• Nenhum resultado encontrado

Automatic localization of the optic disc

N/A
N/A
Protected

Academic year: 2018

Share "Automatic localization of the optic disc"

Copied!
9
0
0

Texto

(1)

ComputerizedMedicalImagingandGraphics37 (2013) 409–417

ContentslistsavailableatScienceDirect

Computerized

Medical

Imaging

and

Graphics

j ou rn a l h om ep a ge :w w w . e l s e v i e r . c o m / l o c a t e / c o m p m e d i m a g

Automatic

localization

of

the

optic

disc

by

combining

vascular

and

intensity

information

Ana

Maria

Mendonc¸

a

a,b,∗

,

António

Sousa

a,c

,

Luís

Mendonc¸

a

d

,

Aurélio

Campilho

a,b aINEBInstitutodeEngenhariaBiomédica,UniversidadedoPorto,Porto,Portugal

bFEUPFaculdadedeEngenharia,UniversidadedoPorto,Porto,Portugal

cISEPInstitutoSuperiordeEngenharia,InstitutoPolitécnicodoPorto,Porto,Portugal dServic¸odeOftalmologiaHospitaldeBraga,Braga,Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received7December2012

Receivedinrevisedform19April2013 Accepted25April2013

Keywords:

Retinalimageanalysis Opticdisclocalization Retinalvesselsegmentation Entropy

a

b

s

t

r

a

c

t

Thispaperdescribesanewmethodologyforautomaticlocationoftheopticdiscinretinalimages,basedon thecombinationofinformationtakenfromthebloodvesselnetworkwithintensitydata.Thedistribution ofvesselorientationsaroundanimagepointisquantifiedusingthenewconceptofentropyofvascular directions.TherobustnessofthemethodforODlocalizationisimprovedbyconstrainingthesearchfor maximalvaluesofentropytoimageareaswithhighintensities.Themethodwasabletoobtainavalid locationfortheopticdiscin1357outofthe1361imagesofthefourdatasets.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Theopticdisc(OD)isoneofthemajorlandmarksthatstand outfromtheobservationofahumanretina.ODlocalizationis fre-quentlyrequiredfortheimplementationofimageanalysis-based solutionsfortheassessmentandfollow-upofseveraleye condi-tions.DetectionoftheODisrelevantinglaucomatouseyesasthis disorderaffectstheshapeandappearanceofthedisc,butitcanalso beusefulfordifferentiatingfromwhitelesionsrelatedtodiabetic retinopathy,orfromdrusenassociatedwithage-relatedmacular degeneration[1].KnowledgeaboutODpositionisalsorequiredfor automatingthedeterminationofdiagnosticindexesfor hyperten-siveretinopathy,suchastheArteriolar-to-Venulardiameterratio (AVR)[2].

TheODistheentrypointofthenervousand bloodsystems intotheretinaandisoftenthebrightestregioninafundusimage. These two distinctive features have been the major strategies forautomatingthelocalizationanddetectionoftheODreported intheliterature.Approachesthatrely onfeatures derivedfrom colorincludetheuseofmaximalintensity,maximalvariance,or theevaluationofimagevariationalongspecificdirections[3–6], template-matching[7,8],Houghtransform[4,10]anddeformable

Correspondingauthorat:INEB,CampusdaFEUP,RuaDr.RobertoFrias,s/n,

4200-465Porto,Portugal.Tel.:+351225081859.

E-mailaddresses:amendon@fe.up.pt(A.M.Mendonc¸a),asousa@eu.ipp.pt (A.Sousa),luismendonc@gmail.com(L.Mendonc¸a),campilho@fe.up.pt (A.Campilho).

models[8,9].Severalauthorshaveproposedmethodsthatusethe bloodvesselnetworkasastartingpointforODdetection[11–15]. Solutionscombiningthesimultaneousdetectionofseveralretinal structuresaredescribedin[16,17].

Thispaperdescribesamethodforautomatingthelocalization oftheODincoloreyefundusimages,bycombininginformation extractedfromthevascularnetworkwithintensitydataobtained fromthered(R)andgreen(G)channelsoftheRGBrepresentation. Thedistributionandvariabilityofvesselsaroundeachimagepoint areestimatedusingtheconceptofentropyofvasculardirections, whichassociateshighvaluesofthismeasurewiththeoccurrenceof alargenumberofvesselswithmultipleorientations.This informa-tionisthencombinedwiththehighestimageintensities,withthe goaloflocalizingpixelswherebothentropyandintensityare maxi-mized.Thehereinproposedapproachisanimprovedandextended versionofthemethodpreviously presentedbytheauthorsofa conferencepaperin[18].Themajordifferencesbetweenthetwo solutionsare:theinitialcalculationoftheentropyofvascular direc-tionsusinga lowresolutionimage;theuseoftheentropymap forevaluatingthequalityofthevascularsegmentationand decid-ingonthecriteriaforestimatingthelocalizationofthedisc;and theinclusionofapost-processingstepforobtainingthefinalOD position.

The paper is organized as follows. Section 2 describes the methodologythatwasdevelopedforautomatingthelocalization of thedisc.Theresultsobtainedusingthe imagesof four pub-liclyavailabledatabases,DRIVE[19],STARE[20],MESSIDOR[21], andINSPIRE-AVR[22],arereportedinSection3.Finally,Section4

presentssomeconclusions.

(2)

410 A.M.Mendonc¸aetal./ComputerizedMedicalImagingandGraphics37 (2013) 409–417

Fig.1. Originalimages(left),segmentedvascularnetworks(middle),andentropymaps(right).

2. Methodologyforopticdisclocalization

2.1. Overviewofthemethodology

ThefirstphaseofthemethodistheestimationofaninitialOD positionthroughtheapplicationofthealgorithmdescribedin[18]

toalowresolutionversionoftheoriginalimage.Inthismethod theentropyofvasculardirectionsisusedforquantifyingboththe occurrenceandthediversityofvesselorientationsaroundapixel. Afterthesegmentationofthevascularnetwork,amapwiththe entropyofvasculardirectionsiscalculatedforthefundusimage. AnintensitymaprepresentingtheEuclideandistanceofthered (R)andgreen(G)componentstotheoriginoftheRGBcolor coor-dinatesisgeneratedfromthecolorimageoftheretina;thismap isafterwardssegmentedtoretainjustthepixelswiththelargest distancevalues,whicharefurtheranalyzedtogeneratearestricted setofhighintensityODcandidates.TheinitialODlocationisthe candidatewherethemaximumvalueofentropyoccurs.

Thesecondphaseofthealgorithm,whichisnewintheherein proposedsolution,iseitheravalidationorarecalculationofthe discposition.Whenvalues ofentropyarelow,andinparticular theabsolutemaximumofentropyortheentropyintheestimated ODlocation,thequalityofthevascularsegmentationisnotreliable andanewestimatefordiscpositionissearchedforusingmainly intensitycriteria.Forhighvaluesofentropy,theinitialOD posi-tionisvalidatedifallotherlocalmaximaofentropyoccurringin differentimagelocationsshowlowervalueswhencomparedwith theonecorrespondingtothecurrentestimationforODposition.On theotherhand,ifseveralidenticallocalmaximaarefound,the pro-cessforestimatingtheODpositionisrepeatedonceagainusingthe fullresolutionimage.Afinalpost-processingphaseisappliedtoa restrictedregionaroundtheestimatedpositionofthedisc,inorder togetthefinalODlocationastheweightedcentroidoftheregion formedbythecombinationofvesselandintensitysegmentation locationresults.Themainprocessingphasesrequiredforlocating theODaredetailedinthefollowingsubsections.

2.2. Entropyofvasculardirections

TheODisaregionoftheeyefunduswherethevesselsaremore orlessdistributedinallpossibledirections.Forevaluatingthe con-vergenceandvariabilityofvesseldirectionsintheneighborhood

ofeachpointinaretinalimage,anewmeasurewasproposedin

[18]basedonthedefinitionofentropyproposedbyShannon.The entropyofvasculardirectionsiscalculatedusing(1),wherenisthe numberofdirectionsandpitheprobabilityofoccurrenceofvessels

indirectioni.

H=−

n

i=1

pi logpi (1)

Inordertocalculatetheentropymapofaretinalimage,adirection needstobeassociatedtoeveryvesselpixel.Thesegmentationof retinalbloodvesselsisaccomplishedusingthealgorithmproposed in[23],andtoobtainthevesseldirectioninformationa matched-filteringapproachsimilartotheonedescribedin[24]isapplied. Forthispurposeagrey-scaleversionoftheoriginalRGBimageis sequentiallyprocessedwithtwelvetwo-dimensionalmatched fil-ters,eachoneadaptedtoaspecificdirection;thehighestfiltering outputforavesselpointdefinesthedirectionofthevesselatthat point.

Theentropymapisdeterminedbasedonthenormalized his-togramofvesseldirectionsinawindowcenteredoneachimage point.Foreveryvesselpixelinsidethiswindow,twodirectionsare considered:anabsolutedirection,takenfromthevesseldirection map,andarelativedirectionwhichisthedirectionofthevector thatlinksthevesselpixeltothewindowcenter.Thehistogramof vesseldirectionsonlyretainsinformationforthosevesselpoints whoseabsoluteandrelativedirectionsarecoincident.

Fig.1showstwooriginalretinalimages,theirsegmented vas-cularnetworksandthecorrespondingentropymaps.Ascanbe observed,entropyvaluesclearlyincreasenearandinsidevessels andinparticularintheODregion.

Tocalculatetheentropyateachimagepoint,ahistogramof ves-seldirectionsneedstobedeterminedinawindowcenteredatthat point.Thesizeofthiswindowshouldbelargeenoughtocapturethe diversityofvesseldistributionaroundthepoint,andsmallenough tokeepprocessingtimelow.In[18]awindowsizeof351×151

pixelswassetfortheimagesoftheDRIVEandSTAREdatabases. Inthemethodhereindescribed,theimagesareinitiallyreducedto halfineachdimensionandthewindowforentropycalculationis decreasedaccordinglyto[175×75]pixels.Inbothcases,

(3)

A.M.Mendonc¸aetal./ComputerizedMedicalImagingandGraphics37 (2013) 409–417 411

Fig.2.(a)Originalretinalimage;(b)segmentedvascularnetwork;(c)entropymapcalculatedusingfullresolutionimages;(d)entropymapcalculatedusinglowresolution images.

tendtospreadmainlyintheverticaldirectionbeforeformingthe twomainvesselarcadesaroundthemacula.Asaresult,theentropy valuesontheserectangularwindowsaremoreselectivethanthose obtainedusingsquareneighborhoods.Moreover,anincreased dis-criminationbetweentheODareaandotherretinalregionswhere relevantconcentrationsofvesselsoccurisachieved.

Entropymapsforboththeoriginalretinalimageandits size-reduced version are presented in Fig. 2. As can be observed, nooverallsignificantdifferencescanbefoundbetweenthetwo entropymaps,althoughamoredetailedanalysisoflocal distribu-tionofvaluescanrevealsharperlocalmaximaforthefullresolution image. Despite this, in good quality images thelow resolution entropyvalueshavenoinfluenceonthefinalcalculatedOD posi-tion.

2.3. InitialestimationofODlocation

Thedirectcalculationoftheabsolutemaximumofentropyis sufficientforestimatingtheODlocationinmostretinalimages. However,whenthevesselsaroundthediscarenotwellsegmented, mainlyduetopoorimagequalityorpathologicalconditions,the entropymapcontainsseverallocalmaximaandthesimple detec-tionofthelargestvaluemaynotbeabletoidentifythecorrect ODlocation.Inordertorestricttheareasinwhichthelocal maxi-mumofentropyissearchedfor,brightintensity,whichisanother characteristicfeatureofanormalOD,istakenintoaccount.

AstheODisusuallyayellowishbrightregioninanormalimage oftheretina,anddoesnotcontainimportantcontentsintheblue channel,wederiveanimagefromthered(R)andgreen(G) com-ponentsfromtheoriginalRGBimage,using(2).Inthisimage,I,a

pixelvalueisrepresentedastheEuclideandistance,intheRGplane, fromtheoriginofthecolorcoordinatesystem.

I(x,y)=

R(x,y)2+G(x,y)2 (2)

Aimingatreducingtheinfluenceofthevesselsinthesubsequent selectionofcandidateregions,theimageisprocessedwitha clos-ingmorphologicaloperatorusingastructuringelementadapted tovesselsize.Thisimageisafterwardssubmittedtoillumination equalization,asdescribedbyEq.(3),whereIW(x,y)isthe

aver-ageintensityofpixelsinsideawindowWcenteredonthespatial coordinates(x,y).

Ieq(x,y)=I(x,y)+0.5−IW(x,y) (3)

Eq. (3) performs an intensity rescaling operation aiming at obtaininganimagewithaspecifiedaveragevalueequalto0.5, whichcorrespondstothecentralvalueinthe[0–1]rangeusedfor representingintensities.

Toselectaninitialsetofcandidateareasonly10%ofthehighest intensitypointsofimageIeqarekept.Asthenumberofregionsis

stilllarge,animage-dependentthresholdiscalculatedandapplied toobtainthefinalsetofcandidateareaswhereinthemaximum valueofentropywillbesearchedfor,andthenusedforobtaining theODposition.Thethresholdvalue,T,iscalculatedbasedonthe mean,mmax,andstandarddeviation,smax,ofintensitymaximain

theconnectedregionsoftheinitialset,asestablishedin(4).These intensitymaximaaretakenfromthegreencomponentofthe orig-inalRGBimageafterilluminationequalization(Geq).Thisimage

isusedinsteadofIeqforthresholdestimationbecauseofitshigher

(4)

412 A.M.Mendonc¸aetal./ComputerizedMedicalImagingandGraphics37 (2013) 409–417

Fig.3. (a)OriginalimageshowingtheestimatedODlocation(blackcross)andabsolutemaximumofentropy(whitedot);(b)lowresolutionentropymap;(c)Ieq;(d)Geq; (e)intensitysegmentedimage;(f)finalsetofsegmentsafterdilationwiththevaluesofentropyoverlapped.

Thresholdedareasaredilatedusingastructuringelementadapted tovesselcaliber;thiswideningoperationisparticularlyimportant neartheODasthevesselshavehighvaluesofentropyandarenot includedinthesetofcandidateareasduetotheirlowintensity val-ues.Finally,thepointwiththemaximumvalueofentropyissetas theinitialestimationofODlocation.

T=

mmax ifsmax>0.1mmax mmax+2smax allothercases

(4)

Finalandintermediateresultsoftheprocessingsequencefor attaininganinitialODpositionareillustratedinFig.3.Fig.3ashows theoriginalimagewiththeestimatedODposition(blackcross);in thisimage,theabsolutemaximumofentropy(whitedot)is coin-cidentwiththeestimatedODlocation.Fig.3b–dpresentthelow resolutionentropymap,Ieq,andGeq,respectively.Finally,theinitial

andfinalsetsofcandidatesobtainedfromtheintensity-segmented imageareshowninFig.3eandf;inthislastimage,thevaluesof entropyforeachselectedimagepixelarealsodepicted.

2.4. ValidationofestimatedODlocation

Theevaluationofthemaximumoftheentropyprovedableto locatetheODinthegreatmajority ofretinalimages.However, whenthevascularstructureneartheODisnotentirelyvisibleor isaffectedbysomepathology,thesearchfortheabsolute maxi-mumofthemeasuremaybeinsufficientforreachingasuitablefinal result.Nevertheless,inmostsituationsthesearchforthemaximal valueofentropy,combinedwiththeoccurrenceofhighintensities, isadequateforachievingacorrectODlocation.

Inafewsituations,especiallywhenthequalityoftheretinal imageislow(mainlyduetoproblemsinimageacquisition),the segmentedvasculaturearoundthedisciseitherinaccurateor sim-plymissing,andtheestimatedpositionoftheODasdescribedin theprevioussubsectiondoesnothittheopticdisc.Inothercases, theexistenceofveryintensepathologicallesionsnearthevessels mayintroduceerroneoussegmentsinthevasculartreeand mis-leadtheODestimationalgorithm.Anotherproblemisthattheuse oflowresolutionimagesforentropycalculationcangiverisetothe

existenceofseverallocalmaximawithsimilarvaluesindistinct imagepositions,which,injustafewcases,canpreventthe abso-lutemaximumofentropyfrombeingassociatedwiththeactualOD location.

Inordertocopewiththeselimitations,avalidation phaseis included.Forthispurpose,thefollowingpropertiesareevaluated onthelowresolutionentropymap:(i)theabsolutemaximumof entropy;(ii)therelationoftheentropyvaluefortheestimatedOD positiontotheabsolutemaximumofentropy;(iii)thepresenceof otherlocalmaximawhosevaluesaresimilartotheentropyvalue oftheestimatedODposition.

Theabsolutemaximumofentropyprovedaneffectivemeasure forassessingthequalityofthevascularsegmentation,withlow values ofthis indicatorgenerally associatedwithunreliableOD estimation.Ontheotherhand,whentheabsolutemaximumvalue ishigh, theentropyvaluefortheestimatedODpositionshould notbebelowanimage-dependentthresholdvalue(setas60%of theimageabsolutemaximum),topreventsituationswherethe intensitycriterionmostlydeterminestheselectedODlocation.

(5)

A.M.Mendonc¸aetal./ComputerizedMedicalImagingandGraphics37 (2013) 409–417 413

Fig.4. Resultsofvalidationphase.(a)Originalimagesshowingtheabsolutemaximumofentropy(blackdot),theinitialODpositionestimation(whitecross)andtheresult ofnewODlocationestimationresultingfromthevalidationphase(graycross);(b)segmentedvascularnetworks;(c)entropymaps;(d)selectedsetofintensitycandidates.

theabsolutemaximumofentropyobtainedinthefirstphasewas belowthespecifiedthresholdandwasconsideredunreliable;the exampledepictedinthebottomrowpresentsanimageshowing severalhighentropymaxima,wheretherecalculationofOD posi-tionusingthefullresolutionimagesallowedacorrectsolutionin thevalidationphase.

2.5. RefinementofODlocation

Thefinalphaseoftheproposedmethodologyaimsatrefining thediscpositionpreviouslyestimated.Thisfinalpost-processing phaseisappliedonarestrictedcircularregioncenteredonthe esti-matedODpositionwithdiameterequalto1.5timestheexpected discdiameter.Theunderlyingideaisthattheregionofthedisccan bereconstructedifthevessel-andintensity-segmentedimagesare addedtogether.Anewvalue,combiningentropyandintensityby theirgeometricmean,isassignedtoeachpixelofthisnewimage. Theweightedcentroidofthecircularregioncenteredonthe previ-ouslyestimatedODlocationisconsideredthefinalpositionofthe opticdisccenter.

TheprocessforobtainingthefinalODpositionisillustratedin

Fig.5.Thesegmentedvasculature(Fig.5a)andthesetofintensity candidates(Fig.5b)arecombinedtogettheimagepresentedin

Fig.5c.ThecircularrestrictedareacenteredontheestimatedOD location,witheachpixelweightedbythecombinationofentropy andintensityvalues,isshowninFig.5d.Finally,Fig.5eshowsthe originalimagewiththeODpositionsbefore(whitecross)andafter (blackcross)therefinementstep.

3. Results

ThemethodologyforODlocalizationwasevaluatedusingthe imagesoffourpubliclyavailabledatabases,DRIVE[19],STARE[20], MESSIDOR[21],andINSPIRE-AVR[22].TheDRIVEdatabaseconsists of40colorimagesoftheretina(565×584,24bits),where33do

notshowsignsofpathology.NoinformationregardingODposition ispubliclyavailableforthisdataset.

TheSTAREdatabasecontains81eyefundusimages(700×605,

24bits)thatwereinitiallyselectedbyHooveretal.[11]for eval-uatingtheirmethodforODlocalization.Thisdatasetconsistsof 31imagesofnormalretinas,and50imagesshowingsomekind of pathology. The MESSIDOR database consistsof 1200 images

groupedintothreesubsetsfromdifferentophthalmologic depart-ments.Thisdatasetcontainsimageswithdistinctsizes(980×1440,

1488×2240,1536×2304,24bits).Allimageswereacquiredusing

anon-mydriaticretinographwitha45◦fieldofview,800withand

400withoutpupildilation.Thelastsetofimagesisformedfrom the40imagesofthetestsetoftheINSPIRE-AVRdatabase.These highresolutionimages(2048×2392,24bits)arecenteredonthe

discandwereacquiredwitha30◦fieldofview.

Theentropymapsusedinthefirstphaseofthemethodwere obtainedbasedonvesseldirectionhistogramscalculatedona rect-angularwindowof175×75pixelscenteredineachimagepixel.

TheimagesoftheMESSIDORandINSPIRE-AVRdatasetswere ini-tiallydownsizedtodimensionssimilartotheDRIVEandSTARE images(usingscalefactorsof1/1.5and1/2.5forMESSIDOR,and 1/4forINSPIRE).Beforecomputationofentropy,allimageswere onceagainreducedbyhalfineachdimension.Although computa-tiontimeisstillslightlydependentontheoriginalsizeoftheimage, assomeoftheoperationsareperformedusingthefullimagesize(or thesizethatresultsfromthefirstscalingstepfortheMessidorand Inspire-AVRdatabases),areductionof1/12intheprocessingtime wasingeneralachievedforalldatabases.Forinstance,inDRIVE imagesthetimerequiredtoprocessfullresolutionimages(about 90s)wasreducedtoanaveragevalueof8s.

Theparametervaluesthatrequiredadaptationtoeachspecific datasetinthepreviousmethod[18]arenowfixedandidenticalfor alldatabases.Theproposedapproachonlydependsontwo param-eters:oneisthescalingfactorjustmentioned,andtheotheristhe lowerlimitfortheabsolutemaximumofentropy,whichisusedto decidewhethertheentropymapisorisnotreliableforODlocation, asexplainedinSection2.4.Whilethevalueofthescaling parame-terisautomaticallyderivedfromtheoriginalimagesize,thelimit forentropyisobtainedfromtheaverageandstandarddeviation oftheentropymaximaforeachdataset.Identicallimitswereused foralldatabasesexceptMESSIDOR,asentropyvaluesforthisset areslightlysmaller,because,onaverage,thenumberofsegmented vesselpixelsinthedownscaledimagesislower.

(6)

414 A.M.Mendonc¸aetal./ComputerizedMedicalImagingandGraphics37 (2013) 409–417

Fig.5.(a)Vesselsegmentedimage;(b)intensitycandidates;(c)combinationof(a)and(b);(d)circularregionaroundestimatedOD;(e)originalretinalimagewithfinal (blackcross)andestimated(whitecross)ODpositions.

180pixelsasestablishedin[25].Duetothevariabilityofthe MESSI-DORimages,thedefinitionofonesinglecriterionfordiscdiameter isnotpossible,soadetectedpositionwasconsideredvalidifitwas insidetheOD;theseresultswereassessedbytheauthorsunderthe guidanceofanexpert.

Theresultsobtainedforthefourdatabasesaresummarizedin

Table1.ThenumbersofsuccessfulODdetectionswiththe pro-posedmethodareshowninthethirdcolumnofthistable.Inorder toclarifytheinfluenceonOD detectionofthe twomain crite-ria(entropyandintensity)whicharecombinedintheproposed methodology,wehaveappliedeachcriterionseparately,andwe haveconsideredasODpositiontheimagelocationwherethe max-imumvaluefor thecriterionis achieved.Thetwo lastcolumns ofthetablecontainthenumberof successfuldetectionswhere theOD location was associated withthe position of the abso-lutemaximumofentropy(fourthcolumn)andwiththeabsolute

maximumofintensity(fifthcolumn).Fromtheanalysisofthe val-uesinTable1,wecanconcludethatbothentropyandintensity areusefulfeaturesfor ODlocation; however,thesefeaturesare sensitivetoimagequalityand totheoccurrenceofpathological conditions,whichhaveasignificantinfluenceontheperformance of discdetection.Nevertheless, thecombination of information frombothfeaturesimprovestherobustnessofODlocalization,as clearlydemonstratedbytheresultsobtainedusingtheproposed methodology.

Table2detailstheresultsofthecombinationofentropyand intensity,byindicatingthenumberofimageswheretheODhas beensuccessfullylocatedineachphaseofthealgorithm.Besides thetotalnumberofcorrectlydetectedODpositions,ineachroware presentedthenumberofimageswherethefinalODlocation corre-spondstotheinitialestimation,andthecorrectODlocationsthat wereaccomplishedinthevalidationphase,eitherbythemaximum

Table1

Resultsoftheproposedmethodcomparedwiththestand-alonedetectionbasedonthemaximumofentropyandthemaximumofintensity.

Database Numberof

images

Number(percentage)of successfulODlocations

Absolutemaximumof entropy(reduced resolutionimages)

Absolute maximumof intensity

DRIVE 40 40(100%) 39 37

STARE 81 80(98.8%) 63 58

MESSIDOR 1200 1197(99.8%) 1192 1155

INSPIRE-AVR 40 40(100%) 40 38

Table2

CriteriaforODlocalization.

Database Numberof

successfulOD locations

Initial estimation

Validation

Maximumofentropyin intensitycandidates(reduced resolutionimages)

Maximumofentropyin intensitycandidates

Maximumofintensityin largestareasegment

DRIVE 40 40 0 0

STARE 80 74 1 5

MESSIDOR 1197 1193 3 1

(7)

A.M.Mendonc¸aetal./ComputerizedMedicalImagingandGraphics37 (2013) 409–417 415

Fig.6.Sixoriginalimageswiththeinitialestimationafterthefirstphaseofthealgorithm(whitecross)andthefinalODlocation(blackcross).Imagesonthetoproware fromDRIVEdatabasewhilethebottomrowshowsimagesfromtheINSPIRE-AVRdatabase.

valueofentropycalculatedontheoriginalimages(followingthe detectionofseverallocalmaximaofentropy)orbythemaximum valueofintensityinthelargestsegment(whentheentropyvalues werenotreliable).

Table3comparestheresultsofourmethodwiththe perfor-manceofothersolutionsreportedintheliteratureforthesame datasets.

Fig.6showssomeresultsfortheDRIVE(toprow)and INSPIRE-AVR(bottomrow)images.Inthetoprow,wecanobserveontheleft thesinglecasewheretheabsolutemaximumofentropywasnot associatedwiththeODlocation,whileinthecenterispresented thesingleimagewheretheintensitymaximumdidnotbelongto theOD;inbothcases,theproposedmethodwasabletoachievea

correctsolution.Finally,intherightmostimagetheabsolute max-imumofentropyiscoincidentwiththefinalODlocation.Thetwo leftmostimagesinthebottomrowofFig.6aretheINSPIRE-AVR imageswherethehighestintensitypixelsdonotcoincidewiththe disc.Inalltheseimagestheblackdotmarksthepositionofthe absolutemaximumofentropy,andthewhiteandblackcrossesare theinitialandfinalODpositions,respectively.

Fig.7presentstheresultsofODlocalizationinsixSTAREimages. Thetop-leftimageistheonlyimagewherethealgorithmfailedOD localization.Fig.7(b)and(c)showtwoimageswheretheinitial esti-mation(firstphase)gotawrongsolution,butacorrectpositionwas achievedinthesecondphasewherethefinalODpositionis asso-ciatedwithtothecentroidofthelargestsegmentintheintensity

(8)

416 A.M.Mendonc¸aetal./ComputerizedMedicalImagingandGraphics37 (2013) 409–417

Fig.8.OriginalMESSIDORimageswiththefinalODlocation(blackcross),theinitialestimationafterthefirstphaseofthealgorithm(whitecross),theresultafterthesecond phase(graycross),whenapplicable,andtheabsolutemaximumofentropy(blackdot).ThetoprowcontainsthethreeimageswherethemethodfailedtodetecttheOD location,whilethebottomrowshowssuccessfulresults.

Table3

PerformanceofmethodsforODlocalization.

Method Database Percentageof

correctOD locations

Proposedmethod DRIVE 100%

STARE 98.8%

MESSIDOR 99.8%

Hoover[11] STARE 89.0%

Foracchia[12] STARE 97.5%

Haar[13] STARE 93.8%

Perez-Rovira[16] STARE 91.4%

Youssif[14] DRIVE 100%

STARE 98.8%

Lu[6] STARE 98.8%

MESSIDOR 99.8%

segmentedimage.AsuccessfulestimationofODpositionusinglow resolutionimageswasobtainedforeachoneofthethreeimagesin thebottomrowofFig.7.

ThethreeimagesoftheMESSIDORdatabasewheretheproposed algorithmfailedatlocalizingtheODaredepictedinthetoprowof

Fig.8.Fortheimagesontheleftandcenter,theabsolutemaximum ofentropyisinsidethedisc,butthediscareawasnotincludedin theintensityimage;thelargestareacandidatewasselectedinthe leftmostimage,whileintheimageshowninthecentertheinitial ODposition(whitecross)wasrefinedbutcouldnotreachthedisc. Inthethirdimage,afinalpositionneartheborderoftheODwas finallyselected.

4. Conclusions

AmethodologyforautomatingthelocalizationoftheODincolor imagesoftheretinawasdescribed,basedonthecombinationof vascularandintensityinformation.Thenewmeasureofentropyof vasculardirectionsprovedtobeagoodsolutionforassessingvessel

convergence,whichisonemajorfeatureoftheopticdiscregionin aretinalimage.Althoughformostnormalandpathologicalimages thesimpledetectionoftheabsolutemaximumofentropyis suffi-cientforcorrectlylocalizingtheOD,therobustnessofthemethod wasincreasedbyincludingadditionalintensityconstraints.

Theperformanceofthemethodhereindescribedwasgreatly improvedbythedeterminationofaninitialODpositionusinga lowresolutionentropymap,andfurtherbytheinclusionofa sub-sequentvalidationphasewhereanalternativesolutionissearched forifthecalculatedentropyvaluesarenotconsideredreliable.A significantreductionincomputationtime,andtheattainmentofa usefulODlocalizationeveninimageswhereeitherthedisc inten-sitycontrastorthequalityofthesegmentedvasculatureislow, arethemostrelevantimprovements.Theinclusionofarefinement phasealsoallowedafinalpositionthatingeneralisnearertothe idealODcenter.

Themethodwasevaluatedusingimagesfromfourdatabases withverypromisingresults,outperformingmostofthe previously-knownsolutions.TheODlocationobtainedwiththisautomatic approachwillbeusedasaninitialstepforthecomplete segmen-tationofthediscarea.

Acknowledgment

Wewanttothanktheauthorsofthefourpublicdatabasesfor makingtheirimagesavailableThisworkwassupportedbyFEDER fundsthroughtheProgramaOperacionalFactoresde Competitivi-dade-COMPETEandbyPortuguesefundsthroughFCT-Fundac¸ão paraaCiênciaeaTecnologiaintheframeworkoftheproject PEst-C/SAU/LA0002/2011.

References

(9)

A.M.Mendonc¸aetal./ComputerizedMedicalImagingandGraphics37 (2013) 409–417 417

[2]CouperDJ,KleinR,HubbardLD,WongTY,SorlieP,CooperLS,etal.Reliability ofretinalphotographyintheassessmentofretinalmicrovascular charac-teristics:Theatherosclerosisriskincommunitiesstudy.AmJOphthalmol 2002;133(1):78–88.

[3]SinthanayothinC,BoyceJF,CookHL,WilliamsonTH.Automatedlocalization oftheopticdisc,fovea,andretinalbloodvesselsfromdigitalcolourfundus images.BrJOphthalmol1999;83:902–10.

[4]AquinoA,Gegúndez-AriasME,MarinD.Detectingtheopticdiscboundaryin digitalfundusimagesusingmorphological,edgedetectionandfeature extrac-tiontechniques.IEEETransMedImagingNov2010;29(11):1860–9. [5]AquinoA,Gegúndez-AriasME,MarinD.Automatedopticdiscdetectionin

reti-nalimagesofpatientswithdiabeticretinopathyandriskofmacularedema.Int JBiolLifeSci2012;8(2):87–92.

[6]LuS.Accurateandefficientopticdiscdetectionandsegmentationbyacircular transform.IEEETransMedImaging2011;30(12):2126–33.

[7]LalondeM,BeaulieuM,GagnonL.Fastandrobustopticdiscdetectionusing pyramidaldecompositionandHausdorff-basedtemplatematching.IEEETrans MedImagingNov2001;20(11):1193–200.

[8]OsarehA,MirmehdiM,ThomasB,MrkhamR.Classificationandlocalisationof diabetic-relatedeyedisease.In:HeydenA,etal.,editors.ECCV2002. Heidel-berg:Springer;2002.p.502–16.

[9]LowellJ,HunterA,SteelD,BasuA,RyderR,FletcherE,etal.Opticnervehead segmentation.IEEETransMedImaging2004;23(February(2)):256–64. [10]Abdel-GhafarRA,MorrisT.Progresstowardsautomateddetectionand

charac-terizationoftheopticdiscinglaucomaanddiabeticretinopathy.MedInform InternetMed2007;32(1):19–25.

[11]HooverA,GlodbaumM.Locatingtheopticnerveinaretinalimageusing the fuzzy convergence of the blood vessels. IEEE Trans Med Imaging 2003;22(August(8)):951–8.

[12]ForacchiaM,GrisanE,RuggeriA.Detectionofopticdiscinretinalimagesby meansofageometricalmodelofvesselstructure.IEEETransMedImaging 2004;23(October(10)):1189–95.

[13]HaarF.Automaticlocalizationoftheopticdiscindigitalcolourimagesofthe humanretina.UniversityofUtrecht;2005[M.Scthesis].

[14]YoussifA,GhalwashAZ,GhoneimA.Opticdiscdetectionfromnormalized dig-italfundusimagesbymeansofavessels’directionmatchedfilter.IEEETrans MedImaging2008;27(January(1)):11–8.

[15]NiemeijerM,AbràmoffMD,vanGinnekenB.Fastdetectionoftheopticdisc andfoveaincolorfundusphotographs.MedImageAnal2009;13:859–70. [16]Perez-RoviraA,TruccoE.Robustopticdisclocationviacombinationofweak

detectors. In:30th AnnualInternational IEEEEMBS Conference.2008. p. 3542–5.

[17]XuX,GravinMK,AbràmoffMD,ReinhardtJM.Simultaneousautomatic detec-tionoftheopticdiscandfoveaonfundusphotographs.In:DawantBM,Haynor DR,editors.Proc.SPIEmedicalimaging2011:imageprocessing,vol.7962.2011. p.7962T.

[18]Mendonc¸aA,CardosoF,SousaA,CampilhoA.Automaticlocalizationofthe opticdiscinretinalimagesbasedontheentropyofvasculardirections.In: Imageanalysisandrecognition;2012.p.424–31[LNCS7325].

[19]ImageScienceInst.,http://www.isi.uu.nl/Research/Databases/DRIVE

[20]TheSTAREproject,http://www.ces.clemson.edu/∼ahoover/stare [21]MESSIDORproject,http://messidor.crihan.fr/

[22]NiemeijerM,XuX,DumitrescuA,GuptaP,vanGinnekenB,FolkJ,etal. Auto-matedmeasurementofthearteriolar-to-venularwidthratioindigitalcolor fundusphotographs.IEEETransMedImaging2011;30(November(11)). [23]Mendonc¸aAM,CampilhoAC.Segmentationofretinalbloodvesselsby

combin-ingthedetectionofcenterlinesandmorphologicalreconstruction.IEEETrans MedImaging2006;25(September(9)):1200–13.

[24]ChaudhuriS,ChattererjeeS,KatzN,GlodbaumM.Detectionofbloodvesselsin retinalimagesusingtwo-dimensionalmatchedfilters.IEEETransMedImaging 1989;8(March(3)):263–9[datasetsII,ICML,Washington].

[25]Niemeijer M, Xu X, Dumitrescu A, Gupta P, van Ginneken B, Folk J, etal. Automatedmeasurementofthearteriolar-to-venularwidthratioin digital color fundusphotographs. IEEETrans Med Imaging 2011;30(11): 1941–50.

AnaMariaMendonc¸areceivedthePh.D.degreeinElectricalEngineeringfromthe FacultyofEngineering,UniversityofPorto(FEUP)in1994.Currently,sheisAssociate ProfessorattheDepartmentofElectricalandComputerEngineeringattheFacultyof Engineering,UniversityofPorto,Portugal.ShejoinedINEB–InstituteforBiomedical Engineering–in1989,whereshehasbeenaresearcheroftheBioimagingGroup. Herresearchinterestsincludeimageprocessingandanalysis,and,morespecifically, medicalimageanalysis.

AntónioV.SousareceivedthePh.D.degreeinEngineeringSciencesfromtheFaculty ofEngineering,UniversityofPorto(FEUP)in2008.Presently,heisAdjoinedProfessor attheDepartmentofMathematicsofISEP,PolytechnicInstituteofPorto,Portugal. HeisaresearcheroftheBioimagingGroupofINEB.Hisresearchinterestsinclude imageprocessingandclassification.

LuísMendonc¸aisaboardcertifiedophthalmologistfromtheHospitaldeBraga (Braga,Portugal).HereceivedhisMDdegree(1999–2005)fromtheFacultyof MedicineoftheUniversityofPortoandcompletedhisophthalmologyresidency (2007–2010)attheDepartmentofOphthalmologyofHospitalSãoJoão(Porto, Portugal).HeattendedaRetinalResearchFellowship(2010–2011)atLuEstherT. MertzRetinalResearchCentre/VitreousRetinaMaculaConsultantsofNewYork (NewYork,NY,USA)andhasclinicalandresearchinterestinretinalandchoroidal disorderssuchasdiabeticretinopathy,age-relatedmaculardegenerationandretinal vascularocclusions.

Imagem

Fig. 1. Original images (left), segmented vascular networks (middle), and entropy maps (right).
Fig. 2. (a) Original retinal image; (b) segmented vascular network; (c) entropy map calculated using full resolution images; (d) entropy map calculated using low resolution images.
Fig. 3. (a) Original image showing the estimated OD location (black cross) and absolute maximum of entropy (white dot); (b) low resolution entropy map; (c) I eq ; (d) G eq ; (e) intensity segmented image; (f) final set of segments after dilation with the v
Fig. 4. Results of validation phase. (a) Original images showing the absolute maximum of entropy (black dot), the initial OD position estimation (white cross) and the result of new OD location estimation resulting from the validation phase (gray cross); (b
+4

Referências

Documentos relacionados

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

não existe emissão esp Dntânea. De acordo com essa teoria, átomos excita- dos no vácuo não irradiam. Isso nos leva à idéia de que emissão espontânea está ligada à

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Com o objetivo de obter atratores de semigrupos em espaço de Banach de dimensão infi- nita como objetos em espaços de dimensão finita estudamos condições sobre o semigrupo que

Despercebido: não visto, não notado, não observado, ignorado.. Não me passou despercebido

Caso utilizado em neonato (recém-nascido), deverá ser utilizado para reconstituição do produto apenas água para injeção e o frasco do diluente não deve ser