.Kang,

Visible-Light-InducedeffectsofAunanoparticleonlaccasecatalyticactivity, ACSAppl.Mater.Interfaces7(2015)20937–20944.

[30]Z.Khani,C.Jolivalt,M.Cretin,S.Tingry,C.Innocent,Alginate/carbon compositebeadsforlaccaseandglucoseoxidaseencapsulation:applicationin biofuelcelltechnology,Biotechnol.Lett.28(2006)1779–1786.

[31]G.Bayramoglu,M.Yilmaz,M.Y.Arica,Preparationandcharacterizationof epoxy-functionalizedmagneticchitosanbeads:laccaseimmobilizedfor degradationofreactivedyes,BioprocessBiosyst.Eng.33(2010)439–448. [32]D.Spinelli,E.Fatarella,A.DiMichele,R.Pogni,Immobilizationoffungal

(Trametesversicolor)laccaseontoAmberliteIR-120Hbeads:optimization andcharacterization,ProcessBiochem.48(2013)218–223.

[33]S.K.Patel,V.C.Kalia,J.-H.Choi,J.-R.Haw,I.-W.Kim,J.K.Lee,Immobilizationof laccaseonSiO2nanocarriersimprovesitsstabilityandreusability,J. Microbiol.Biotechnol.24(2014)639–647.

[34]F.Wang,C.Guo,H.Z.Liu,C.Z.Liu,ImmobilizationofPycnoporussanguineus laccasebymetalaffinityadsorptiononmagneticchelatorparticles,J.Chem. Technol.Biotechnol.83(2008)97–104.

(11)

[35]H.Fang,J.Huang,L.Ding,M.Li,Z.Chen,Preparationofmagneticchitosan nanoparticlesandimmobilizationoflaccase,J.WuhanUniv.Technol.-Mater. Sci.Ed.24(2009)42–47.

[36]H.Qiu,C.Xu,X.Huang,Y.Ding,Y.Qu,P.Gao,Immobilizationoflaccaseon nanoporousgold:comparativestudiesontheimmobilizationstrategiesand theparticlesizeeffects,J.Phys.Chem.C113(2009)2521–2525.

[37]A.Lateef,A.O.Adeeyo,Greensynthesisandantibacterialactivitiesofsilver nanoparticlesusingextracellularlaccaseof,NotulaeScientiaBiologicae7 (2015)405.

[38]L.M.Sampaio,J.Padrão,J.Faria,J.P.Silva,C.J.Silva,F.Dourado,A.Zille,Laccase immobilizationonbacterialnanocellulosemembranes:antimicrobial,kinetic andstabilityproperties,Carbohyd.Polym.145(2016)1–12.

[39]C.Sanchez,B.Julián,P.Belleville,M.Popall,Applicationsofhybrid organic–inorganicnanocomposites,J.Mater.Chem.15(2005)3559–3592. [40]L.Mei,Z.Lu,X.Zhang,C.Li,Y.Jia,Polymer-Agnanocompositeswithenhanced

antimicrobialactivityagainstbacterialinfection,ACSAppl.Mater.Interfaces6 (2014)15813–15821.

[41]A.Zille,M.M.Fernandes,A.Francesko,T.Tzanov,M.Fernandes,F.R.Oliveira,L. Almeida,T.Amorim,N.Carneiro,M.F.Esteves,A.P.Souto,Sizeandaging effectsonantimicrobialefficiencyofsilvernanoparticlescoatedonpolyamide fabricsactivatedbyatmosphericDBDplasma,ACSAppl.Mater.Interfaces7 (2015)13731–13744.

[42]D.M.Eby,H.R.Luckarift,G.R.Johnson,Hybridantimicrobialenzymeandsilver nanoparticlecoatingsformedicalinstruments,ACSAppl.Mater.Interfaces1 (2009)1553–1560.

[43]L.M.P.Sampaio,J.Padrao,J.Faria,J.P.Silva,C.J.Silva,F.Dourado,A.Zille, Laccaseimmobilizationonbacterialnanocellulosemembranes:antimicrobial, kineticandstabilityproperties,Carbohyd.Polym.145(2016)1–12. [44]J.Turkevich,P.C.Stevenson,J.Hillier,Astudyofthenucleationandgrowth

processesinthesynthesisofcolloidalgold,Discuss.FaradaySoc.11(1951) 55–75.

[45]N.K.Vu,A.Zille,F.R.Oliveira,N.Carneiro,A.P.Souto,Effectofparticlesizeon silvernanoparticledepositionontodielectricbarrierdischarge(DBD)plasma functionalizedpolyamidefabric,PlasmaProcess.Polym.10(2013)285–296. [46]I.Eichlerová,J. ˇSnajdr,P.Baldrian,Laccaseactivityinsoils:considerationsfor

themeasurementofenzymeactivity,Chemosphere88(2012)1154–1160. [47]P.Ander,K.Messner,Oxidationof1-hydroxybenzotriazolebylaccaseand

ligninperoxidase,Biotechnol.Tech.12(1998)191–195.

[48]Y.Xia,N.J.Halas,Shape-controlledsynthesisandsurfaceplasmonic propertiesofmetallicnanostructures,MRSBull.30(2005)338–348. [49]A.Saeb,A.S.Alshammari,H.Al-Brahim,K.A.Al-Rubeaan,Productionofsilver

nanoparticleswithstrongandstableantimicrobialactivityagainsthighly pathogenicandmultidrugresistantbacteria,Sci.WorldJ.(2014)1–9,ID 704708.

[50]L.V.Stebounova,E.Guio,V.H.Grassian,Silvernanoparticlesinsimulated biologicalmedia:astudyofaggregation,sedimentation,anddissolution,J. Nanopart.Res.13(2011)233–244.

[51]S.Magdassi,A.Bassa,Y.Vinetsky,A.Kamyshny,Silvernanoparticlesas pigmentsforwater-basedink-jetinks,Chem.Mater.15(2003)2208–2217. [52]Y.Cao,R.Zheng,X.Ji,H.Liu,R.Xie,W.Yang,Synthesesandcharacterizationof

nearlymonodispersed,size-tunablesilvernanoparticlesoverawidesize rangeof7–200nmbytannicacidreduction,Langmuir30(2014)3876–3882. [53]K.-S.Chou,C.-Y.Ren,Synthesisofnanosizedsilverparticlesbychemical

reductionmethod,Mater.Chem.Phys.64(2000)241–246.

[54]M.Popa,T.Pradell,D.Crespo,J.M.Calderón-Moreno,Stablesilvercolloidal dispersionsusingshortchainpolyethyleneglycol,Coll.Surf.A303(2007) 184–190.

[55]M.Hettiarachchi,P.Wickramarachchi,Synthesisofchitosanstabilizedsilver nanoparticlesusinggammarayirradiationandcharacterization,J.Sci.Univ. KelaniyaSriLanka6(2011)65–75.

[56]M.E.Peterson,R.M.Daniel,M.J.Danson,R.Eisenthal,Thedependenceof enzymeactivityontemperature:determinationandvalidationofparameters, Biochem.J.402(2007)331–337.

[57]A.Kunamneni,I.Ghazi,S.Camarero,A.Ballesteros,F.J.Plou,M.Alcalde, Decolorizationofsyntheticdyesbylaccaseimmobilizedonepoxy-activated carriers,ProcessBiochem.43(2008)169–178.

[58]R.M.Daniel,M.Dines,H.H.Petach,Thedenaturationanddegradationofstable enzymesathightemperatures,Biochem.J317(1996)1–11.

[59]B.Branchi,C.Galli,P.Gentili,Kineticsofoxidationofbenzylalcoholsbythe dicationandradicalcationofABTS.Comparisonwithlaccase–ABTS oxidations:anapparentparadox,Org.Biomol.Chem.3(2005)2604–2614. [60]E.Akertek,L.Tarhan,Characterizationofimmobilizedcatalasesandtheir

applicationinpasteurizationofmilkwithH2O2,Appl.Biochem.Biotechnol. 50(1995)291–303.

[61]J.Rogalski,E.Jó ´zwik,A.Hatakka,A.Leonowicz,Immobilizationoflaccase fromPhlebiaradiataoncontrolledporosityglass,J.Mol.Catal.A:Chem.95 (1995)99–108.

[62]N.Efremova,S.Sheth,D.Leckband,Protein-inducedchangesinpoly(ethylene glycol)brushes:molecularweightandtemperaturedependence,Langmuir17 (2001)7628–7636.

[63]S.Sheth,D.Leckband,Measurementsofattractiveforcesbetweenproteins andend-graftedpoly(ethyleneglycol)chains,Proc.Natl.Acad.Sci.94(1997) 8399–8404.

[64]A.A.Homaei,R.Sariri,F.Vianello,R.Stevanato,Enzymeimmobilization:an update,J.Chem.Biol.6(2013)185–205.

[65]B.Krajewska,Applicationofchitin-andchitosan-basedmaterialsforenzyme immobilizations:areview,EnzymeMicrob.Technol.35(2004)126–139. [66]G.A.Petkova,К.Záruba,P. ˇZvátora,V.Král,Goldandsilvernanoparticlesfor

biomoleculeimmobilizationandenzymaticcatalysis,NanoscaleRes.Lett.7 (2012)1–10.

[67]A.M.Wang,H.Wang,C.Zhou,Z.Q.Du,S.M.Zhu,S.B.Shen,Ag-induced efficientimmobilizationofpapainonsilicaspheres,Chin.J.Chem.Eng.16 (2008)612–619.

[68]P.V.Iyer,L.Ananthanarayan,Enzymestabilityandstabilization—aqueousand non-aqueousenvironment,ProcessBiochem.43(2008)1019–1032. [69]Y.Wang,Y.L.Hsieh,Immobilizationoflipaseenzymeinpolyvinylalcohol

(PVA)nanofibrousmembranes,J.Membr.Sci.309(2008)73–81. [70]L.Kvítek,A.Panáˇcek,J.Soukupová,M.Koláˇr,R.Veˇceˇrová,R.Prucek,M.

Holecová,R.Zboˇril,Effectofsurfactantsandpolymersonstabilityand antibacterialactivityofsilvernanoparticles(NPs),J.Phys.Chem.C112(2008) 5825–5834.

[71]H.Chakroun,T.Mechichi,M.J.Martinez,A.Dhouib,S.Sayadi,Purificationand characterizationofanovellaccasefromtheascomyceteTrichoderma atroviride:applicationonbioremediationofphenoliccompounds,Process Biochem.45(2010)507–513.

[72]A.M.E.Badawy,T.P.Luxton,R.G.Silva,K.G.Scheckel,M.T.Suidan,T.M. Tolaymat,Impactofenvironmentalconditions(pH,ionicstrength,and electrolytetype)onthesurfacechargeandaggregationofsilvernanoparticles suspensions,Environ.Sci.Technol.44(2010)1260–1266.

[73]C.Levard,E.M.Hotze,G.V.Lowry,G.E.Brown,Environmentaltransformations ofsilvernanoparticles:impactonstabilityandtoxicity,Environ.Sci.Technol. 46(2012)6900–6914.

Imagem

Fig. 2. UV–vis spectra of PEG- and PVA-AgNPs with respective dilution factor (Dnx) applied per concentration.
Fig. 3. TEM micrographies of the PEG-, PVA- and chitosan-AgNPs at 5% concentration (scale 100 nm for PVA Mw 9000 and 200 nm for all other samples).
Fig. 6. Lac activity and stability in DMP (A) as a free agent or associated with AgNPs (controls), (B) on PEG-, PVA- and chitosan-AgNPs and (C) in the presence of only the polymers PEG, PVA and chitosan (without AgNPs) (SD, n = 3).

Referências

Documentos relacionados

quote to remind my readers that, to begin with, Joaquim Romero Magalhães was a regional historian deeply rooted in the French Annales tradition that viewed historical geography as a

The increased levels of caspase-3 activation suggest that silver nanoparticles induced apoptosis in MCF 7 breast cancer cells in a caspase-3-dependent manner..

Cytogenetic characterization and genome size of the medicinal plant Catharanthus roseus (L.)

Alguns autores justificam o cenário da pesquisa ao utilizar as metodologias ativas, dentre elas a ABP, nas escolas médicas, por favorecer melhor relação entre o ensino

Nos resultados foram apresentadas a espacialidade das áreas de florestas impactadas pela extração seletiva de madeiras e pelo fogo, as relações entre a degradação

There is a variation on time of polymerization of polymers synthesized in dichloromethane, to ensure the characteristics observed between the poly(3-hexylthiophenes) synthesized

Application of in situ surface-enhanced Raman spectroscopy (SERS) to the study of citrate oxidation on silica-supported silver nanoparticles. Iron(III) citrate

[r]