• Nenhum resultado encontrado

Effects of monosulfuron-ester on metabolic processes of nitrogen-fixing cyanobacteria Anabaena flos-aquae and Anabaena azotica

N/A
N/A
Protected

Academic year: 2021

Share "Effects of monosulfuron-ester on metabolic processes of nitrogen-fixing cyanobacteria Anabaena flos-aquae and Anabaena azotica"

Copied!
7
0
0

Texto

(1)

h ttp : / / w w w . b j m i c r o b i o l . c o m . b r /

Environmental

Microbiology

Effects

of

monosulfuron-ester

on

metabolic

processes

of

nitrogen-fixing

cyanobacteria

Anabaena

flos-aquae

and

Anabaena

azotica

Jian

Ying

Shen

a,∗

,

Jin

Zhi

Liao

a

,

Li

Li

Guo

a

,

Rui

Fang

Su

b

aShanghaiJiaotongUniversity,DepartmentofEnvironmentalScienceandResource,Shanghai,China

bFengxianDistrictAgro-TechnologyExtensionCenter,Shanghai,China

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received16June2016 Accepted17October2016 Availableonline11March2017 AssociateEditor:JerriZilli

Keywords: Acetolactatesynthase Aminoacids Cyanobacteria Monosulfuron-ester

a

b

s

t

r

a

c

t

Presenceoftherelativelynewsulfonylureaherbicidemonosulfuron-esterat0.03–300nmol/L affectedthegrowthoftwonon-targetnitrogen-fixingcyanobacteria(Anabaenaflos-aquae

andAnabaenaazotica)andsubstantiallyinhibitedinvitroAcetolactatesynthaseactivity,

withIC50of3.3and101.3nmol/LforA.flos-aquaeandA.azotica,respectively.Presenting in30–300nmol/L,itinhibitedproteinsynthesisofthecyanobacteriawithlessaminoacids producedasitsconcentrationincreased.Ourfindingssupporttheviewthat monosulfuron-estertoxicityinbothnitrogen-fixingcyanobacteriaisduetoitsinterferencewithprotein metabolismviainhibitionofbranch-chainaminoacidbiosynthesis,andparticularly Aceto-lactatesynthaseactivity.

©2017PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileirade Microbiologia.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Monosulfuron-ester is a relatively new sulfonylurea herbi-cidethatwasdevelopedbytheNationalPesticideEngineering Research Center in Tianjin, China.1 This herbicide is very

effective at post-emergence rates of 30–60nmol/L (active ingredients)inawiderangeofcropsincludingcorn(Zeamays L.),wheat(TriticumaestivumL.),rice(OryzasativaL.),andmillet (PanicummiliaceumL.).2Themodeofactionofsulfonylureais

inhibitionofacetolactatesynthase(ALS).3TheALSispresent

inallplantsaswellasinbacteria,fungi,andcyanobacteria,4

butnotpresentinmammals.Becauseoftheirrelativelylow

Correspondingauthorat:DepartmentofEnvironmentalScienceandResource,ShanghaiJiaotongUniversity,Shanghai200240,China.

E-mail:jyshen88@sjtu.edu.cn(J.Y.Shen).

toxicitytomammals,highefficacyandenvironmentalsafety,5

theuseofsulfonylureaherbicideshasincreasedrapidly. How-ever,applicationofselectiveherbicidessuchassulfonylurea incroppingsystemscansubstantiallyreducesoilmicrobial diversityiftheyareoverusedormisused.

Cyanobacteria are one of the largest and most impor-tant groupsofalgaeon earth.Inparticular,nitrogen-fixing cyanobacteriaarevitalphotosyntheticmicroorganismsthat contribute to soil fertility by fixing atmospheric nitrogen, releasing small quantitiesof the major fertilizing product, ammonia, aswell as other small nitrogenouspolypeptides during active growth,6 and also because they maintain

http://dx.doi.org/10.1016/j.bjm.2016.10.028

1517-8382/©2017PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileiradeMicrobiologia.Thisisanopenaccessarticle undertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

ecosystemstability.7AnabaenaazoticaLeyandAnabaena

flos-aquae(Lyngb)Brebaretwoofthemostcommonfilamentous

nitrogen-fixing cyanobacteria in China agricultural fields.8

In general, cyanobacteria are very sensitive to herbicides becausetheypossessmanycharacteristicsofhigherplants.9

Previous study showed that cyanobacteria had different degreesofsensitivitytoherbicides.10 However,theeffectof

monosulfuron-ester on nitrogen-fixing cyanobacteria that mayplayaroleinenhancingthefertilityofagriculturalfields hasnotbeenreportedintheliterature.Therefore,the objec-tivesofthisresearchweretodeterminetheeffectsofarange of monosulfuron-ester concentrations on growth, protein content,in vitroand extractableactivityofALS,and amino acidproductionofbothnitrogen-fixingcyanobacteria. Find-ingsfromthisworkshouldprovideabetterunderstandingof thetoxicityanditsmodeofactionofmonosulfuron-esterin thetwoubiquitousnitrogen-fixingcyanobacteria.

Materials

and

methods

Monosulfuron-ester of 99.4% purity was synthesized at the National Pesticide Engineering Research Center in Tianjin, China. Monosulfuron-ester was dissolved in the mixture oforganic solvent dimethylformamide (DMF, N,N-dimethylformamide, Jianshan Chemicals Ltd., China) and surfactant TritonX-100 (4-(1,1,3,3-tetramethylbutyl)phenyl-polyethyleneglycol)(JibishiGeneTechnologyLtd.,China)to formthe herbicideconcentratebelow theconcentration of firsteffect,i.e.,DMF0.5%(v/v)andTritonX-1000.005%(v/v). Thefresh concentratewas filteredand sterilized and then addedtotheculturemediumtopreparethetestsolutionsof thedesiredmonosulfuron-esterdoses.

To measure monosulfuron-ester concentrations in the mediumand in algal cells a HPLCanalysis procedure was developed employing a Agilent 1100 HPLC (Agilent Inc.) equippedwithUV-200detector,ODSDiamonsi(5␮m)column with250×4.6mm.OperatingconditionsfortheHPLC anal-ysiswere:mobilephase-methanol/water(containingH3PO4, pH4.0)(53/47,v/v);mobilephaseflowrate1.0mL/min; sam-pleinjectionvolume10␮L;wavelength236nm;andcolumn temperature 40◦C. Under these conditions the resulting calibrationcurvecorrelatingthemonosulfuron-ester concen-tration tothe apex area was y=91302x+26735 (R2=0.9953) withanaveragerecoveryof95–103%.

Cultures of A. azotica (FACHB-181) and A. flos-aquae (FACHB-245) two nitrogen-fixing algal species of the Nos-tocaceae,were obtainedfrom theInstitute ofHydrobiology of the Chinese Academy of Sciences in Wuhan, China. Axenic cultures were grown in a sterilized HB-111 liquid medium (0.075g/LK2HPO4, 0.125g/L MgSO4, 0.1g/L CaCO3, 0.005g/L FeC6H5O7, 0.005g/LC6H8O7, 0.0025g/L MoO3·H2O, 0.01g/LNaOH)at30±2◦Cunderconstantfluorescentlightof 36.2␮mol/m2/s.Theexperimentalcultureswerefirst grown in250mLflaskscontaining100mLofthemediumwith0.5–1 millioncellspermillilitersunderthesameconditions.Atthe exponentialgrowthphaseofthealgalcultures,smallaliquots oftheconcentratewereaddedtotheculturemediumflasksto resultin0.003,0.03,0.3,3,30,and300nmol/Lof monosulfuron-esterinthetestsamples.Sterilizedwaterwasaddedinstead

tothesame culturemediatoproducethecontrolsamples. Samples were collected 6d after the herbicide addition to determinetheproteinandaminoacidcontents,andtheALS activity.

Growthratesofcyanobacteriaweremeasuredbyrecording lightabsorbanceofthecultureat448nmusinga spectropho-tometer(ShanghaiBiotechnicLtd.).Standardcurvesrelating Abs448nmwithcellnumberswere developedforcontinuous cultures of A. azotica and A. flos-aquae. During the experi-mentalperiod,sampleswerewithdrawnaftertheherbicide treatmentat1,2,3,4,5,and6daysforgrowthrate measure-ments.Thegrowthrate()ofthecyanobacteriawascalculated usingthefollowingEq.(1).

=lnX1−lnX0 T1−T0

(1)

whereX1andX0areAbs448nmmeasuredattimesT1andT0.To estimatethecell’sdryweight,thecultureswerecentrifuged, and the solid mass waswashed with distilled waterthree times, driedat105◦Cfor8h; thecell’sdry weightwas the averageofthreeweightmeasurements.

The proteincontent of the cultureswas determined by usingbovineserumalbumin(BSA)asastandarddescribedby Bradford(1976).11One-hundrednanomolesofCoomassie

Bril-liantBlueG-250wasfirstdissolvedin50mLof95%ethanol andthen100mLof85%(w/v)phosphoricacidwasaddedto thissolution.Theresultingsolutionwasdilutedtoafinal vol-umeof1L.BSAwasdilutedinfiveconcentrations(0.2,0.4,0.6, 0.8,1mg/L)andtheirabsorbanceatthe595nmwavelength weremeasuredafter2minat20◦C.5mLliquidsamplewas takenandcentrifuged(8000rpm)10minutesat4◦Ctocollect algalcells.Addasmallamountofphosphatebuffer(pH7.8), repeated freezingandthawinguntilthealgaefluidbecame blue,thencentrifugedthesampleat8000rmpfor30minat 4◦C and the resulting supernatant was usedto determine proteincontent.0.1mLsupernatantwastakentodetermine theproteincontentaccordingtheregressionequationofthe straightlineofproteinrelatingAbs595nm.

The amino acid components were analyzed using an aminoacidautomaticanalyzer(Hitachi)withanionexchange column afterthe cyanobacterial samplewas hydrolyzedin 6mol/LHClat110±1◦Cfor24h.Theabsorbanceofthe sam-plewasmeasuredat570nmexcept440nmforprolineafter colordevelopmentoftheninhydrinreactionat100◦C.

ALS was extracted from 6d cultivated nitrogen-fixing cyanobacteria of the two test species. The cyanobacteria werecentrifugedat10,000×gfor30minat4◦C(Sorvall Cen-trifuge, DJB Labcare Ltd.) in buffer or medium after cells were sonicated using an ultrasonic cell disruptor (250mv, 3s, 3s)in thedarkat4◦C.Theproteininthe supernatant was precipitatedwith ammonium sulphate,and then cen-trifugedat10,000×gfor30minat4◦Cafter2hincubationat 0◦C.Thepelletwasdissolvedinphosphatebuffer(pH=7.5) containing 200mmol/L sodium pyruvate, 5mmol/L MgCl2, 10mmol/L thiaminepyrophosphate (TPP Sigma Company), 200␮mol/L flavin adenine dinucleotide (FAD Sigma Com-pany), and1mol/Ldl-dithiothreitol (DTTGLBiochem Ltd.). This enzyme solution was kept in ice/water in the dark. Theenzymesolutionwasdissolvedin50mmol/Lphosphate

(3)

buffer(pH=7.5)containing20mmol/Lsodiumpyruvateand 0.5mmol/LMgCl2.Avolumeof0.1mLofmonosulfuron-ester wasaddedto0.4mLofenzymeand0.5mLofenzyme reac-tion solution. The mixture was subsequently incubated at 37±1◦C ina water bath for1h in the dark. After adding 0.1mLof3mmol/Lsulfuricacid,themixturewasincubatedat 60±1◦Cfor15mintodecarboxylatetheacetolactateto ace-toin.0.5mLoffreshlyprepared5.0%␣-naphtholin2.5mol/L sodiumhydroxideand0.5mLof0.5%creatinewerethenadded tothemixtureandincubatedat60±1◦Cfor15minforcolor development.Themixturewasthencooledtotheroom tem-perature(25◦C)inawaterbathandabsorbancewasmeasured at525nmusingaspectrophotometer.Thespecificactivityof ALSwasexpressedasnmolofacetoin/nmolofprotein/h.12

To determine the extractable ALS activity, 0.1mL of monosulfuron-esterand0.4mLoftheenzymewere substi-tuted with 0.5mL of the enzyme solution extracted from nitrogen-fixing cyanobacteria that had been cultivated in theculturemediumcontainingmonosulfuron-ester.Six con-centrations of monosulfuron-ester were used as outlined previouslyandthespecificactivityofALSwasdeterminedand expressedasdescribedabove.

Acompletelyrandomizeddesignwiththreereplications wasusedinallduplicatedexperiments.Analysesofvariance (ANOVA)wereperformedonthenon-transformeddata. Sig-nificantdifferencesweredeterminedusingDuncan’stestat p=0.05levelofsignificance(PROCGLM,SASInstitute,2001). ThevaluesofIC50werecalculatedwiththeprogram Origin-Pro7.5SR1(OriginLabCorporation,USA).

Results

Ingeneral,thegrowthratesofA.flos-aquaeandA.azoticaofthe controldecreasedgraduallyastheculturingtimeincreased; however,thegrowthratesofbothcyanobacteriatreatedwith

500 400 300 200 100 0 0 0.03 0.3 3 30 300

Monosulfuron-ester concentration (nmol/L)

A. azotica A. flos-aquae

Protein content (ug/mg dr

y w

eight)

Fig.2–Effectofmonosulfuron-esterconcentrationon proteincontentoftwocyanobacteria.

monosulfuron-ester(0.03–300nmol/L)exhibitedawave pat-ternofinitialdeclinefollowedbygradualincreases(Fig.1).

The growth rates of A. flos-aquae and A. azotica were reducedby28–97%and41–73%at0.03–300nmol/L,after1day, respectively, relativetothecontrol;themonosulfuron-ester treatment then transientstimulated the growth on second

day.ForA.flos-aquae,thegrowthratesat0.03,0.3,3,30,and

300nmol/Lincreasedby185,184,104,75,38,and9%, respec-tivelyrelativetothecontroltreatmentandthe growthrate increasedeclinedwithhighermonosulfuron-ester concentra-tion; however, forA.azotica, the growth ratesincreasedby 83–90%at3–300nmol/L.Itcanbeseenthatboth cyanobac-teria hadthedifferent responsestomonosulfuron-ester. A.

flos-aquaewasmoresensitivitytothisherbicidethanA.azotica.

Fig. 2 illustrates the effect of monosulfuron-ester con-centration on the protein content in the two cyanobac-teria. Monosulfuron-esterapplied at low concentrationsof 1.8 1.5 1.2 .9 .6 .3 0.0 1 2 3 4 5 1 2 3 Day A. azotica A. flos-aquae Gro wth r ate (/da y x 0.1) Day

– 0.03 nmol/L, – 0.03 nmol/L, – 0.3 nmol/L, – 3 nmol/L, – 30 nmol/L, – 300 nmol/L, – Control. Vertical bar- standard

error of the mean

4 5

(4)

180 150 120 A.azotica A.flos-aquae 90 60 30 0 0.003 0.03 0.3 3 30 300 3000

Monosulfuron-ester concentration (nmol/L) The regression lines: y = –5.97×2 – 35.51x + 100.77

(A. flos-aquae, r2=0.98) and y = –1.43×2 – 12.10x + 82.83 (A. azotica, r2

=0.96)

Specific activity (nmol/mg/h)

Fig.3–Effectofmonosulfuron-esterconcentrationon

invitroALSactivity.

0.03–0.3nmol/Lstimulatedtheproductionofproteinsinboth cyanobacteria,butthe reversewasobservedathigher con-centrations (i.e. 30–300nmol/L). The protein content of A.

flos-aquaecellculturestreatedwithmonosulfuron-esterat0.03

and0.3nmol/Lincreased101and89%,respectively relative tothecontrol(p<0.05);itsproteincontentdecreasedsharply as monosulfuron-ester concentration increased, for exam-ple,theproteincontentwas9–16%lowerwith30–300nmol/L monosulfuron-ester.Themonosulfuron-estertreatmentdid notmarkedlyhaveeffectonproteincontentinA.azotica,its proteincontentincreasedbyonly0.8%with monosulfuron-ester0.03nmol/L.ItisthusclearthatA.flos-aquaeexhibited greatersensitivitytomonosulfuron-ester.

TheinvitroALSactivityvariedbetweenthetwo

cyanobacte-rialspeciesfollowingmonosulfuron-esterapplication(Fig.3).

ForA.flos-aquae,theactivityofALSwasreducedintherangeof

0.8–92%astheconcentrationofmonosulfuron-esterincreased from0.003to300nmol/L,andtherewasasignificant differ-enceinactivitybetweeneachconcentration(p<0.05).TheALS activity ofA. azotica atlow monosulfuron-ester concentra-tions(0.003–0.3nmol/L)didnotdiffersignificantlyfromthe sameofthe control;itdeclined notably,by19–75%relative tothe control, asthe concentration ofmonosulfuron-ester increasedfrom3to300nmol/L.CalculatedIC50valuesforA.

flos-aquaeandA.azoticawere3.3and101.3nmol/Lrespectively.

Theseresultsindicatethatmonosulfuron-esterdoesinhibit ALSactivityinthetwonitrogen-fixingcyanobacteria, particu-larlyathigherconcentrations.

Interestingly, the extractable ALS activity in the two cyanobacteriarespondeddifferentlytomonosulfuron-esterin 0.03–300nmol/L(Fig.4);relativetothecontrol,theextractable ALSactivityinA.azoticaincreased28–45%whilethesamein

A.flos-aquaedeclinedby11–33%.Therewasafurtherevidence

thatA.flos-aquaeweremoresensitivetothisherbicidethanA.

azotica.

Table1presentstheeffectofmonosulfuron-ester concen-trationonaminoacids producedin thetwocyanobacteria. AminoacidproductionincellsofA.flos-aquaeandA.azotica

180 150 120 90 60 30 0 0 0.03 0.3

Monosulfuron-ester concentration (nmol/L) The regression lines: y= –0.86×2 – 4.20x + 148.8

(A. flos-aquae, r2=0.92) and y=–1.97×2 +16.87x +94.05 (A. azotica, r2=0.92)

A.azotica A.flos-aquae

Specific activity (nmol/mg/h)

3 30 300

Fig.4–Effectofmonosulfuron-esterconcentrationon extractableALSactivity.

wasclearlyinhibitedbymonosulfuron-esterinthe character-isticdose-dependentresponse;namely,increasedinhibition ofaminoacidproductionwithincreasingmonosulfuron-ester concentration. The quantity of branch-chain amino acids valine,isoleucine,leucineincellsofA.flos-aquaewasreduced by 56, 67, and 67% at the 0.003nmol/L, respectively rela-tivetothecontrol,and by80,86,and87%atthe30nmol/L (p<0.05). Thevaline,isoleucine,leucinecontent ofA. azot-icacellswasreducedby35,45,and47%atthe0.003nmol/L concentration,andby61,52,and55%atthe30nmol/L con-centration.TheotheraminoacidscontentofA.azoticaandA.

flos-aquae cellssuchasglycine,alanine,phenylalanine,

ser-ine, threonine, methionine,glutarnine, asparticacid,lysine, and argininewere respectively reduced 8–55% and 67–90% at monosulfuron-esterconcentrations 0.003and 30nmol/L, andproline,tyrosine,andhistidinewerebelowdetectionat 30nmol/L.AgainA.flos-aquaewasthemoresensitiveofthe two.

Discussion

The transient stimulative effect of monosulfuron-ester on algal growth on the second day ofthis study issimilar to thefindingsofShenetal.(2005)forbutachlorandacetochlor onseveralAnabaenaspecies.7Ourresultthatthe

correspond-ing growthratesoftheA.flos-aquae andA. azoticaexposed todifferentconcentrationsofmonosulfuron-esterexhibited wavepatternswassimilartothereportofShenetal.(2011).13

Hormesis,thestimulativeeffectofatoxinatsub-toxic con-centrations,followingtheapplicationofotherherbicidesand allelochemicalshasbeendocumented.14

The study has evaluated the effects of herbicides on metabolic pathways of protein synthesis in non-target organisms.15 Our findings at low monosulfuron-ester

con-centrations(0.03–3nmol/L)indicatethattheproteincontent ofcellsfrom thetwocyanobacteriaincreasedsubstantially. Theincreasemayhaveresultedfromstimulationinprotein

(5)

Table1–Effectofmonosulfuron-esterconcentrationonaminoacidsproduced.

Species Concentration(nmol/L) Aminoacid(mg/L)a

VAL ILE LEU LYS THR PHE SER PRO

A.azotica Control 73.8b 61.7 111.7 62.5 77.3 58 59.4 4.8 0.003 48.3 33.8 58.8 40.7 51.8 38.7 39.6 0 %c 34.6 45.2 47.4 34.9 33 33.3 33.3 100 0.3 49.8 41.2 68.8 44.3 55.3 43.8 42.4 0 % 32.5 33.2 38.4 29.1 28.5 24.5 28.6 100 30 29.1 29.6 50.2 44.3 39.1 31.1 28.3 0 % 60.6 52 55.1 29.1 49.4 46.4 52.4 100 A.flos-aquae Control 250.6 291.2 547.1 298.9 380.6 239.6 271.8 7.8 0.003 110.6 96.5 181.2 95.7 118.5 83.1 91.8 0 % 55.9 66.9 66.9 68 68.9 65.3 66.2 100 0.3 75.2 60 108.2 60.4 75.9 57.7 57 0 % 70 79.4 80.2 79.8 80.1 75.9 79 100 30 48.9 41 72 43.9 54.3 45.6 41.3 0 % 80.5 85.9 86.8 85.3 85.7 81 84.8 100

Species Concentration(nmol/L) Aminoacid(mg/L)a

HIS TYR ARG ALA MET ASP GLU GLY

A.azotica Control 12.7 13.5 81.5 132.4 31.3 138.6 147.4 68.8 0.003 0 7.4 75.3 98.5 24 122.1 110.7 51.9 %c 100 45.2 7.6 25.6 23.3 11.9 24.9 24.6 0.3 0 0 70.7 94.7 18.9 120.8 104.5 52.1 % 100 100 13.3 28.5 39.6 12.8 29.1 24.3 30 0 0 36.8 60.9 7 76.2 68.9 37 % 100 100 54.8 54 77.6 45 53.3 46.2 A.flos-aquae Control 87.6 173 492.1 608.3 147.9 676.1 727 329.7 0.003 21.8 46.6 151.1 201.9 47.7 215.6 226.7 107.8 % 75.1 73.1 69.3 66.8 67.7 68.1 68.8 67.3 0.3 11.9 13.8 85 131.6 29.5 139.8 145.9 69.2 % 86.4 92 82.7 78.4 80.1 79.3 79.9 79 30 0 0 58 91 14.9 104.2 106.2 50.7 % 100 100 88.2 85 89.9 84.6 85.4 84.6

a Aminoacidisexpressedusingmilligramperliterhydrolyticsolution. b Samplingwascarriedout6dafterherbicidetreatment.

c %ispercentagedecreasecomparedwithcontrol.

synthesis viaincreased productionofRNA.16 Alternatively,

atlower monosulfuron-esterconcentrations,cyanobacterial cellsmayhaveassimilatedmoreorganiccarbonandnitrogen, which interfered withherbicide uptake,due tothe forma-tionofaninactiveherbicidecomplexwithorganiccarbonand nitrogen,andthusreducedtheherbicide’toxicity;the bacte-riamay alsodegrade the herbicideinto hydrate ofcarbon andaminoacidsmetabolitesresultinginalower toxicity.17

Thelowerproteincontentsofbothcyanobacteriasubjected tomonosulfuron-esterathighconcentrations(30–300nmol/L) mayberelatedtoincreaseofproteaseactivity18;itmayalso

bethe result ofinhibition ofthe ALSactivity which inter-fered with production of the three branched-chain amino acids(valine,leucine,andisoleucine)essentialprecursorsof proteins.12

The mode of action of the sulfonylurea is inhibition of ALS,which is responsible for catalyzing the biosynthe-sis of the branch-chain amino acids valine, leucine, and isoleucine.3 Shen et al. (2009) reported that monosulfuron

inhibitsvitroALSactivityinthreenitrogen-fixing cyanobac-teriaathigherconcentrations.19 Ourstudy issimilartoher

resultsthatthe ALSactivity wasmorereduced asthe con-centrationmonosulfuron-esterincreased;IC50 valuesof3.3 and101.3nmol/LforA.flos-aquaeandA.azotica,respectively, have provided furtherevidences ofthe negative impactof thisherbicideongrowthofthesecyanobacterialspecies.The strong inhibition of ALS activity found in both species in

vitro confirms that the toxic effects ofmonosulfuron-ester

is indeed of inhibition to ALS as is the case with other sulfonylurea herbicides.20 Shen et al. (2009) also pointed

outthatmonosulfuronstimulatedtheextractableALS

activ-ity in A. azotica, but the specific activity in A. flos-aquae

decreased athigh concentrationofmonosulfuron.19 Inour

study, withmonosulfuron-esterpresent at0.03–300nmol/L, theextractableALSactivityinA.azoticaincreasedby28–45%, whilethespecificactivityofA.flos-aquaedecreasedby3–11%. It is possible that differences in specific activity between

in vitro and in vivo responses of the two cyanobacteria

were due to the presences of different levels of herbicide detoxifyingenzymes(e.g.glutathioneS-transferase(GST)and mixed-functionoxidase(MFO)).21Otherpossiblereasonsfor

(6)

speciesonthe extractableALSspecificactivityatthesame monosulfuron-esterconcentrationincludeabsorptionofthe herbicideandthedifferentdegreesofALSinhibitionbetween thespecies.

That A. flos-aquae exhibited greater sensitivity to

monosulfuron-ester than A. azotica may be related to its greater capacityfortakingup theherbicide.Suchdifferent responses may be due to different biological properties of the cyanobacteria22 and may be exploited to select for

cyanobacteria that are more resistant to monosulfuron-esterinthecroppingsystems.Forinstance,theculturingof beneficial nitrogen-fixing cyanobacteria in paddy fields as ‘bio-fertilizers’isahighlydesirableoptionforincreasingrice yieldand preventing any negativeeffects ofthis cropping systemontheenvironment.10

Conclusion

Application of monosulfuron-ester at 0.03–300nmol/L affected the growth rates of A. flos-aquae and A. azotica inthe wavepatterns, andhad an inhibitoryeffecton pro-tein synthesis at higher concentrations (30–300nmol/L). Theproduction ofamino acids was reduced with increas-ing monosulfuron-ester concentration. Monosulfuron-ester substantially inhibited in vitro Acetolactate synthase (ALS) activityasevidencedbytheIC50valuesof3.3and101.3nmol/L

forA.flos-aquaeandA.azotica,respectively.Theresultsshow

that the normal agricultural use of monosulfuron-ester at post-emergenceratesof30–60nmol/Linricefieldswilllikely betoxictothebothubiquitousnitrogen-fixingcyanobacteria; themonosulfuron-estertoxicitywasduetoits interference withproteinmetabolismviainhibitionofbranch-chainamino acidbiosynthesis,especiallytheALSactivity.Wealsosuggest that inrice cropping systems wherethe new sulfonylurea herbicide monosulfuron-ester is frequently applied, the beneficial nitrogen-fixing cyanobacteria, A. azotica, may be employedas“biofertilizers”sinceitismoreresistanttothe herbicidethanA.flos-aquae.

Conflicts

of

interest

Theundersignedauthor(s)state(s)thateveryoneinvolvedin the publication process (authors, reviewers, editorial board members,andeditorialstaff)mustbefreefrom conflictsof interestthatcouldadverselyinfluencetheirjudgment, objec-tivityorloyaltytothearticleandassignments.

Acknowledgment

FundingforthisworkwasprovidedbytheNationalNatural ScienceFoundationofChina(21377086).

r

e

f

e

r

e

n

c

e

s

1.LiZM,JiaGF,WangLX.Sulfonylureacompoundsandits herbicideusage.ChinesepatentCNI:ZL94118793.1994.

2.WangW.Applicationofnewsulfonylureaherbicidesinrice directseedlingfields.ShanghaiAgricSci.2006:12–16. 3.RiarDS,NorsworthyJK,SrivastavaV,etal.Physiologicaland

molecularbasisofacetolactatesynthase-inhibiting

herbicideresistanceinbarnyardgrass(Echinochloacrus-galli).J AgricFoodChem.2012;61(2):278–289.

4.YuQ,NelsonJK,ZhengMQ,etal.Molecularcharacterisation ofresistancetoALS-inhibitingherbicidesinHordeum leporinum,biotypes.PestManageSci.2007;63(9): 918–927.

5.ReddyKN,WhitingK.Weedcontrolandeconomic

comparisonsofglyphosate-resistant,sulfonylurea-tolerant, andconventionalsoybean(Glycinemax)systems.Weed Technol.2014;14(1):204–211.

6.GreweCB,PulzO.TheBiotechnologyofCyanobacteria.Ecologyof CyanobacteriaII;2012:707–739.

7.ShenJY,LuYT.Effectsofherbicidesonbiodiversityofrice fieldsinChina.In:ImpactAssessmentofFarmChemicalsRun OfffromPaddyConference.Japan:NationalInstitutefor Agro-EnvironmentalSciences,Japan(NIAES)/National InstituteofAgriculturalScienceandTechnology,Korea (NIAST);2005:56–67.

8.VijaiKA.Anabaenaflos-aquae.CritRevEnvironSciTechnol. 2014;44(18):1995–2037.

9.DaiG,DebloisCP,LiuS,etal.Differentialsensitivityoffive cyanobacterialstrainstoammoniumtoxicityandits inhibitorymechanismonthephotosynthesisofrice-field cyanobacteriumGe–Xian–Mi(Nostoc).AquatToxicol. 2008;89(2):113–121.

10.ShenJY,LuYT,ChengG.Effectsofchemicalherbicideson toxicityofnon-targetnitrogen-fixingCyanobacteriainpaddy fields.In:20thAsian-PacificWeedSci.Conf.Vietnam:WeedSci. Soc.Asian-Pacific.2005:665–670.

11.BradfordMM.Arapidandsensitivemethodforthe

quantitationofmicrogramquantitiesofproteinutilizingthe principleofprotein-dyebinding.AnalBiochem.

1976;72:248–254.

12.FanZJ,AiYW,QianCF,LiZM.Herbicideactivityof Monosulfuron-esteranditsmodeofaction.JEnvironSci (China).2005;17:399–403.

13.ShenJY,LuoW.Effectsofmonosulfuronongrowth: photosynthesis,andnitrogenaseactivityofthree nitrogen-fixingcyanobacteria.ArchEnvironContamToxicol. 2011;60(1):34–43.

14.CalabreseEJ.Paradigmlost,paradigmfound:the

re-emergenceofhormesisasafundamentaldoseresponse modelinthetoxicologicalsciences.EnvironPollut.

2005;138:379–412.

15.OkmenG,TurkcanO,ErdalP.Effectofherbicideson chlorophyll-a,␤-caroten,phycocyaninandallophycocyanin contentofAnabaenasp.JApplBiolSci.2012;7:

20–27.

16.GruenhagenRD,MorelandDE.EffectsofherbicidesonATO levelsinexcisedsoybeanhypocotyls.WeedSci.

1971;19:319–323.

17.NagaiT,IshiharaS,YokoyamaA,etal.Effectsoffourrice paddyherbicidesonalgalcellviabilityandtherelationship withpopulationrecovery.EnvironToxicolChem.

2011;30(8):1898–1905.

18.BhuniaAK,BasuNK,RoyD,ChakrabartiA,BanerjeeSK. Growth,chlorophyllacontent,nitrogen-fixingability,and certainmetabolicactivitiesofNostocmuscorum:effectof methylparathionandbenthiocarb.BullEnvironContam Toxicol.1991;471:43–50.

19.ShenJY,AntonioDT,ShenM,etal.Molecularbasisfor differentialmetabolicresponsestomonosulfuroninthree nitrogen-fixingcyanobacteria.WeedSci.2009;57(2): 133–141.

(7)

20.ChaleffRS,MauvaisCJ.Acetolactatesynthaseisthesite actionoftwosulfonylureaherbicidesinhigherplants. Science.1984;224:1443–2144.

21.ChenJ,ZhengHW,ShongTY,XiGZ,TongLF.Thegenetic diversityofAnabaenaazollaebasedonRAPDanalysis.Acta HydrobiolSin.2001;25:531–534.

22.CumminsI,WortleyDJ,SabbadinF,etal.Keyrolefora glutathionetransferaseinmultiple-herbicideresistancein grassweeds.ProcNatlAcadSciUSA.2013;110(15): 5812–5817.

Referências

Documentos relacionados

O desenvolvimento deste projecto tem como principal propósito a compreensão do segmento masculino em relação à utilização dos cosméticos e produtos de cuidado

The results obtained in this study using RSM to determine the effects of three reaction variables - the catalyst concentration, temperature, and molar ratio - on the ester

social assistance. The protection of jobs within some enterprises, cooperatives, forms of economical associations, constitute an efficient social policy, totally different from

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

O Regime Complementar do Procedimento da Inspeção Tributária (RCPIT), no artigo 44.º n.º 1 determina que “o procedimento de inspeção é previamente preparado,

É aqui, neste patamar da metafísica, que surge rigorosamente o problema da criação divina do Universo, ou seja da atribuição da sua existência, origem e evolução, a um

Afinal, se o marido, por qualquer circunstância, não puder assum ir a direção da Família, a lei reconhece à mulher aptidão para ficar com os poderes de chefia, substituição que

Na hepatite B, as enzimas hepáticas têm valores menores tanto para quem toma quanto para os que não tomam café comparados ao vírus C, porém os dados foram estatisticamente