• Nenhum resultado encontrado

Phylogenetic MLSA and phenotypic analysis identification of three probable novel Pseudomonas species isolated on King George Island, South Shetland, Antarctica

N/A
N/A
Protected

Academic year: 2021

Share "Phylogenetic MLSA and phenotypic analysis identification of three probable novel Pseudomonas species isolated on King George Island, South Shetland, Antarctica"

Copied!
8
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Environmental

Microbiology

Phylogenetic

MLSA

and

phenotypic

analysis

identification

of

three

probable

novel

Pseudomonas

species

isolated

on

King

George

Island,

South

Shetland,

Antarctica

Felipe

Vásquez-Ponce,

Sebastián

Higuera-Llantén,

María

S.

Pavlov,

Sergio

H.

Marshall,

Jorge

Olivares-Pacheco

PontificiaUniversidadCatólicadeValparaíso,FacultaddeCiencias,InstitutodeBiología,LaboratoriodeGenéticaeInmunología

Molecular,Valparaíso,Chile

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received13August2017 Accepted14February2018 Availableonline15March2018 AssociateEditor:VâniaMelo

Keywords: Pseudomonas

Antarctica

P.fluorescenscomplex

MultilocusSequenceAnalysis

a

b

s

t

r

a

c

t

Antarcticaharborsagreatdiversityofmicroorganisms,includingbacteria,archaea, microal-gaeandyeasts.ThePseudomonasgenusisoneofthemostdiverseandsuccessfulbacterial groupsdescribedtodate,butonlyeightspeciesisolatedfromAntarcticahavebeen char-acterized.Here,wepresentthreepotentiallynovelspeciesisolatedonKingGeorgeIsland. Themostabundantisolatesfromfourdifferentenvironments,weregenotypicallyand phe-notypicallycharacterized.Multilocussequenceanalysisand16SrRNAgeneanalysisofa sequenceconcatenateforsixgenes(16S,aroE,glnS,gyrB,ileSandrpoD),determinedoneofthe isolatestobeanewPseudomonasmandeliistrain,whiletheotherthreearegoodcandidates

fornewPseudomonasspecies.Additionally,genotypeanalysesshowedthethreecandidates

tobepartofanewsubgroupwithinthePseudomonasfluorescenscomplex,togetherwith theAntarcticspeciesPseudomonasantarcticaandPseudomonasextremaustralis.Wepropose termingthisnewsubgroupP.antarctica.Likewise,phenotypicanalysesusingAPI20NEand BIOLOG®corroboratedthegenotypingresults,confirmingthatallpresentedisolatesform

partoftheP.fluorescenscomplex.PseudomonasgenusresearchontheAntarcticcontinentis

initsinfancy.Tounderstandthesemicroorganisms’roleinthisextremeenvironment,the characterizationanddescriptionofnewspeciesisvital.

©2018SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Correspondingauthor.

E-mail:jorge.olivares@pucv.cl(J.Olivares-Pacheco).

Introduction

Antarctica is arguably one of the planet’s harshest environments.1Intensecold,lowhumidity,alimited availabil-ityofliquidwater,aswellasperiodsofhighsolarradiation and extended total darkness, mean that the continent

https://doi.org/10.1016/j.bjm.2018.02.005

1517-8382/©2018SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

represents a relatively inhospitable environment for the development of the life.1 Nevertheless, Antarctica is now consideredtohostaveryhighdiversityofmicroorganisms, including bacteria, archaea, yeastsand microalgae.2,3 As a resultofintenseselectivepressuresthroughouttheir evolu-tionaryhistory,allofthesemicroorganismsarefullyadapted totheAntarcticconditions.4,5Theseadaptationsareofgreat interest to the biotechnology industry, since they harbor thepossibilityofobtainingbio-productsthatcouldbeused invarious processesofconservation atlowtemperatures.6 There is therefore an increasing need to investigate the diversityandtoexploitthepotentialofthemicroorganisms ofthecoldcontinent.

AbacterialgenusthathasappearedfrequentlyinAntarctic researchisPseudomonas.Oneofthe mostwell-studied bac-terial genera, it ispresent in most environments and can beconsidered oneof the mostsuccessful bacterialgroups onEarth.7 Pseudomonas’successismainlybased onitslow nutritionalrequirementsandgreatmetabolicdiversity,which allowsittousenumerousorganiccompoundsasasourceof bothcarbonandenergy.8,9Inaddition,thesebacteriaproduce alargeamountofsecondarymetabolites,whichareessential fortheirsurvivaland evenenablesomespeciestodegrade aromatic and halogenatedcompounds.10,11 Basedon these characteristics,thebacteriaofthegenusPseudomonas repre-sentaninterestingalternativeforproductionofdifferentand biotechnologicallyusefulmolecules.

Despite being extremely well-studied on a global level, little is known about the species diversity of the genus

Pseudomonas in Antarctica. To date, only eight species

havebeen describedon thiscontinent: Pseudomonas

antarc-tica,Pseudomonas meridiana,Pseudomonasproteolytica,12

Pseu-domonasguineae,13Pseudomonasextremaustralis,14Pseudomonas

deceptionensis,15 Pseudomonas prosekii16 and, most recently,

Pseudomonasgregormendelii.17 Inorder tofurtherour

under-standingofthisgenus’biogeographicdistribution,aswellas itsfunctionaspartoftheecosystemoftheextreme Antarc-ticenvironment, itisofutmostimportancetoidentifyand describenewAntarcticspeciesofPseudomonas.Withthisin mind,thepresentstudyaimstocarryoutaphylogeneticand phenotypic characterizationoffour bacterial isolates origi-natingfrom differentenvironments onKingGeorgeIsland, Antarctica. Specifically,we setthe followingspecific objec-tives:(1)anevaluationofthegrowthrateofdifferentstrains atdifferenttemperatures;(2)theamplificationand sequenc-ingofthe16SrRNAgene;(3)theamplificationandsequencing ofthegenesaroE,glnS,gyrB,ileSandrpoD,allofwhichwere analyzedbothindividuallyand,aftersequenceconcatenation, by Multilocus Sequence Analysis (MLSA), a robust, high-resolutiontechnique forthe identification ofnovel species andtheconfirmationofspeciesidentityofnewisolates18–20; and (4)a phenotypiccharacterization usingAPI20 NE and BIOLOG GN2. Basedon the both the phylogenetic analysis of16S-rRNA geneand the MLSAresults,as wellas onthe phenotypiccharacterization,weshowthatthefourisolates belongtothegenusPseudomonasandspecificallytotheP.

fluo-rescenscomplex,andthatthreeofthemmightrepresentnovel

species,whileonestraincouldbeclassifiedwithinthespecies

P.mandelii.

Materials

and

methods

Strainsandcultureconditions

Different Antarctic environments on King George island, South Shetland archipelago,were sampled inorder to iso-latespecificallybacteriamembersofthePseudomonasgenus. ThesesampleswerecollectedonAustralsummerseasonon January 2011. Samples ofseawater from the Fildes bay at 5mdepth (62◦1150.3 S; 58◦5450.3 W);freshwater from a summerlakeonFildespeninsula(62◦109.2S;58◦5529W); marinesedimentsfromFildesbay(62◦1328.8S;58◦5842.7 W)andsoilfromtheFildesPeninsula(62◦109.2S;58◦5529 W);weretakeninordertoisolatebacteriafromall environ-mentaldiversity.10Lofwatersampleswerefirstfilteredby a0.1mmfiltersandthenthesampleswereconcentratedina 0.2␮mfilter.Thisfilterwasthenresuspendedin3mLofsaline buffer (0.85%NaCl).5gofsedimentsandsoilsampleswere resuspended in5mLofsalinebuffer solution(0.85% NaCl). 100␮LofthesolutionwereplatedontoNutrientAgar(BDTM

DIFCOTM,NewJersey,NJ,USA)andincubatedat4,10,15and

25◦Cfor72h.Inordertoisolatebacteriaofthegenus

Pseu-domonas,allcolonieswerereplatedonPseudomonasIsolation

Agar(PIA)(SIGMA–Aldrich,LosÁngeles,CA,USA)and incu-batedat4,10,15and25◦Cfor72h.Allobtainedcolonieswere 16SrRNAgenesequenced.Themostabundantisolateofeach environmentwasselectedanddesignedasaparticularstrain. GrowthratesofallselectedstrainswereestimatedinLysogeny Broth(LB)(BDTM DIFCOTM,NewJersey,NJ,USA)at4,10,15,

25,30and37◦C.Alltestswereperformedin100mLflasksin 20mLmediumandatconstantagitationrateof240rpm,in duplicatesandonthreedifferentdays(makingforatotalof sixsamples).ThestrainP.fluorescensA506(ATCC® 31948TM)

servedasacontrolforthephenotypiccharacterization.

Amplificationofthe16SrRNAgeneandphylogenetic analysis

GenomicDNAwasextractedfromallstrainsusingthe Gene-JETGenomicDNAPurificationKit(ThermoFisherScientific, Waltham, MA, USA) following the manufacturer’s instruc-tions. The 16S rRNA gene was amplified by PCR using universalprimers27F(5-AGAGTTTGATCMTGGCTCAG-3)and 1492R(5-GGTTACCTTGTTACGACTT-3).AllPCRproductswere sequenced by Sanger method for five times (Forward and reverse).TheobtainedsequencesweredepositedinGenBank (NCBI)(TableS1).ThesequenceswerethenBLASTed21against the16SrRNAGenBankdatabase(NCBI).Sixty-one16SrRNA genesequencesofthegenusPseudomonaswereselectedfor the phylogeneticanalysis.The16SrRNAgeneofEscherichia colistrainMG1655K12wasusedasanoutgroup.Sequences ofallmembersofthegenusPseudomonaswereobtainedfrom the databaseonthe websitewww.pseudomonas.com22 and alignedusingClustalW(usingstandardparameters)as imple-mentedinthesoftwareMEGA7.0.14.23Gapsweretreatedwith the partialdeletionmethod. Amaximumlikelihood phylo-genetic treewas constructedusing theTamura-Nei model. Bootstrapvalueswerecalculatedbasedon1000replicas.

(3)

MLSA

MLSAwasperformedonsixhousekeepinggenes:16S-rRNA,

aroE (Shikimato 5-dehydrogenase), glnS (glutaminyl-tRNA transferase), gyrB (DNA gyrase subunit B), ileS (isoleucine-tRNAtransferase),andrpoD(RNApolymerasesigmafactor). PCRprimersweretakenfromAndreanietal.24Forallgenes, PCRconsisted ofan initialdenaturalization stepof10min at95◦C,followed by30cycles of45s at95◦C;45s at55◦C and 1minat72◦C,and afinal extensionstepof10minat 72◦C.All PCR productswere sequencedbySanger method forfivetimes(Forwardand reverse).Thepartialsequences obtained for the genes aroE, glnS, gyrB, ileS and rpoD of strainsIB20,12B3and6A1weredepositedinGenBank(NCBI) (TableS1).ThecorrespondingsequencesforstrainKG01were takenfromitswholegenomesequence,whichwehave pub-lishedpreviously.25Theobtainedsequenceswereindividually BLASTed21 againstGenBankinorder toidentifythe homo-logueswithgreatestsequenceidentity.Forthephylogenetic analysis,weconcatenated thepartialgenesequences after themultisequencealignmentinthefollowingorder:

16S-aroE-glnS-gyrB-ileS-rpoD, resulting in a single sequence. For the

samegenes,wetooktheorthologuesfrom51ofthespecies thataremostrepresentativeofthegenusPseudomonas,whose sequenceswereobtainedfrom thedatabaseonthewebsite

www.pseudomonas.com.22Asanoutgroup,weusedthe

con-catenateoftheorthologuesfromthestrainE.coliK12MG1655. Thephylogeneticanalysiswascarriedoutinthesamewayas forthe16SrRNAgene.

Phenotypiccharacterization

ThephenotypiccharacterizationoftheAntarcticisolatesIB20, 12B3,6A1 and KG01,aswell asofthe controlstrain P.

flu-orescensA506(ATCC®31948TM),wascarriedoutusingAPI20

NE(Biomerieux,L’Etoile,France)andBIOLOGGN2(BIOLOG®, Hayward,CA,USA).ForbothAPI20NEandBIOLOGassays, weusedpreviouslyisolatedcoloniesthathadbeengrownfor 24hat25◦C onLBagar plates(BDTM DIFCOTM,New Jersey,

NJ,USA).Thesecolonieswerere-suspendedinsalinesolution (0.85%NaCl)andinoculatedaccordingtothemanufacturer’s instructions.Oxidaseproductionwasdeterminedusing Oxi-daseReagentDroppers(Becton,DickinsonandCompany,New Jersey,NJ, USA)followingthemanufacturer’s specifications. Allphenotypicexperimentswereperformedintriplicateusing sixcoloniesinallrounds.

Results

SelectionofmostabundantPseudomonasisolatesbased on16SrRNAsequence

Atthefirst-roundselectioninnutrientagar,morethan6000 colonieswereobtainedinalltemperaturesused.Allcolonies werereplatedinPIAmediuminordertoselectonlymembers

ofthePseudomonasgenus.Only268coloniesgrowinPIAinall

temperaturesforallenvironments selected.These colonies were16SrRNAgenesequencedandthemostabundant iso-latesforenvironmentwere usedinthis work.Isolatefrom

Table1–Theoptimumgrowthtemperatureofthe Antarcticbacterialisolatesis25C.Thetableshowsthe doublingtimesofthefourAntarcticbacterialstrainsat differenttemperatures(N/G=nogrowth).

Doublingtime(min)+SD

4◦C 10◦C 15◦C 25◦C 30◦C 37◦C

IB20 341±38 118±21 65±6 43±8 75±11 N/G

12B3 412±46 132±16 77±4 56±6 89±11 N/G

6A1 381±26 158±18 69±8 49±9 78±8 N/G

KG01 376±31 141±22 72±10 48±5 92±6 N/G

seawaterwasnamedIB20;fromfreshwater12B3;frommarine

sediments6A1andfromsoilKG01.

TheAntarcticbacterialisolatesarepsychrotolerant,with

optimumgrowthat25C

In order to determine the optimum growth conditions for

theAntarcticisolates,weperformedgrowthexperimentsat

different temperatures. Growth curveanalysis and the

cal-culationofdoublingtimesclearlyshowedthattheoptimum

growth temperature is 25◦C for all of the Antarctic

iso-lates(Table1).Whilenogrowth couldbedetectedat37◦C,

all isolatesgrew well at 4◦C,as istypical of psychrotoler-antbacteria.26Theoptimumgrowthtemperatureof25Cis

sharedbyPseudomonasstrainsacrosslatitudes.Onthe Antarc-tic South Shetland Islands, however, this temperature has notbeenreachedforthepast25,000years,27suggestingthat members of the genus Pseudomonas might have colonized Antarcticabeforeitbecameapolarcontinent.

Phylogeneticanalysisbasedon16SrRNAgeneandMLSA

In order to determine the genus ofthe Antarctic bacterial isolates, we sequenced the 16S rRNA gene. The obtained sequences were deposited in GenBank(NCBI; Table S1). In afirststep,thesequenceswereBLASTedagainstNCBI’s16S rRNAGenBank.21ForisolatesIB20,12B3andKG01,sequence identitywithanyspeciescontainedinthedatabasewasbelow 97%,suggestingthat allthreeisolates couldrepresentnew bacterialspecies.28However,queryingthesequenceofstrain 6A1revealeda99.9%sequenceidentitywiththestrainP.

man-deliiJR-1,meaningthattheisolatemightinfactbelongtothat

species.Ontheotherhand,thephylogenetictree(Fig.1)shows all ofthese strainsas part oftheP. fluorescens lineage and withinthat,theP.fluorescenscomplex,oneofthemostdiverse andubiquitouslineagesofthegenus.29 Withregardstothe otherbacteriaofthegenusPseudomonasthathavebeen iso-latedinAntarctica,itcanbeseenthatbothstrainsofP.guineae

formalineage,whichisseparatefromtheonesthathavebeen described forP. aeruginosaandP.fluorescens.However,these resultsareinsufficienttodrawconclusions.

Inordertoexpandontheresultsofthe16SrRNAgene anal-ysis,wepartiallysequencedthefivehousekeepinggenesaroE,

glnS,gyrB,ileSandrpoD. Eachoneofthesegeneswas then

BLASTedagainsttheGenBanknucleotidedatabase(NCBI).21 Theresultsarelisted inTable2.Withtheexception ofthe strain6A1,wherefouroffivegenesshowextremelyhigh sim-ilarities(≤98%)demonstratingthatthis isthefirststrainof

(4)

P. exremorientalis KMM3447 P. tolaasii PMS117 P. simiae MEB105 P. fluorescens BRIP 34879 P. poae RE1114 P. trivialis IHBB745 P. orientalis CFML96-170 P. antarctica CMS35 P. meridiana CMS38 P. fluorescens BS2 P. fluorescens SBW25 P. extremaustralis 14-3 P. veronii CIP104663 P. marginalis ATCC10844 P. proteolytica CMS64 P. fluorescens LBUM223 P. fluorescens SS101 P. fluorescens A506 P. brassicacearum DF41 P. brassicacearum NFM421 P. frederiksbergensis SI8 P. libaniensis DSM17149 P. synxantha BG33R 93 12B3* IB20* KG 01* 6A1* P. mandelii JR1 P. lini DSM768 P. prosekii AN2801 P. gregormendelii CCM8506S P. protegens PF5 P. protegens CHA0

P. synringae pv. syringae B728a

P. syringae pv. tomato DC3000 100 P. syringae pv. actinidiae CFBP7286 P. deceptionensis DSM26521 P. putida KT2440 P. putida HB3267 P. putida GB-1 P. putida BIRD-1 P. putida F1 P. putida ND6 P. putida KG4 P. putida S16 P. putida W619 P. stutzeri DSM 10701 P. mendocina NK-01 P. mendocina ymp P. aeruginosa PA14 P. aeruginosa LESB58 P. aeruginosa ATCC 14886 P. aeruginosa M18 P. aeruginosa B136-33 P. aeruginosa PAO1 P. aeruginosa NCGM 1900 P. denitrificans ATCC 13867 P. entomophila L48 100 P. guineae M8 P. guineae X14 100 E. coli K12 MG1655 0.01 88 91 99 86 100 97 75 84 98 93 76 P . fluorescens comple x P . fluorescens lineage P . aer uginosa lineage

Fig.1–Maximum-likelihoodphylogenetictreebasedon

thepartial16SrRNAgenesequencesofmembersofthe

Pseudomonasgenus.The16SsequenceofE.coliK12was

usedasanoutgroup.Thetreeshowsallbacteriaofthe genusPseudomonasisolatedinAntarcticatodate(bold). Isolatespresentedinthisstudyareshowninboldand underlined.ItcanbeseenthatthemajorityoftheAntarctic bacteriaarepartoftheP.fluorescenslineage,withthe exceptionoftheP.guineaeisolates,whichseemtobepart ofaseparatelineage.

P.mandeliiisolatedinAntarctica;allthreestrainsshowedlow

similaritiesinatleastfourgenes(≥96%).Theseresultsconfirm thatIB20,12B3andKG01areseriouscandidatestobeclassify asanovelspeciesofthePseudomonasgenus.

Concatenatedsequenceanalysisindicatesthatthe Antarcticstrainscouldformanovelsub-groupofthe fluorescenscomplex

The sequences of the genes 16S, aroE, glns, gyrB, ileS and

rpoDwereconcatenatedtoformasinglesequenceof4150bp

Table2–Percentageidentityvaluesobtainedby BLASTingthefivehousekeepinggenesofthefour Antarcticisolates.Thelettersrepresentthedifferent speciesandstrainsofPseudomonas,towhichthe percentageidentityrefers.

aroE glnS gyrB ileS rpoD

IB20 ≤90%g,h,i ≤95%h,i,j ≤94%i,k,l ≤96%h,m,n ≤99%o,p,q

12B3 ≤91%g,h,i ≤96%h,i,j ≤95%i,s,t ≤96%h,m,n ≤99%o,p,q

6A1 ≤94%a,b,c ≤98%a,b,y ≤98%a,b,d ≤98%a,b,e ≤99%a,b,f

KG01 ≤88%m,u,v ≤94%w,p,q ≤94%i,x,w ≤96%i,h,n ≤99%p,q,w

a=P. mandelii JR-1, b=P. fluorescens NCIMB11764, c=P.

chloro-rapis subsp aurantiaca JD37, d=P. fluorescens PS1, e=P. mandelii

DSM17967T,f=P.fluorescensFW300-N2E3,g=P.fluorescensSBW25,

h=P.antarcticaPAMC27494,i=P.fluorescens LBUM636,j=P.

fluo-rescensUK4,k=P.reactansUSB131,l=P.reactansUSB20,m=P.trivialis

IHBB745,n=P.fluorescensKENGFT3,o=P.fluorescensA506,p=P.

fluo-rescensPICF7,q=P.fluorescensPCL1751,r=P.fluorescensNCIMB11764,

s=P.yamanorum8H1,t=P.putidaMG2010,u=P.fluorescensL111,v=P.

fluorescens L321, w=P. azotoformansS4,x=P. reactansUSB94 y=P.

koreensisD26.

andcomparedagainstaconcatenateoforthologousgenesof

thegenusPseudomonas.Aconcatenateofthesamegenesof

E.colistrainK12MG1655wasusedasanoutgroup.Sequences

werealigned,andaphylogenetictreewasconstructedusing

the maximumlikelihood modelwith1000bootstraps

repli-cas(Fig.2).ThetwomajorlineagesofthegenusPseudomonas,

thatofP.fluorescensandthatofP.aeruginosa,canbeclearly

distinguishedfromoneanother.Likewise,withintheP.

fluo-rescenslineage,threesubgroupscanbeclearlydistinguished;

theserepresenttheP.fluorescenscomplex,theP.syringaegroup

andtheP.putidagroup.ItcanbeseenthatallAntarctic

bac-teriaofthegenusPseudomonasdescribedtodate(inbold)are

partoftheP.fluorescenscomplex.TogetherwithP. antarctica

PAMC27494andP. extremaustralis14-3,thestrainsdescribed here appearto forma newsubgroupwithinthis complex, which wehavecalledthe P.antarctica subgroup.Thestrain 6A1,ontheotherhand,formsaclusterwithP.mandeliiJR-1, confirming that it belongs to that particular species. Like-wise,P.deceptionensis,thoughpartoftheP.fluorescenscomplex, belongstoanother,asyetundescribed,subgroup.

Phenotypicanalysis

The resultsofthe MLSAanalysishad already classified all strainsaspartoftheP.fluorescenscomplex.Toconfirmthis, acomprehensivephenotypicanalysisoftheAntarcticstrains was carried out using BIOLOG GN2 and API 20 NE. The phenotypic analysesaresummarized inTable3. Itis note-worthythatAPI20NEanalysesclassifiedallisolateswithin thespeciesP.fluorescens.Itis,however,knownthatthe res-olution of this technique is not particularly high, since it classifiesmostmembersoftheP.fluorescenscomplexwithin thisspecies.29BIOLOGanalysesyieldedsignificantdifferences betweenthe Antarcticisolatesandthe controlstrainP.

flu-orescensA506(ATCC® 31948TM).Basedon thesedifferences,

threeofthefournewisolatescanbeconsidered good can-didatesfornewspecies.Thefollowingspecificfindings are worth mentioning.Thestrain KG01isthe onlyoneunable toassimilated-mannose,l-proline,putrescine,pyruvicacid

(5)

Pseudomonas sp. 12B3 Pseudomonas sp. IB20 Pseudomonas sp. KG 01 Pseudomonas sp. 6A1 100 P. extremaustralis 14-3 P. antarctica PAMC 27494 100 P. tolaasii PMS117 P. simiae MEB105 P. trivialis IHBB745 P. fluorescens SBW25 P. fluorescens BRIP34879 P. poae RE*1-14 P. fluorescens BS2 P. fluorescens A506 P. lini DSM768 P. fluorescens LBUM223 P. Libaniensis DSM17149 P. orientalis CFML96-170 P. frederiksbergensis SI8 P. mandelii JR1 R P. brassicacearum DF41 P. brassicacearum NFM421 P. protegens CHA0 P. protegens Pf-5

P. syringae pv. syringae B728a

P. syringae pv. actinidiae CFBP7286 P. syringae pv.tomato str. DC3000 P. putida W619 P. putida KT2440 P. putida HB3267 P. putida S16 P. putida KG4 P. putida GB-1 P. putida F1 P. putida BIRD-1 P. putida ND6 P. entomophila L48 P. stutzeri DSM 10701 P. mendocina NK-01 P. mendocina ymp P. denitrificans ATCC 13867 P. aeruginosa RP73 P. aeruginosa B136-33 P. aeruginosa PA14 P. aeruginosa M18 P. aeruginosa PAO1 P. aeruginosa ATCC 14886 P. aeruginosa LESB58 P. aeruginosa NCGM 1900 E. coli K12 MG1655 100 100 100 77 99 99 77 100 98100 93 100 96 100100 99 100 100 100 100 99 100 98 P. antarctica subgroup p. fluorescens subgroup P . fluorescens comple x P . fluorescens lineage P. madelii subgroup P. corrugata subgroup P. protegens subgroup P . syr ingae g roup P . putida g roup P . aer u ginosa lineage 0.01 P. deceptionensis DSM26521 79

Fig.2–Maximum-likelihoodphylogenetictreebasedon

theconcatenatedsequencesofthegenes

16S-aroE-glnS-gyrB-ileS-rpoD,showingtheevolutionary

relationshipamongselectedmembersofthePseudomonas

genus.ThebacteriaisolatedinAntarcticaareshownin bold,andisolatespresentedinthisstudyareshowninbold andunderlined.ThetreeclearlyshowsthelineagesofP.

aeruginosaandP.fluorescens.Likewise,theP.fluorescens

complexanditssubgroupscanbeclearlydistinguished.All AntarcticPseudomonascanbeclassifiedwithintheP.

fluorescenscomplex.Amongthem,P.deceptionentisseems

toformaseparatesubgroup,andtheisolatePseudomonas

sp.6A1appearsinabranchoftheP.mandeliisubgroup. TogetherwiththespeciesP.antarcticaandP.

extramaustralis,theisolatesPseudomonassp.IB20,

Pseudomonassp.12B3andPseudomonassp.KG01formthe

newsubgroupP.antarctica.

methyl ester, l-serine, and d,l-␣-glycerol phosphate, while being theonly strainable to assimilate adipicacid and p-hydroxyphenylaceticacid.IB20isthe onlystrainunable to assimilated-arabitolandpropionicacid;however,itistheonly oneabletoassimilatel-phenylalanine(weakly),formicacid (weakly)andl-alaninamide.12B3istheonlystrainunableto

assimilate malonicacid,urocanicacid and inosine.Finally, the strain 6A1 is the only one capable of assimilating N-acetyl-d-glucosamine,d-serine(weakly)anddextrin(weakly), whilebeingunabletoassimilateadonitol,d-galacturonicacid, d-glucuronic acid and l-ornithine. Additionally, this strain is unable to hydrolyze l-arginine and gelatin, thereby dif-fering significantly from the other strains studied. Finally, all fourAntarctic strainsareable toassimilated-trehalose, d-galactonic acid lactone, glycyl-l glutamic acid and d,l-carnitine,whilethecontrol,P.fluorescensA506(ATCC31948®

TM),oneofthemostrepresentativestrainsoftheP.fluorescens

complex,isnot.Nevertheless,inthegreatmajorityof phe-notypictests,theresultsfortheAntarcticstrainsaresimilar tothoseforthecontrol,includingtheinabilitytoassimilate nitrate,therebycorroboratingthattheAntarcticisolatesare

partoftheP.fluorescenscomplex.

Discussion

Inthepresentstudy,wedescribefourdifferentAntarctic iso-lates,which weclassified aspartofthegenusPseudomonas

using both molecular and phenotypic strategies. 16S rRNA geneanalysis,MLSAandphenotypictestsusingBIOLOGand API20NEallsuggestthattheAntarcticisolatesPseudomonas

sp.KG01,Pseudomonassp.IB20andPseudomonassp.12B3are serious candidatestoclassifyasnewspeciesofthe genus. Likewise,wedeterminedthattheisolatePseudomonassp.6A1 isthefirst strainofthe speciesP.mandeliitobeisolatedin Antarctica.

TherehasbeenlittleresearchonthegenusPseudomonas

ontheAntarcticcontinent,andonlyeightspecieshavebeen described in the past 20 years. Recent research has thor-oughlyrevisedthetaxonomyandclassificationofthegenus

Pseudomonas,29 dividingitintotwomajorlineages:thatofP.

aeruginosa, which includes almost exclusively bacteria

iso-lated fromclinicalsettings,andthatofP.fluorescens,which containsmostofthegenus’environmentalbacteria, includ-ing thespeciesP.putidaandP.syringae,bothofwhichhave beenwidelystudied.Oneofthemostdiversegroupswithin thislineageiscalledthe“P.fluorescenscomplex”.Ithasbeen furthersubdividedintoninesubgroups,P.protegens,P.

chloro-raphis,P. corrugata,P. koreensis,P. jessenii,P.mandelii, P. fragi,

P.gessardiiandP.fluorescens.29AllAntarcticstrainsstudiedto

datehavebeenclassifiedwithinthiscomplex.Thisisinline withourfindings forthethreecandidatesfornewspecies,

Pseudomonassp.KG01,Pseudomonassp.IB20andPseudomonas

sp. 12B3.Likewise, the isolate Pseudomonas sp.6A1, classi-fiedinthisstudy asastrainofthespeciesP. mandelii,also formspartofthiscomplex.Anoriginalcontributionofour work is that with these three potentially new species, we have identified a novel subgroup, which we have calledP.

antarctica,since it alsoincorporatesthe strains P. antarctica

PAMC27494andP.extremaustralis14-3.Thesewerepreviously considered to be part of the subgroup P. fluorescens.12 The hugely diverse P. fluorescens complex has a wide environ-mentaldistribution, and duetotheir versatilemetabolism, mostofitsmembersplaykeyrolesattheecologicallevel.30,31 It is worth mentioning that some of the species of the P.

(6)

Table3–PhenotypiccharacterizationoftheAntarcticbacterialisolates.Thephenotypiccharacterizationwasperformed usingBIOLOGGN2andAPI20NE.+=positivetest,=negativetest,W=weakreaction,a=API20NE,b=BIOLOG,*=P. fluorescensA506(ATCC® 31948TM).

Test(Activeingredients) Detail KG01 IB20 6A1 12B3 P.fluorescens*

d-mannosea,b Assimilation − + + + +

l-Prolineb Assimilation − + + + +

l-Serineb Assimilation − + + + +

Putrescineb Assimilation + + + W

PyruvicAcidMethylEsterb Assimilation + + + W

d,l-␣-GlycerolPhosphateb Assimilation − + W + −

d-Arabitolb Assimilation + − + + +

PropionicAcidb Assimilation + W + +

Adonitolb Assimilation + + +

d-GalacturonicAcidb Assimilation + + +

-d-GlucuronicAcidb Assimilation + + +

-l-Ornithineb Assimilation W + − +

-Gelatine,bovineorigena Hydrolysis + + +

-MalonicAcidb Assimilation + W + +

UrocanicAcidb Assimilation + + + +

Inosineb Assimilation + + + +

Adipicacida Assimilation +

p-HydroxyPhenylaceticAcidb Assimilation + +

l-Alaninamideb Assimilation − + − − −

l-Phenylalanineb Assimilation − W − − −

FormicAcidb Assimilation W

N-Acetyl-Dglucosamineb Assimilation + +

d-Serineb Assimilation − − W − −

Dextrin Assimilation − − W − −

d-Trehaloseb Assimilation + + + + −

d-GalactonicAcidLactoneb Assimilation + + + +

Glycyl-LglutamicAcidb Assimilation W + + +

d,L-Carnitineb Assimilation + W + + −

SuccinicAcidMono-Methyl-Esterb Assimilation + +

SuccinamicAcidb Assimilation + +

Glucuronamideb Assimilation + +

Glycyl-LasparticAcidb Assimilation + W

i-Erythritolb Assimilation + W Xylitolb Assimilation W + Thymidineb Assimilation + + 2-Aminoethanolb Assimilation + + W Tween40b Assimilation + + + + L-Leucineb Assimilation + W + W d-Fructoseb Assimilation − W + + + l-Threonineb Assimilation − + W − −

Hydroxy-lProlineb Assimilation W + +

Uridineb Assimilation W + +

d-Sorbitolb Assimilation + − − + −

producing secondarymetabolites, including antibioticsand

fungicides,whichhelpprotectplantsfrominfectionsbyfungi

andpathogenicbacteria.32,33Inaddition,ithasbeenreported

thatcertainsubgroupsofthiscomplexcanactinthe biore-mediation of heavy metals and pesticides.34 Furthermore, several members of the complex play a vital role in the carboncycle.30 Ithasbeensuggestedthatthe useof mem-bersofthesubgroupP.fluorescensasplantgrowth-promoting rhizobacteria(PGPR)inplantsofagronomicalinterestcould reduce CO2 emissions, thereby mitigating global warming

andtheresultingclimatechange.35Onthisbackground,the biotechnological potential of the three candidates for new species is obvious. Future studies are needed to analyze theirpossible use asplantgrowth-promoting rhizobacteria (PGPR), as well as their use in biocontrol and bioremedia-tion.

Itisworthnotingthatthefourisolateswerecollectedfrom differentenvironments,includingseawater,marinesediment and freshwater, suggesting that the P. fluorescens complex mighthaveanotablecapacityofcolonizationofdiverse envi-ronmentsintheAntarcticcontinent.Thisdoesnotseemto beuncommoninextremeenvironments,and astudy from the Himalayas, another environment ofextreme cold,also reportedthe P.fluorescenscomplextobehighlyrepresented within the genus Pseudomonas.36 Of 336 specimens of the genusPseudomonas,308isolatesbelongedtothiscomplex.Of note,thetemperaturesofthesamplingsitesrangedfrom2to 11◦CintheHimalayas,thusconfirmingthatmembersofthis complexaretolerantofthecold.Futurestudiesexamininga largenumberofAntarcticisolatesareneededtodeterminethe abundanceofthiscomplexontheAntarcticcontinentandto elucidatetheecologicalroleplayedbythesebacteria.

(7)

Duetothehighvolumeofwholegenomesequencingdata andmetagenomicanalyses,thedescriptionofnewbacterial speciesisturningincreasinglymorecomplex.MLSAisarobust techniquetodeterminewhetheraparticularisolatebelongs toapreviouslydescribedspecies,orwhetheritrepresentsa newspecies.Several studies haveshown thatthe study of concatenatedsequences ofcarefully selectedhousekeeping genesisapowerfulandreliabletooltoidentifynewspecies withinagenus.37,38Here,wesuggestthat,inadditionto 16S-rRNA,the genesaroE, gyrB,ileS,glnS and rpoDare idealfor useinMLSAinthegenusPseudomonas,sincetheycombine allnecessaryfeatures:theyare“housekeeping”genes,theyare protein-coding,andtheyarenottransmittedhorizontally.37,39 AlthoughpreviousstudieshavesuggestedthatthegeneileS

isnotagoodcandidatetobeusedinMLSA,40 inthisstudy, itprovedtobehighlyefficient.Ontheotherhand,thegene

rpoBiscommonlyusedinMLSA;29,41–44however,despitetrying severalsetsofprimers,wefailedtoobtainauniqueproduct suitableforsequencingfromourAntarcticbacterialisolates. Thegenewasthereforeexcludedfromtheanalyses.Oneofthe strengthsofourworkisthatweperformedMLSAona concate-nateofsixgenes(16S,aroE,gyrS,glnS,ileSandrpoD),asopposed tothethreeorfourgenesusedinmoststudiescharacterizing membersofthegenusPseudomonas.Thisresultedina signif-icantlymorerobustanalysis.Withoutdoubt,oneofthemain problemsofthisstudylayintheshortageofavailable

Antarc-tic Pseudomonas sequences. Sequences for all genes (aroE,

glnS,gyrB,ileSandrpoD)wereonlyavailableforthestrainsP.

antarcticaPAMC27494,P.extremaustralis14-3andP.

deceptionen-sisDSM26521.ThephylogenetictreeobtainedthroughMLSA couldthereforebefurthercomplementedwhenthesequences ofother species becomeavailablein the database. For the 16SrRNAgene,however,sequencesfromallAntarcticspecies wereavailable.

Molecular identification by MLSA has proven to be an effective tool to determine whether a bacterial isolate belongs to a particular species. However, in addition to phylogenetic,phenotypic or serologicalanalyses, the most recommended method to discriminate between bacterial species,and tocharacterizenewbacterial species,is DNA-DNA hybridization.45 This method does, however, have limitations:it takes long to develop and relies on special-izedexpertise,it doesnotdefine thephylogenetic distance betweenspecies,anditisnotcumulative.42Afastandrobust method ofclassification forthe genotypic characterization basedonthesequencesofprotein-codinggenes,MLSAhas allowedresearcherstoclassifyadiverseandpreviously unde-scribed group ofprokaryotesobtained from metagenomics analyses,manyofwhichcannotbecultured.28,42Ithas there-foreevenbeenarguedthatDNA-DNAhybridizationanalysis may no longer be necessary for the description ofa new species.42,43,46

Inconclusion,ourresultsstronglysuggestthatthe Antarc-ticisolatesPseudomonassp.KG01,Pseudomonassp.IB20and

Pseudomonassp.12B3are candidatesfornewspeciesofthe

genusPseudomonas,thatallofthembelongtotheP.fluorescens

complex,andthat,togetherwiththeAntarcticstrainsP. antarc-ticaPAMC27494andP.extremaustralis14-3,theyformpartofthe newsubgroup“P.antarctica”.Futurestudiesincluding metage-nomicsstudies,are neededtodeterminetheabundanceof

membersofthegenusPseudomonasinAntarcticaandto elu-cidatetheirpossibleecologicalroleonthecoldcontinent.

Funding

Thiswork wassupportedbytheDirección deInvestigaciónof thePontificia UniversidadCatólica deValparaíso[ProjectDI 037.431/2015],byanINACHPhDscholarship[DT02-13],andby

theProgramadeInvestigaciónAsociativa[PIUAs-PUCV

037.293-2015].

Conflicts

of

interest

Theauthorsdeclarethattheyhavenoconflictofinterest.

Acknowledgments

WewouldliketothankDr.MarceloGonzálezoftheChilean AntarcticInstitute(INACH)forprovidingtheAntarctic bacte-rialisolates.

Appendix

A.

Supplementary

data

Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,atdoi:10.1016/j.bjm.2018.02.005.

r

e

f

e

r

e

n

c

e

s

1.CowanDA,TowLA.EndangeredAntarcticenvironments.

AnnuRevMicrobiol.2004;58:649–690.

2.SmithJ,TowL,StaffordW,CaryC,CowanD.Bacterial

diversityinthreedifferentAntarcticcolddesertmineral

soils.MicrobEcol.2006;51(4):413–421.

3.TytgatB,VerleyenE,ObbelsD,etal.Bacterialdiversity

assessmentinAntarcticterrestrialandaquaticmicrobial

mats:acomparisonbetweenbidirectionalpyrosequencing

andcultivation.PLOSONE.2014;9(6):e97564.

4.LoperenaL,SoriaV,VarelaH,etal.Extracellularenzymes

producedbymicroorganismsisolatedfrommaritime

Antarctica.WorldJMicrobiolBiotechnol.2012;28(5):2249–2256.

5.CavicchioliR.MicrobialecologyofAntarcticaquaticsystems.

NatRevMicrobiol.2015;13(11):691–706.

6.Martínez-RosalesC,FullanaN,MustoH,Castro-SowinskiS.

AntarcticDNAmovingforward:genomicplasticityand

biotechnologicalpotential.FEMSMicrobiolLett.

2012;331(1):1–9.

7.AnzaiY,KimH,ParkJY,WakabayashiH,OyaizuH.

Phylogeneticaffiliationofthepseudomonadsbasedon16S

rRNAsequence.IntJSystEvolMicrobiol.2000;50Pt

4(4):1563–1589.

8.RojoF.CarboncataboliterepressioninPseudomonas:

optimizingmetabolicversatilityandinteractionswiththe

environment.FEMSMicrobiolRev.2010;34(5):658–684.

9.PalleroniNJ.ThePseudomonasstory.EnvironMicrobiol.

2010;12(6),1377-1383.10.

10.PuchałkaJ,OberhardtMA,GodinhoM,etal.Genome-scale

reconstructionandanalysisofthePseudomonasputida

KT2440metabolicnetworkfacilitatesapplicationsin

(8)

11.SpiersAJ,BucklingA,RaineyPB.ThecausesofPseudomonas

diversity.Microbiology.2000:2345–2350.

12.ReddyGSN,MatsumotoGI,SchumannP,StackerbrandtE,

ShivajiS.PsychrophilicpseudomonadsfromAntarctica:

Pseudomonasantarticasp.nov.,Pseudomonasmeridianasp.nov. andPseudomonasproteolyticasp.nov.IntJSystEvolMicrobiol.

2004;54(3):713–719.

13.BozalN,MontesMJ,MercadéE.Pseudomonasguineaesp.nov.,

anovelpsychrotolerantbacteriumfromanAntarctic

environment.IntJSystEvolMicrobiol.2007;57(11):2609–2612.

14.LópezN,PettinariMJ,StackebrandtE,etal.Pseudomonas

extremaustralissp.nov.,apoly(3-hydroxybutyrate)producer

isolatedfromanAntarcticenvironment.CurrMicrobiol.

2009;59(5):514–519.

15.CarriónO,Mi ˜nana-GalbisD,MontesMJ,MercadéE.

Pseudomonasdeceptionensissp.nov.,apsychrotolerant

bacteriumfromtheAntarctic.IntJSystEvolMicrobiol.

2011;61(Pt10):2401–2405.

16.KosinaM,BartákM,Maˇsla ˇnováI,etal.Pseudomonasprosekii

sp.nov.,anovelpsychrotrophicbacteriumfromAntarctica.

CurrMicrobiol.2013;67(6):637–646.

17.KosinaM, ˇSvecP, ˇCernohlávkováJ,etal.Descriptionof

Pseudomonasgregormendeliisp.nov.,anovelpsychrotrophic

bacteriumfromJamesRossIsland,Antarctica.CurrMicrobiol.

2016;73(1):84–90.

18.SchleiferKH.Classificationofbacteriaandarchaea:past,

presentandfuture.SystApplMicrobiol.2009;32(8):533–542.

19.SchleiferK-H,AmannR,Rosselló-MóraR.Taxonomyinthe

ageofgenomics.Introduction.SystApplMicrobiol.

2015;38(4):207–208.

20.TindallBJ,Rosselló-MóraR,BusseH-J,LudwigW,KämpferP.

Notesonthecharacterizationofprokaryotestrainsfor

taxonomicpurposes.IntJSystEvolMicrobiol.2010;60(Pt

1):249–266.

21.AltschulSF,GishW,MillerW,MyersEW,LipmanDJ.Basic

localalignmentsearchtool.JMolBiol.1990;215(3):403–410.

22.WinsorGL,LamDKW,FlemingL,etal.Pseudomonas

GenomeDatabase:improvedcomparativeanalysisand

populationgenomicscapabilityforPseudomonasgenomes.

NucleicAcidsRes.2011;39(suppl1):D596–D600.

23.KumarS,StecherG,TamuraK.MEGA7:Molecular EvolutionaryGeneticsAnalysisVersion7.0forBigger Datasets.

24.AndreaniNA,MartinoME,FasolatoL,etal.Trackingtheblue:

aMLSTapproachtocharacterisethePseudomonasfluorescens

group.FoodMicrobiol.2014;39:116–126.

25.PavlovMS,LiraF,MartínezJL,OlivaresJ,MarshallSH.Draft

genomesequenceofAntarcticPseudomonasspStrainKG01

withfullpotentialforbiotechnologicalapplications.Genome

Announc.2015;3(4.).

26.BölterM.Ecophysiologyofpsychrophilicand

psychrotolerantmicroorganisms.CellMolBiol

(Noisy-le-grand).2004;50(5):563–573.

27.KejnaM.AirtemperatureonKingGeorgeIsland,South

ShetlandIslands,Antarctica.PolPolarRes.1999;20(3):183–201.

28.GeversD,CohanFM,LawrenceJG,etal.Opinion:

re-evaluatingprokaryoticspecies.NatRevMicrobiol.

2005;3(9):733–739.

29.Garrido-SanzD,Meier-KolthoffJP,GökerM,etal.Genomic

andgeneticdiversitywithinthePseudomonasfluorescens

ComplexVinatzerBA,ed.PLOSONE.2016;11(2):e0150183.

30.RemoldSK,Purdy-GibsonME,FranceMT,HundleyTC.

PseudomonasputidaandPseudomonasfluorescensspecies

grouprecoveryfromhumanhomesvariesseasonallyandby

environment.PLOSONE.2015;10(5):

e0127704.

31.LiuX,EcarnotM,KontroMH.Thephysicochemical

conditionsofisolationsourcedeterminetheoccurrenceof

Pseudomonasfluorescensgroupspecies.AnnMicrobiol.

2015;65(4):2363–2377.

32.GrossH,LoperJE.Genomicsofsecondarymetabolite

productionbyPseudomonasspp.NatProdRep.

2009;26(11):1408–1446.

33.WellerDM,LandaBB,MavrodiOV,etal.Roleof

2,4-diacetylphloroglucinol-producingfluorescent

Pseudomonasspp.inthedefenseofplantroots.PlantBiol.

2007;9(1):4–20.

34.WasiS,TabrezS,AhmadM.UseofPseudomonasspp.forthe

bioremediationofenvironmentalpollutants:areview.

EnvironMonitAssess.2013;185(10):8147–8155.

35.NieM,BellC,WallensteinMD,PendallE.Increasedplant

productivityanddecreasedmicrobialrespiratoryClossby

plantgrowth-promotingrhizobacteriaunderelevatedCO2.

SciRep.2015;5:9212.

36.NegiYK,PrabhaD,GargSK,KumarJ.Geneticdiversity

amongcold-tolerantfluorescentPseudomonasisolatesfrom

IndianHimalayasandtheircharacterizationforbiocontrol

andplantgrowth-promotingactivities.JPlantGrowthRegul.

2010;30(2):128–143.

37.KonstantinidisKT,TiedjeJM.Towardsagenome-based

taxonomyforprokaryotes.JBacteriol.2005;187(18):

6258–6260.

38.MartensM,DawyndtP,CoopmanR,GillisM,DeVosP,

WillemsA.Advantagesofmultilocussequenceanalysisfor

taxonomicstudies:acasestudyusing10housekeeping

genesinthegenusEnsifer(includingformerSinorhizobium).

IntJSystEvolMicrobiol.2008;58(Pt1):200–214.

39.MuletM,LalucatJ,García-ValdésE.DNAsequence-based

analysisofthePseudomonasspecies.EnvironMicrobiol.

2010;12(6):1513–1530.

40.AndreaniNA,MartinoME,FasolatoL,etal.Trackingtheblue:

a{MLST}approachtocharacterisethePseudomonas fluorescensgroup.FoodMicrobiol.2014;39:116–126.

41.GomilaM,Pe ˜naA,MuletM,LalucatJ,García-ValdésE.

PhylogenomicsandsystematicsinPseudomonas.Front

Microbiol.2015;6:214.

42.BennasarA,MuletM,LalucatJ,García-ValdésE.

Pseudo-MLSA:adatabaseformultigenicsequenceanalysis

ofPseudomonasspecies.BMCMicrobiol.2010;10:118.

43.GlaeserSP,KämpferP.Multilocussequenceanalysis(MLSA)

inprokaryotictaxonomy.SystApplMicrobiol.

2015;38(4):237–245.

44.Alvarez-PérezS,deVegaC,HerreraCM.Multilocussequence

analysisofnectarpseudomonadsrevealshighgenetic

diversityandcontrastingrecombinationpatterns.PLOSONE.

2013;8(10):e75797.

45.StackebrandtE,FrederiksenW,GarrityGM,etal.Reportof

thead-hoccommitteeforthere-evaluationofthespecies

definitioninbacteriology.IntJSystEvolMicrobiol.2002;52(Pt

3):1043–1050.

46.GeversD,CoenyeT.Phylogeneticandgenomicanalysis.Man

Referências

Documentos relacionados

Plant Remains of the Dufayel Island Group (Early Tertiary?), King George Island, South Shetland Islands (West Antarctic)... Late Cretaceous-Early Tertiary floras of King

keywords Digital images analysis, feature extraction, image segmentation, classifica- tion, content-based image retrieval, similar images, image histogram, edge detection

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

Despercebido: não visto, não notado, não observado, ignorado.. Não me passou despercebido

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

Na hepatite B, as enzimas hepáticas têm valores menores tanto para quem toma quanto para os que não tomam café comparados ao vírus C, porém os dados foram estatisticamente

Para Cohn (1997), trata-se de ajudar o cliente a libertar-se das conse- quências perturbadoras da negação e evasão no seu confronto com os dados da existência, acedendo a uma forma

Analisar a relação entre ambiente da prática de enfermagem e os resultados assistenciais, a segurança dos pacientes e o Burnout entre profissionais em unidades