• Nenhum resultado encontrado

Thank you!

N/A
N/A
Protected

Academic year: 2022

Share "Thank you!"

Copied!
18
0
0

Texto

(1)

On the Lindelöf Property of Products of Spaces C

p

( X )

Oleg Okunev

Benemérita Universidad Autónoma de Puebla

(2)

All spaces are assumed to be Tychonoff.

Cp(X,Z) ={f :f is a continuous function fromX toZ}with the topology of pointwise convergence.

Cp(X,Z)⊂ZX. Cp(X,R) =Cp(X)

(3)

All spaces are assumed to be Tychonoff.

Cp(X,Z) ={f :f is a continuous function fromX toZ}with the topology of pointwise convergence.

Cp(X,Z)⊂ZX. Cp(X,R) =Cp(X)

(4)

All spaces are assumed to be Tychonoff.

Cp(X,Z) ={f :f is a continuous function fromX toZ}with the topology of pointwise convergence.

Cp(X,Z)⊂ZX. Cp(X,R) =Cp(X)

(5)

Problem(A.V. Arhangel’skii, 198?)Let X be a space such that Cp(X)is Lindelöf. Must Cp(X)×Cp(X)be Lindelöf? What if X is compact?

Cp(X)×Cp(Y) =Cp(X ⊕Y)

Cp(X)×Cp(X) =Cp(X ⊕X) =Cp(X,R2). Cp(X)always hasccc, so

Cp(X)is Lindelöf ⇐⇒ Cp(X)is paracompact.

Stillunknown:

If G is a Lindelöf topological group, must G×G be Lindelöf?

If G is a paracompact topological group, must G×G be paracompact?

(6)

Problem(A.V. Arhangel’skii, 198?)Let X be a space such that Cp(X)is Lindelöf. Must Cp(X)×Cp(X)be Lindelöf? What if X is compact?

Cp(X)×Cp(Y) =Cp(X ⊕Y)

Cp(X)×Cp(X) =Cp(X ⊕X) =Cp(X,R2). Cp(X)always hasccc, so

Cp(X)is Lindelöf ⇐⇒ Cp(X)is paracompact.

Stillunknown:

If G is a Lindelöf topological group, must G×G be Lindelöf?

If G is a paracompact topological group, must G×G be paracompact?

(7)

Problem(A.V. Arhangel’skii, 198?)Let X be a space such that Cp(X)is Lindelöf. Must Cp(X)×Cp(X)be Lindelöf? What if X is compact?

Cp(X)×Cp(Y) =Cp(X ⊕Y)

Cp(X)×Cp(X) =Cp(X ⊕X) =Cp(X,R2). Cp(X)always hasccc, so

Cp(X)is Lindelöf ⇐⇒ Cp(X)is paracompact.

Stillunknown:

If G is a Lindelöf topological group, must G×G be Lindelöf?

If G is a paracompact topological group, must G×G be paracompact?

(8)

Problem(A.V. Arhangel’skii, 198?)Let X be a space such that Cp(X)is Lindelöf. Must Cp(X)×Cp(X)be Lindelöf? What if X is compact?

Cp(X)×Cp(Y) =Cp(X ⊕Y)

Cp(X)×Cp(X) =Cp(X ⊕X) =Cp(X,R2). Cp(X)always hasccc, so

Cp(X)is Lindelöf ⇐⇒ Cp(X)is paracompact.

Stillunknown:

If G is a Lindelöf topological group, must G×G be Lindelöf?

If G is a paracompact topological group, must G×G be paracompact?

(9)

There are spacesX andY such thatCp(X)andCp(Y)are Lindelöf, butCp(X)×Cp(Y)is not.

First example by A. Leiderman and V. Malykhin (1988);

bothX andY with one non-isolated point, forcing.

K. Tamano, OO (1996):There are a separable, scattered,

σ-compact X and a countable Y such that Cp(X)is Lindelöf, and Cp(X)×Cp(Y)is not.

w(Cp(Y)) =|Y|,

so in this exampleCp(Y)is second-countable.

(10)

There are spacesX andY such thatCp(X)andCp(Y)are Lindelöf, butCp(X)×Cp(Y)is not.

First example by A. Leiderman and V. Malykhin (1988);

bothX andY with one non-isolated point, forcing.

K. Tamano, OO (1996):There are a separable, scattered,

σ-compact X and a countable Y such that Cp(X)is Lindelöf, and Cp(X)×Cp(Y)is not.

w(Cp(Y)) =|Y|,

so in this exampleCp(Y)is second-countable.

(11)

Stillunknown:

LetX andY be compact. SupposeCp(X)andCp(Y)are Lindelöf.

MustCp(X)×Cp(Y)be Lindelöf?

LetX be compact andY countable. IfCp(X)is Lindelöf, must Cp(X)×Cp(Y)be Lindelöf?

IfCp(X)is Lindelöf, mustCp(X)×ωωbe Lindelöf?

(equivalent: ifCp(X)is Lindelöf, mustCp(X ⊕ω)be Lindelöf?)

(12)

Stillunknown:

LetX andY be compact. SupposeCp(X)andCp(Y)are Lindelöf.

MustCp(X)×Cp(Y)be Lindelöf?

LetX be compact andY countable. IfCp(X)is Lindelöf, must Cp(X)×Cp(Y)be Lindelöf?

IfCp(X)is Lindelöf, mustCp(X)×ωωbe Lindelöf?

(equivalent: ifCp(X)is Lindelöf, mustCp(X ⊕ω)be Lindelöf?)

(13)

Stillunknown:

LetX andY be compact. SupposeCp(X)andCp(Y)are Lindelöf.

MustCp(X)×Cp(Y)be Lindelöf?

LetX be compact andY countable. IfCp(X)is Lindelöf, must Cp(X)×Cp(Y)be Lindelöf?

IfCp(X)is Lindelöf, mustCp(X)×ωωbe Lindelöf?

(equivalent: ifCp(X)is Lindelöf, mustCp(X ⊕ω)be Lindelöf?)

(14)

Theorem(A. Arhangel’skii, E. Reznichenko, 198?).Let X be compact zero-dimensional. If Cp(X)is Lindelöf, then Cp(X)ω is Lindelöf.

Theorem(OO, 2011). IfdimX =0and Z is a locally compact second-countable space, then Cp(X,Z)is a continuous image of a closed subspace of Cp(X).

Cp(X)n =Cp(X,Rn), so

Corllary(OO, 2011). If dimX =0and Cp(X)is Lindelöf, then for every n∈ω, Cp(X)n is Lindelöf.

(15)

Theorem(A. Arhangel’skii, E. Reznichenko, 198?).Let X be compact zero-dimensional. If Cp(X)is Lindelöf, then Cp(X)ω is Lindelöf.

Theorem(OO, 2011). IfdimX =0and Z is a locally compact second-countable space, then Cp(X,Z)is a continuous image of a closed subspace of Cp(X).

Cp(X)n =Cp(X,Rn), so

Corllary(OO, 2011). If dimX =0and Cp(X)is Lindelöf, then for every n∈ω, Cp(X)n is Lindelöf.

(16)

Theorem(A. Arhangel’skii, E. Reznichenko, 198?).Let X be compact zero-dimensional. If Cp(X)is Lindelöf, then Cp(X)ω is Lindelöf.

Theorem(OO, 2011). IfdimX =0and Z is a locally compact second-countable space, then Cp(X,Z)is a continuous image of a closed subspace of Cp(X).

Cp(X)n =Cp(X,Rn), so

Corllary(OO, 2011). If dimX =0and Cp(X)is Lindelöf, then for every n∈ω, Cp(X)n is Lindelöf.

(17)

Open questions.

IfdimX =0and Cp(X)is Lindelöf, must Cp(X)ω be Lindelöf?

IfindX =0and Cp(X)is Lindelöf, must Cp(X)×Cp(X)be Lindelöf?

IfindX =0and Cp(X)is Lindelöf, mustdimX =0?

(18)

Thank you!

Referências

Documentos relacionados

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

H„ autores que preferem excluir dos estudos de prevalˆncia lesŽes associadas a dentes restaurados para evitar confus‚o de diagn€stico com lesŽes de

Na hepatite B, as enzimas hepáticas têm valores menores tanto para quem toma quanto para os que não tomam café comparados ao vírus C, porém os dados foram estatisticamente

Neste trabalho, apresentam-se e discutem-se os resultados da aplicação da técnica de amostragem linear de descontinuidades em superfícies expostas do maciço rochoso subterrâneo

Despite the divergences that can be raised concerning our simple mixture with intact stratum corneum lipid matrix, the coexistence of crystalline and fluid phases

Methods: One hundred and eight patients with rhizarthritis and multiple arthritis (191 hands with clinical and radiographic rhi- zarthritis) followed for two years as part of

The knowledge of the Basic Infiltration Rate (TIB) of water in the soil is a way to assist in the management and conservation of the soil and allows greater control of

rotina do RANU antes da alta e quais os profissionais que o realizam); Parte 2 — perguntas 4 a 10 (número de nados vivos nascidos em 2014 e 2015 e respetivos diagnósti- cos de