• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número2

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número2"

Copied!
18
0
0

Texto

(1)

w ww.e l s e v i e r . c o m / l o c a t e / b j p

Review

Trichilia

catigua

:

therapeutic

and

cosmetic

values

Renata

Longhini

a

,

Audrey

A.S.G.

Lonni

b

,

Ana

Luiza

Sereia

a

,

Letícia

M.

Krzyzaniak

a

,

Gisely

C.

Lopes

a

,

João

Carlos

P.

de

Mello

a,∗

aProgramadePós-graduac¸ãoemCiênciasFarmacêuticas,UniversidadeEstadualdeMaringá,Maringá,PR,Brazil bDepartamentodeCiênciasFarmacêuticas,UniversidadeEstadualdeLondrina,Londrina,PR,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received18July2016 Accepted25October2016 Availableonline23November2016

Keywords:

Biological,chemical,analytical,and technologicalactivities

Catuaba

Trichiliacatigua

a

b

s

t

r

a

c

t

Medicinalplantsplayanimportantroleinhumanhealthcare.Itisestimatedthatabout25–30%ofall drugsareevaluatedastherapeuticagentsderivedfromnaturalproducts.Researchinthe pharmaceu-ticalindustryhasdemonstratedthatforcomplexdiseases,naturalproductsstillrepresentavaluable sourcefortheproductionofnewchemicalcompounds,sincetheypossessprivilegedstructures.Among Brazilianbiodiversity,“catuaba”ispopularlyusedasatonictotreatfatigue,stress,impotence,memory deficits,anddigestivedisorders.Studiesshowantibacterial,trypanocidal,antioxidant,antiarrhythmic, antidepressant,improvementofmemory,anti-inflammatoryandantinociceptiveactivities,aswellas phytocosmeticactivityincellulitetreatmentandinanti-ageing.TheBrazilianplantsknownandused ascatuabaarerepresentedbymorethantwentydifferentspecies;however,theplantmostcommonly foundinBrazilas“catuaba”isthespeciesTrichiliacatiguaA.Juss.,Meliaceae.Thus,theaimofthispaper istopresentareviewofT.catigua,withemphasisonbiologicalactivities,chemicalandanalytical devel-opmentandformulationsinordertoprovideabroaderanddeeperinsight,seekingaherbalmedicine and/orphytocosmeticaswellasfutureprospectsforcommercialexploitationanddirectionsforfuture studies.

©2016SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Brazilian biodiversity consists of a large arsenal of natural resources,withhuge potentialfortheproductionof newdrugs andherbalmedicines.Amongtherepresentativesoftheflorathere is“catuaba”,whichiswidelydistributedinBrazilianterritoryand popularlyusedasanaphrodisiac,sexualandnervoussystem stim-ulant,andasatonicinthetreatmentoffatigue,stress,memory deficits(Pizzolattietal.,2002b;Beltrameetal.,2004;Silva,2004a) anddigestivedisorders(MingandCorrea-Junior,2002).

The plants popularly known as catuaba belong to different generaandfamilies, respectively:Anemopaegma(Bignoniaceae), Erythroxylum (Erythroxylaceae), Phyllanthus (Phyllanthaceae), Micropholis (Sapotaceae), Secondatia (Apocynaceae), Tetragas-tris(Burseraceae), Ilex (Aquifoliaceae), Trichilia(Meliaceae), and speciesofMyrtaceae(Corrêa,1931;Ducke,1966).

ThespecieTrichilia catiguaA. Juss., Meliaceae, is theunique know and used in Brazil as “catuaba”. The plants distributed in Brazil known as “catuabas”, but not the true catuaba are:

∗ Correspondingauthor.

E-mail:mello@uem.br(J.C.Mello).

Eriotheca candolleana (K. Schum.) A. Robyns, Malvaceae, Anemopaegma arvense (Vell.) Stellfeld ex J.F. Souza, Bignoni-aceae,Temnadeniaviolacea(Vell.)Miers,Apocynaceae,Tetragastris catuaba Soares da Cunha, Burseraceae, Secondatia floribunda A. DC.,Apocynaceae, Pouteriasect. Micropholis(Griseb.) Baehni, Sapotaceae,andPhyllanthusnobilis(L.f.)Müll.Arg.,Phyllanthaceae, aswellastwospeciesofthefamilyErythroxylaceae,Erythroxylum catuaba daSilva ex Hamet and E.vacciniifolium Mart.(Pereira, 1982;PatrícioandCervi,2005;Lorenzi,2008).

Duetothelargenumberofspeciespopularlyusedfor thera-peuticpurposesandknownas“catuaba”,thedefinitionofwhata speciesisthattrulymeetstherapeuticpurposesisdifficult.

Theconfusionhasalonghistory,and thefirstreportisfrom 1906.A.J.daSilvastudiedthebarksofcatuabafromBahia, iden-tified botanically as Erythroxylum catuaba A.J. da Silva, of the Erythroxylaceaefamily.However,someyearslater,through botan-icalreviews,itwasconfirmedthatthisspeciesdoesnotexistand theplantunderstudyhadcharacteristicsoftheMeliaceaefamily. InthefirsteditionoftheBrazilianPharmacopoeia( Farmacopeia-Brasileira, 1926) characteristics of the roots of Anemopaegma arvense(Vell.)StellfeldexJ.F.Souza,belongingtotheBignoniaceae family,andmarketedascatuabainsouthernBrazil,wereincluded, thusA.arvensehasestablisheditselfastheofficialspecies.However,

http://dx.doi.org/10.1016/j.bjp.2016.10.005

(2)

thedifficultyinobtainingtherootsofA.arvenseandthesearchfor cheaperalternativeswithgreaterpotentialfortherapeutic effec-tivenessledtotheemergenceofseveralsamplescommercialized ascatuaba(Marques,1998).

Currentlythevegetablerawmaterialsoldas“catuaba”mostly correspondstostembarkofT.catigua(Marques,1998;Daolioetal., 2008),whoseidentificationandpharmacognosticcharacterization wereperformedandpublishedbyMarquesin1998.However,after more than14 years of explanation,lots ofcatuaba (bark)have thebotanicalnameA.arvense,aspeciesregisteredintheBrazilian Pharmacopoeia(1929),whichwasrecentlyrepealedbypublishing itsfifthedition(FarmacopeiaBrasileira,2010),whosedescription matchesthewhitishrootsandnotthebark.Inthiscase,isclearthe influenceofthedrugincludedinthepharmacopoeia,inthecaseof adistortionthatneedstobetackledgraduallyandmodified.Infact, thecorrectidentificationofthespeciesandtheexistenceof stud-iesprovingitseffectivenessshouldbeworthmorethanthemere inclusionintheofficialcompendium,especiallyinthecaseofthe firsteditionpublishedin1926(Marques,1998).

Therefore,theobjectiveofthisstudywastoconductareview pointingoutthetherapeuticvalueofT.catiguaspecies,popularly knownascatuaba,emphasizingtheirbiologicalandchemical prop-ertiesthatjustifytheircurrentuseasthemostfavourablespecies inrelationtothechallengesinvolvedintheproductiontechnology ofaherbalmedicine.

SomespeciesusedascatuabainBrazil

Anemopaegmaarvense(Vell.)StellfeldexJ.F.Souza

ThisspeciesbelongstotheBignoniaceaefamily.Itwasdescribed and publishedinitially as Bignonia arvensisby José Marianoda Conceic¸ãoVellozoin FloraeFluminensis in 1829;it is a peren-nialshrub,deciduous,upright,slightlybranchedandxylopodium light-coloured,withpubescent stems,30–40cm high, nativeto the grasslands of central Brazil. The leaves are trifoliate, with hard leathery leaflets, with lighter colour on the underside, 10–20cmlong.Largeflowers,campanulate,whiteoryellow, soli-tary, arranged in the stem apex of the armpits. The fruits are dehiscentcapsules,flat,greyincolour,withafewwhitish mem-branousseeds(LorenziandMatos,2002).

Thespeciesisusedformedicinalpurposesinallsavannahareas andisparticularlypopularforits“aphrodisiacaction”.Apowerful tonicispreparedfromtherootsthatstimulatethenervous sys-tem.Itisalsousedintreatinginsomnia,neurasthenia,nervousness, hypochondriaandpoormemoryandinrecoveryfromserious ill-ness.Thebarkofthestemandofthexylopodiumisemployedin casesofasthenia,anxiety,chronicbronchitisandbronchialasthma intheformoftea.Therootsareusedinaphrodisiacpreparations, inthetreatmentofsexualimpotence(LorenziandMatos,2002).

Tabanca et al. (2007) isolated from this species catuabin A, cinchonain Ia and IIa, and kandelin A1, which shows antioxi-dantactivity.Theauthorsalsoevaluatedtheanti-inflammatory, anti-malarial and antimicrobial activity, in addition to that of cytotoxicity, but none showed significant activity or cytotox-icity to mammalian non-cancerous cells (Vero and LLC-PK11) and human tumour cells of the liver, malignant melanoma, ovarian carcinoma,breast carcinoma,squamous cellcarcinoma and promyelocytic leukaemia (HepG2, SK-MEL, SK-OV3, BT-549, KB at 13.51–22.12␮M and HL-60 at 16.89–27.65␮M, respectively).

TheunregulateduseofA.arvenseforlongperiodscausedthe disappearanceofthisplantfrommarkets,andotherplants,known locallyascatuaba,weresoldinstead(Daolioetal.,2008).

ErythroxylumvacciniifoliumMart.

Shrub or small tree 3–5m tall. Belongs to Erythroxylaceae family, described and published by Karl Friedrich Philipp von Martius in Beit. Erythroxylon 1840. Its crown is thin and the foliage is semi-deciduous. Leaves simple, membranous, 5–7cm long. Flowers yellow-orange colour, gathered in terminal and axillaryinflorescences.Fruitsofdrupetype,ovalformand dark yellowcolour.ItisnativetotheNorth-eastandPlanaltoCentral, extendingtotheParáandMaranhão,Brazil(LorenziandMatos, 2002).

Popularlyusedasastimulant,apracticeintroducedbytheTupi Indians. Thebarks areused astea ordecoction,with stimulat-ing propertiesof thecentral nervoussystem(CNS) and proven byethnopharmacologicalsurveys.Thus,thedecoctionofitsbark is used against sexual impotence, as well as for other types of nervous problems, such as agitation,neurasthenia, nervous-ness,poormemory,insomnia,hypochondriaandsexualweakness. Its use is continuous, even though its efficacy and safety of use have not been scientifically proven (Lorenzi and Matos, 2002).

Themainconstituentsfoundintheirextractsincludesubstances of classes of alkaloids,tannins, bittersubstances, aromaticoils, resin,grease,phytosterolsandciclolignanas(LorenziandMatos, 2002).Zanolari et al.(2003a,b) isolated eight tropanealkaloids fromthebarkof E.vacciniifolium: catuabineD, E,F andG,7␤ -hydroxycatuabineD,EandF,and7␤-acetylcatuabineE.Thesame group,butinanotherarticle,investigatedthealkaloidcontentin extractusingcombinationofHPLCwithDAD,massspectrometry andnuclearmagneticresonance(Zanolarietal.,2003b).The inter-pretationofdataobtainedspectroscopiconlineoftheseextractsled tostructuralelucidationofsixnewalkaloidsandthepartial iden-tificationofeighteenothersthatwerepotentiallyoriginal,giving thedirectionofthesametropaneskeletonesterifiedinpositions3 and6by1-methyl-1-H-pyrrol-2-carboxylicacidand/or 4-hydroxy-3,5-dimethoxybenzoicacid(Zanolariet al.,2003b).In 2005,the groupobtainedninenewtropanealkaloids,elucidatedas tropane-diolortropanetriolalkaloidesterifiedby1-methyl-1H-pyrrole-2 carboxylicacid.Oneisolatecompoundwasidentifiedasatropane alkaloidN-oxide(Zanolarietal.,2005).

ErythroxylumcatuabadaSilvaexHamet

Thestimulant propertyoftheCNS andaphrodisiac wasalso attributed to E. catuaba, missing description of the properties and type of specimen. The botanically correct identity may be ErythroxylumvacciniifoliumMart.,Erythroxylaceae,Anemopaegma mirandum(Cham.)Mart.exDC.,Bignoniaceae,T.catiguaA.Juss., Meliaceae,orothers(Adamsetal.,2007).Thedubiousoreven erro-neousnomenclatureisprobablyduetothepapersofSilva(Silva, 2004a,b,2005).

A detailed description of theErythroxylaceaefamily includ-inghistory,habitat,synonymy,pharmaceuticalforms,applications, clinicalobservationsandchemicalcompositioniswelldescribed andreviewedbySilva(2004a,b,2005).

Meliaceaefamily

TheMeliaceaefamilyhaspantropicaldistribution,including52 generaand699speciesaccepted(List,2010)anddistributed pre-dominantlyinthetropicsworldwide(Joly,2002;SouzaandLorenzi, 2005).

(3)

sometimeswithpulvinusatthebase.Smallflowersonpaniculate terminalinflorescencesorintheupperaxils,bisexualorunisexual (monoecious,dioeciousorpolygamousplants),cyclic,diclamideas, radialsymmetry.Sepalsandpetalsfree.Stamensdoublethe num-berofthepetals,ingeneral,withfilletswelded,withfixedanthers on the inside top portion, nectary usually present, gynoecium gamocarpelar.Superiorovary with4–5carpelsand manyother locules,eachwith1or2ovule.Driedfruit,ingeneral,loculicidal capsuleorbaciforme.Seedsoftenwitharylorwinged(Joly,2002; SouzaandLorenzi,2005).

AmongexamplesofgenusdistributedinBrazilstandoutCedrela, apopularcedar,Carapa,TrichiliaandGuarea,whicharealso com-montreesoftherainforest,generallyknownas“canjeranas”,a goodqualitywood(Joly,2002).

Plants belonging to the Meliaceae family have long been usedinfolkmedicine.Antiviral,anthelmintic,anti-inflammatory, antiparasitic,immunomodulatory,anti-ulcer,antirheumatic, heal-ingandantioxidantactivities,amongothers,havebeenreported (Mackinnon et al., 1997; Brayet al., 1990; Nunes et al., 2003; Omaretal.,2003;Lagos,2006;Matos,2006;Paiva etal.,2006; Shietal.,2006;Resende,2007;Valmorbida,2007;Akhtaretal., 2008;Gouvêaetal.,2008;Nebo,2008;Limaetal.,2009;Nayak et al.,2010).The anti-inflammatory and antirheumatic proper-tiesofsomemembersofthisfamily,suchasAzadirachtaindicaA. Juss.,MeliaazedarachL.andCedrelatubifloraBertoni,havebeen explainedbytheiractionontheimmuneresponse(Benenciaetal., 2000).

GenusTrichilia

TheTrichiliagenuswasdescribedbyBrownein1756,and com-prises71speciesdistributed inTropicalAmerica,Africaandthe Indo-Malaysianregion,ofwhich47speciesoccurinBrazil(List, 2010; Penningtonet al., 1981; Sakuraguiet al., 2012). Belong-ingtotheMeliaceaefamily,ithasthelargestnumberofspecies inthefamilyandalsothemostanatomicalcharacteristicsofthe Meliaceaefamily. The main secondary metabolites isolated are limonoids.OnthesiteThePlantListitcanbeseenthatthereare485 namesofspeciesofthegenusTrichilia;however,amongthesethere are92speciesunresolved,286synonymsand107speciesaccepted. In theMissouriBotanical Garden(www.tropicos.org; MBG) the classificationfoundis192genusfortheMeliaceaefamilyandfor theTrichiliagenusthereareeighteenlegitimatespecies,sixteen illegitimatespecies,twelvevalidspeciesand328speciesaccepted. ThedatapresentedinThePlantListarebasedontheWCSP(World ChecklistofSelectedPlantFamilies)anddifferfromtheMBG,which features374speciesintotalcompared to485onThePlantList (www.theplantlist.org).

ManyspeciesoftheTrichiliagenusarenotedforpossessing bio-logicalactivity,mainlyinsecticide.Theseandotheractivitiesare summarizedinBox1.

Severalspecies of Trichilia have beenused in folk medicine in thetreatment of diseases suchas liver disorders, purgative, antiepileptic,antipyretic,antimalarial,physicalandmentaltonic, aphrodisiacandsexualstimulants(Ducke,1966;Mingand Correa-Junior,2002;Pizzolattietal.,2002b;Beltrameetal.,2004;Silva, 2004a).

AboutthephytochemicaltheTrichiliagender,manysecondary metabolitesderivedprimarilyfromthebiosyntheticrouteof ter-peneswereisolated.Severalterpenoidclasseshavebeendescribed, amongwhichstandoutsesquiterpenes,triterpenesand tetranor-triterpenes,whichmayberelatedtoinsecticidalactivity(Beltrame, 2005; Matos, 2006; Akhtar et al., 2008; Souza, 2008; Matos etal.,2009;Rodrigues,2009;Figueiredo,2010).Alsoreportedwas thepresenceofsteroids, coumarins,pregnans,lignans,lactones,

flavonoids,limonoids,tannins,fattyacids,vitaminE,aminoacids and␻-phenylalkanoicacidsandalkenoics(Burkill,1997;Ramírez etal., 2000;Hantos et al.,2001; Rodriguez,2003; Zhang etal., 2003; Kriefet al.,2004; Beltrame,2005; Beltrame etal., 2006; Kriefetal.,2006;Lagos,2006;Matos,2006;Resende,2007;Tang etal.,2007;Nebo,2008;Souza,2008;Tissot,2008;Matosetal., 2009;Rodrigues,2009; Rodriguesetal., 2009;Cala,2010;Fang et al., 2010; Figueiredo,2010; Martinelli, 2010; Resendeet al., 2011;Vianaetal.,2011).Someisolatedandidentifiedsubstances ofspeciesofthegenusarepresentedinBox2.

Komaneetal.(2011)carriedoutadetailedreviewofT.emetica, coveringaspectsoftraditionaluse,biologicalactivitiesand phyto-chemicals.Theyshowedthatsomeofthetraditionalusedatawere evaluatedandprovenandthechemicalbasisfoundwasresponsible fortheseactivities.

A review of thephytochemical of Meliaceaecan beseen in Paritalaetal.(2015).

TrichiliacatiguaA.Juss.

TheT.catiguaspecies(Fig.1)isfoundinsemi-deciduousandin partoftheAtlanticForests,andiswidelydistributedinSouthand CentralAmerica(Klein,1984).However,accordingtoBrazil’sFlora database,thespeciesisendemictoBrazil(Stefanoetal.,2011).It isalsoknownascatiguá,catiguávermelho,catuama,pau-ervilha, andcatuaba-do-norte(Garcezetal.,1997).Itisatreeupto10m high,andtheyoungtwigsbecomeglabrouswithageandhavegrey colouration.Theleavesarecompoundwith5–7leaflets,andthey areshortpedicellate,oblong-elliptic,acuminateleafapex,acuteat thebase,upto7cminlength.Theflowersmaybewhitish-yellow andthefruitconsistsofanarrowoblongcapsule,andisreddish, withlong,stiff,yellowishhairsapproximately2cminlength,and onlyoneseed,appearingfromDecembertoJanuary.Theflower seasonisfromSeptembertoOctober;however,thecapsulesmay remainonthetreefor5to6monthsbeforeflowering(Souzaetal., 2001;Lagosetal.,2007).

The macroscopy of the bark of T. catigua (Fig. 2) shows a greyish outersurface, ranging fromlight to darktones, with a coarse granular appearance, small circular lenticels, and short and surface longitudinalcracks. The internal surface is reddish with finely striated fibres. The fracture is externally granu-losaand internallyfibrous. The odour is not characteristic and the taste is strong and bitter (Marques, 1998; Oliveira et al., 2011).

Marques(1998)alsodescribedthemicroscopiccharacteristics ofthisplantandverifiedthepresenceofthicksuber,withabout 30–40celllayers,followedby2–3layersofstonecellsforminga discontinuousstrip.Thecorticalandphloemregions are exten-sive with numerous bundles of elongated sclerenchyma fibres transverselydistributed.Inthephloemregion,thebeamsare inter-spersedwithmedullaryrays1–2cellswide.Thebarkhascellrows withisolatedcrystalsandareddish-brownsecretioninthe inter-cellularspacesandsecretorycellsthatareusuallyisolated,andoval tooblong(Tabancaetal.,2007).Fibreswithcrystalsheaths, pris-maticcrystalsofcalciumoxalateandsimpleorcompoundstarch grains2–8␮mindiametercanalsobeobserved(Marques,1998; Tabancaetal.,2007).Oliveiraetal.(2011)developeda compara-tivestudyofT.catiguaspeciescollectedintwodifferentregionsin Brazil,BahiaandParaná,andalsoobservedthesamemicroscopic characteristicsdescribedabove.

(4)

Box1:BiologicalactivitiesobservedinsomeTrichilia genus.

Species Biologicalactivities References

T.americana(Sesse& Moc.)T.D.Penn.

AntifeedantandtoxicactivityagainstthelarvaeofSpodoptera litura.

Wheeler and Isman (2001)

T.casarettiC.DC. AntimicrobialactivityagainststrainsofStaphylococcusaureus, cytotoxicactivityinArtemiasalinaLeachandevidenceof antitumouractivity.

Almeidaetal.(2009),Figueiredo(2010)

T.catiguaA.Juss. Insecticidalactivityagainstthecaterpillarofcartridge-of-corn (S.frugiperda),affectinglarvaldevelopment,pupalweights andlarvalmortality.

Trypanocidalactivityagainstepimastigotesand trypomastigotesformsofTrypanossomacruzi. Relaxingeffectonrabbitcorpuscavernosum.

Antidepressant-likeeffectandimprovementofmemoryinmice. Antinociceptive,anti-inflammatory,antiarrhythmicand antioxidantactions.

Antibacterialactivityagainstgram-positivesuchasBacillus cereusandStaphylococcusaureus,andgram-negativesuchas

EscherichiacoliandPseudomonasaeruginosa.

Antiviralactivityagainstpoliovirustype1,bovineherpesvirus andpoliovirusinHEp-2cells.

Neuroprotectiveactivity.

Albrechtetal.(2006),Antunesetal.(2001),Barbosaetal. (2004),BogorniandVendramim(2005),Brighenteetal. (2007),Calixto and Cabrini (1997),Campos et al. (2005),

Chassotetal.(2011),Espadaetal.(2015),Faccin-Galhardi etal.(2008),Lonnietal.(2012a),Matosetal.(2006),Matos etal.(2009),Nebo(2008),Pizzolattietal.(2002a),Pizzolatti etal.(2002b),Pontierietal.(2007),Quintãoetal.(2008),

Resende(2007),Resendeetal.(2011),Tangetal.(2007),

Truitietal.(2015),Vazetal.(1997),Vianaetal.(2011)

T.clausseniiC.DC. ToxicactivityagainstlarvaeandpupaeofS.frugiperdaand anthelminticactivityagainstgastrointestinalnematodesof sheep.

Cala (2010),Cala et al. (2012),Matos et al. (2006),Nebo et al. (2010)

T.dregeanaSond. Antibacterialactivityagainstgram-positiveandgram-negative bacteriaandcyclooxygenase-1andacetylcholinesterase inhibitoryeffect.

Antimicrobialactivityandcytotoxicity.

Eldeenetal.(2005),Naidooetal.(2013)

T.elegansA.Juss. InsecticidalactivityagainstlarvaeandpupaeofS.frugiperda. Inhibitoryeffectsonvariouscomponentsoftheimmune system.

Matos et al. (2006),Matos et al. (2009),Nores et al. (1997)

T.emeticaVahl Inhibitoryactivitiesofcyclooxygenaseandprostaglandin biosynthesisandantifungalactivityagainststrainsofCandida glabrata.

SchistosomicidalactivityagainstSchistosomahaematobium.

TrypanocidalactivityagainstT.bruceirhodesienseand antiplasmodialactivityagainstPlasmodiumfalciparum.

AntitrypanosomalactivityagainstTrypanosomabruceibrucei

andLeishmaniamexicanamexicana.

Invivoandinvitroantioxidantactivitybyinhibitinglipid peroxidation.

Hormonalinfluencesonprostatecancercells. Ethnobotanicalstudyfortreatmentofmalaria. Antidiarrhoealandantimicrobialactivities. LarvicidalactivityagainstAnophelesarabiensis.

Popularlyusedtotreatgynaecologicalandobstetricdisorders. Hepatoprotectiveandantibacterialeffects.

Antioxidantpropertiesandintestinalabsorptionofphenolic acids.

Antifungalactivity. DNA-damagingactivity.

Atindehouetal.(2004),Beroetal.(2009),Bobachetal. (2014),Diarraetal.(2015),Germanòetal.(2006),Germanò etal.(2005),Geyidetal.(2005),Gunatilakaetal.(1998),

Hoetetal.(2004),Kolaczkowskietal.(2009),Konatéetal. (2015),List (2010),Mavundza et al. (2013),Mcgaw et al. (1997),Shaietal.(2008),Spargetal.(2000),Wetand Ngubane(2014)

T.glabraL. Invitroanticomplementaryandimmunomodulatoryactivities. Anti-inflammatoryactivity.

BenenciaandCoulombie(1998),Benenciaetal.(2000)

T.lepidotaMart. CytotoxicactivityagainsttheMOLT-4andU937leukemiccell lines.

Terraetal.(2013)

T.monadelphaP. Browne.

Childhealthcare. COX-1inhibitoryeffect.

AntiplasmodialactivityagainstPlasmodiumfalciparum

Asase and Kadera (2014),Atindehou et al. (2004),Larsen etal.(2015)

T.pallensC.DC. InsecticidalactivityagainstcaterpillarandlarvaeofS. frugiperda.

BogorniandVendramim(2003)

T.pallidaSw. InsecticidalactivityagainstcaterpillarofS.frugiperda, acaricidalactivityagainsttheectoparasiticRhipicephalus sanguineusandantifungalactivity.

Amaro(2007),BogorniandVendramim(2003),Pintoetal. (2010)

T.pleeana(A.Juss.)C. DC.

Antifungalactivity. Fickeretal.(2003)

T.quadrijuga(Miq.) Kunth

AntimicrobialactivityagainststrainsofStaphylococcusaureus

andS.epidermidis.

Rodrigues(2009)

T.ramalhoiRizzini Trypanocidalactivity. Ambrozinetal.(2004) T.rubescensOliv. Antimalarialactivityagainstintra-erythrocyticformsof

Plasmodium falciparum.

Kriefetal.(2006),Kriefetal.(2004)

T.silvaticaC.DC. AntimicrobialactivityagainststrainsofS.aureus,

StreptococcussalivariusandS.mutansandevidenceof antitumouractivity.

Almeidaetal.(2009),Figueiredo(2010)

(5)

Box2:IsolatedandidentifiedcompoundsfromTrichilia genus.

Species Isolatedandidentifiedsubstances References

T.americana(Sesse& Moc.)T.D.Penn.

TrichiliasteronesAandB. Hantos et al. (2001)

T.catiguaA.Juss. Stigmasterol,␤-sitosterol,␤-3-O-␤-D-glucopyranosylsitosterol, 11␤-methoxycedrelone,cinchonainsIa,Ib,Ic,Id,IIaandIIb,apocynin, catechin,ent-catechin,epicatechin,chlorogenicacid,catiguaninsAandB, procyanidinsB2,B4andC1,cedrelone,methylangolensateandepimeric mixtureofphotogedunin.

Beltrameetal.(2006),Lagos(2006),Martinelli(2010),

Matos(2006),Matosetal.(2006),Matosetal.(2009),

Nebo(2008),Resende(2007),Tangetal.(2007),Viana etal.(2011)

T.casarettiC.DC. Aromadendrane-4␤,10␣-diol,8-epi-sclareol, 24-methylenecycloartane-12-oxo-3␤,22-diol, 24-methylenecycloartane-3␤,22-diol,trichiliol,

24,25-dihydroxycycloart-22-enol,22-hydroxycycloart-24-enol,lupeol, phytol,␤-sitosterol,stigmasterol,stigmata-5,20(22)-dien-3␤-ol,itesmol, scopoletin,␤-elemen,germacrenD,elemol,ledol,espatulenol, caryophylleneoxide,viridiflorol.

Figueiredo (2010),Souza (2008)

T. claussenii C.DC. Cryptomeridiol,24-methylene-26-hydroxycycloartan-3-one,␣-amyrin,

␤-amyrin,lupeol,lupenone,␤-sitosterol,stigmasterol,campesterol, sitostenone,

24-methylene-3␤,4␤,22␣-trihydroxy-cholesterol3-␤-O-␤-D-glucopyranosyl sitosteroland␻-phenylalkanoicandalkenoicacids.

Cala (2010),Matos (2006),Nebo (2008)

T.connaroides(Wight &Arn.)Bentv.

TrijuginC,3␤,4␣-dihydroxypregnan-16-one;

8,14-2-hydroxy-6-deoxyswietenineandtrichilitonA.

Limonoids:trichagmalinA,B,C,D,EandF;15-acetyltrichagmalinC,E; 1,2-diacetyltrichagmalinC;30-acetyltrichagmalinF;

1,30-diacetyltrichagmalinF;trichanolide.

Fangetal.(2010),Zhangetal.(2003),Zhangetal.(2011)

T.elegansA.Juss. 11␤-acetoxyobacunone,

1,2-dihydro-1␣-acetoxy-11␤-acetoxy-14,15-epoxycneorin,stigmasterol,

␤-sitosterol,sitostenone,campesterol,3-␤-O-␤-D-glucopyranosyl sitosterol,scoparone,scopoletin,umbelliferone,6,7-dimethoxycoumarin, 6-methoxy-7-hydroxycoumarinand7-hydroxycoumarin.

Matos(2006),Matosetal.(2009),Nebo(2008)

T.emeticassp. suberosaJ.J.de Wilde

1-methoxy-pregnan-17(R)-1,4-dien-3,16-dione; 1-methoxy-pregnan-17-(S)-1,4-dien-3,16-dione;

1-methoxy-androstan-1,4-dien-3,16-dione;2,3-seco-pregnan-17(S)-2,3-dioic acid-16-oxo-dimethylester;2,3-seco-androstan-2,3-dioic

acid-16-oxo-dimethylester;3-methoxycarbonyl-2,3-seco-androstan-3-oic acid-16-oxo-2,19-lactone;2,3,16-trihydroxy-5-pregnan-17(R)-20-ylacetate; 2␣,3␣,16␣,20-tetrahydroxy-5␣-pregnane;2␤,3␤-dihydroxypregnan-16-one; 2␤,3␣-dihydroxypregnan-16-one.

Monosaccharide(arabinose,galactose,galacturonicacid,mannose, glucose,rhamnose,xylose).

Caffeicacid,ferulicacid,p-coumaricacid,syringicacid,vanillicacid, protocathecuicacid,gallicacid,chlorogenicacid.

Limonoids:nymania1,drageana4,trichilinA,rohituka3,Tr-B,seco-A protolimonoid.

Dialloetal.(2003),Germanòetal.(2006),Gunatilaka etal.(1998),Malafronteetal.(2013)

T.havanensisJacq. 3,7-di-O-acetyl-14,15-deoxyhavanense,

1,7-di-O-acetyl-14,15-deoxyhavanense,azadironeand␥-hydroxybutenolide.

Rodriguez(2003)

T.hirtaL. TrichiliasteronesAandB. Hantosetal.(2001) T.lepidotaMart. ␤-Sitosterol,stigmasterol,scopoletin,lepidotrichilinsAandB,

21,23-epoxy-7␣-21␣-dihydroxyapotirucalla-14,24-dien-3-one,

21,23-epoxy-7␣-21␤-dihydroxyapotirucalla-14,24-dien-3-one,dysoroneaD anddeoxyflindissone.

Terraetal.(2013)

T.pallidaSw. Naphtalene,␣-cubebene,␣-copaene,␤-elemene,caryophyllene,

␣-humulene,␥-muurolene,viridiflorene,␣-selinene,-cadinene, germacreneB,10-epi-␥-eudesmoland1-epi-cubenol.

Tissot(2008)

T.quadrijuga(Miq.) Kunth

Quadrijugol,kudithyol,spathulenol,bourjotinoloneB,nilocitin,piscidinol, dihydronilocitin,3␤,4␤-dihydroxypregn-16-one,␤-sitosterol,

3-O-␤-D-glicopyranosylitesmol,stigmasteroland 2␤,3␤,4␤-trihydroxypregn-16-one.

Rodrigues(2009),Rodriguesetal.(2009)

T.rubescensOliv. TrichirubinesAandB. Kriefetal.(2006),Kriefetal.(2004) T.silvaticaC.DC. Ethylpalmitate,␣-tocopherol,spathulenol,veridiflorol,humuleneoxide,

(2S,3S,6R,7R)-humulene-2,3,6,7-diepoxide,

(2R,3R,6R,7R)-humulene-2,3,6,7-diepoxide,mustakone,␤-sitosterolanda mixturecontainingtriterpenes␣-amyrin,␤-amyrin,pseudotaraxasteroland lupeol.␦-elemene,isoledene,␣-copaene,␣-gurjunene,aromadendrene,

␣-humulene,alloaromadendrene,germacreneD,bicyclogermacrene, germacreneA,␦-cadinene,elemol,germacreneB,␦-cadinol,␤-sitosterol, stigmasterol,ambrosanoli-11,10-diolandscopoletin.

Figueiredo(2010),Souza(2008)

T.trifoliaL. 1,3,7,11,12-dolabella-3,7,18-trien-17-oicacid, 1,3,6,7,11,12-dolabella-3,7,18-trien-6,17-olideand (1,3,4,7,11,12)-3-hydroxydolabella-7,18-dien-4,17-olide.

Ramírezetal.(2000)

T.welwitschiiC.DC. dregeaninDM4;rohituka3;trichilialactoneD5;

28,29-dinorcycloart-24-ene-3,4,6-triol;sitosterol-3-O-␤-D-glucoside; 4-hydroxy-N-methyl-l-proline;stigmasterolandsitosterol.

(6)

Fig.1. Leaves,flowers,andfruitsofTrichiliacatigua.

Source:IsmarSebastiãoMoscheta(1993)andCláudioRobertoNovello(2009).

Fig.2. MacroscopicaspectsofintactandgroundbarkofTrichiliacatigua.

Source:AnaLuizaSereia(2011).

view.Anomocytic stomataoccurexclusivelyontheabaxial sur-face. Simple tector trichomes, uni- or multicellular, uniseriate, long and erect,are present. Themesophyll is dorsiventral. The midribisbiconvexandtraversedbyacollateralvascularbundle, arrangedinacircleandsurroundedbyacomplete sclerenchymati-coussheath.Ovalsecretorycellsandcalciumoxalatedrusenare distributedintheleaves.Inthestembark,theperidermconsists ofsuber,phellogenandphelloderm,themultiseriatecortex con-tainingdrusen,andphloem.Thiscomprisessieveelements,stone cells,obliteratedfibresandcells,amidnumerousparenchymacells. Thefibresaregroupedtogetherinsmallgroupsandcontain sev-eralprismsofcalciumoxalate.Theauthorsconcludedthatthese structural dataof T. catigua arecompatible withthe Meliaceae family and contributeto the knowledge of this species, which hasbeen investigated very little from the morphological point ofview.

Theseedlings andtirodendrosof T.catigua,T.elegansand T. pallidahave alreadybeenstudiedmorphologicallyand anatom-ically by Mourão et al. (2002), with theaim of understanding

the life cycle and germination and growth processes of species.

Beltrame(2005)carriedoutamicroscopicanalysis,evaluating theanatomicalcharacteristicsofcommercialsamplesacquiredas catuaba.HeusedbarksandpowderofT.catiguaandrhizomesofA. arableasstandardplantmaterial.Ofthesevensamplesanalyzed, sixwereconsistentwiththeanatomicalcharacteristicsofstandard T.catigua,andonesampleanalyzeddidnotconformwitheither andstillhadimpurities(presenceofsand).

(7)

landscaping,especiallyforafforestationofsquaresandavenues.As afast-growingplant,itisusefulintheplantingofdegradedareas forpermanentpreservation(Lorenzi,2008).

Castellani et al. (2006) studied the volatile oil production obtainedfromleavesandbranchesofT.catiguaaccordingtothe harvestseasonandfoundthatthehighestyieldswereobservedin winter,whilethevolatileoilcontentwas0.21%intheleavesand 0.16%inthebranches.Thesampleswerecollectedinthe Silvicul-tureForest,asecondaryAtlanticForestfragmentlocatedonthe campusoftheFederalUniversityofVic¸osa,MinasGerais,Brazil. Thechemicalcompositionoftheessentialoilsatdifferenttimesof yearhasnotbeendeterminedandremainsopenforfuturestudies.

ChemicalconstituentsandbiologicalactivitiesofTrichilia catigua

Marques (1998) conducted a phytochemical screening from crudeextractofT.catiguaandobservedthepresenceofsteroids, hydrolysableandcondensedtannins,andsaponins.Inthisstudy, theauthorfoundafoamindexof250intheplantdrug.Lateron, Lagos(2006)determinedthepreliminaryphytochemicalprofileof thebarkandleavesofT.catigua.Theaqueousextractoftheleaves showedpositivereactionforanthocyaninglycosidesandtannins, bothhydrolysableandcondensed;fortheaqueousextractofthe barkofthesamechemicalgroupswereidentified,aswellasof saponins.Theresultsofthephytochemicalprofileofthealcoholic extractofthebarkandleavesweresimilar,revealingthepresence offlavonoidsandsteroids,demonstratingthesimilarityofthe com-positionofthetwopartsoftheplantinthisextract.Oliveiraetal. (2011)carriedoutapreliminaryphytochemicalanalysisofbarksof T.catigua,andtheyestablishedthepresenceofanthocyaninsand anthracenicsinadditiontothegroupsalreadydescribedabove,and

notobservedthepresenceofalkaloids,mucilages,essentialoils, andcoumarins.

Theextractandsemi-purifiedfractionsofT.catiguaare com-posed oftannins (Burkill,1997; Braz et al., 2012), ciclolignans, alkaloids, flavonoids and sesquiterpenes (Beltrame, 2005; Braz etal.,2012).Chemicalstudieshavealsoindicatedthepresenceof

␻-phenylalkanes,␻-phenyl-alkanoicacids,␻-phenyl-␥-lactones,

␥-lactones alkyl, alkenyl ␥-lactones and fatty acids of varying chainfromC14toC26,and␤-sitosterol,stigmasterol,campesterol (Pizollattietal.,2004)andamixtureofflavalignansisolatedfrom barks(Pizzolattietal.,2002b).

Studies have shown that substances contained in the crude extract of barks of T. catigua, as well as in fractions, contain condensed tannins, such as catechin, epicatechin, procyanidin (Beltrame, 2005), catiguanine A and B (Tang et al., 2007), and alsoflavolignans:cinchonainsIa (Pizzolattiet al.,2002b)andIb (Beltrameetal.,2006),IIaandIIb,andapocyninE(Resende,2007). Itisworthnotingthat Resendeand colleaguesisolatedthe cin-chonainsIIaandIIb,andapocyninE,thelatterforthefirsttimein theTrichiliagenus(Resende,2007;Resendeetal.,2011).

Some chemical substances of the T. catigua species have alreadybeenisolatedandelucidated.Amongthemare: epicate-chin(1),procyanidinsB2[epicatechin-(4␤→8)-epicatechin](2),B4 [catechin-(4␣→8)-epicatechin](3)andC1[epicatechin-(4␤→

(8)

O

OH H H

OH

OH

HO

OH

1

O

OH H

OH

OH

HO

OH

O

OH H H

OH

OH

HO

OH

2

O

OH H

OH

OH

HO

OH

O

OH OH

OH

HO

OH

3

O

OH H

OH

OH

HO

OH

O

OH H

OH

OH

HO

OH

O

OH H H

OH

OH

HO

OH

4

O

OH H

OH

OH

O

OH

O

OH OH

OH

HO

OH O

OH

OH

5

O

OH H

OH

OH

O

OH

O

OH H H

OH

OH

HO

OH O

OH

OH

6 H

H

(9)

Matosetal.(2009)isolatedthelimonoidcedrelone, methylan-golensateandepimericmixtureofphotogeduninofthemethanolic extractofthefruitofT.catigua.

Thepresenceofcinchonains,gallicacidderivatives, polyphe-nols,flavonoids,catechinsandepicatechinsinextractsfromthe barksofT.catigua,usingasextractantaliquidmixtureof water-methanol-acetone-ethanol(1:1:1:1), wasanalyzedby statistical methods,suchasprincipalcomponentanalysis,andhierarchical clusteringofthechromatographicpeaksobtainedfromHPLC-DAD spectra(Lonnietal.,2012a).

Kamdemetal.(2013)identifiedthepresenceofgallic, chloro-genic,caffeic,rosmarinicandellagicacids,quercetin,isoquercitrin, quercitrin,rutin,kaempferolandcatechin,byHPLCfingerprinting ofT.catiguabarkmaceratedextractwith70%ethanol.

Antimicrobial

The hydroalcoholic extracts and ethyl-acetate fractions obtainedfrom T.catigua barksshowedsignificantantimicrobial activity. The ethyl-acetate fraction showed the best inhibitory activityof bacterialgrowth,by inhibiting thegrowthof Gram-positivebacteriasuchasBacilluscereusandStaphylococcusaureus, and Gram-negative species such as Escherichia coli and Pseu-domonasaeruginosa.Twoflavolignanswereisolatedfromfraction, identifiedascinchonainsIaandIb,whichalsoshowedsignificant antibacterial activity. All the isolated substances were more activeagainstGram-positivebacteriathanagainstGram-negative bacteria,showing a bactericidaleffect, withminimal inhibitory concentrations,andminimalbactericidalconcentrationsranging from0.31to0.62and0.31to1.25mg/ml,respectively(Pizzolatti etal.,2002b).

Theantiviralactivitywasshowntobepromissoryforthe dis-coveryofactivemolecules.Faccin-Galhardietal.(2008)evaluated theantiviralactivityagainstpoliovirustype1inHEp-2cells.The crude extract,aqueous fractionand ethyl-acetatefractionwere tested.Thesampleswerenon-toxicattheconcentrationstested (12.5–100␮g/ml)andshowedvirucidalactivity,reducingthe infec-tion in all cases. These results suggested that the extract and fractionsderivedfromT.catiguainterferedwiththeinitial repli-cationphaseofpoliovirus.

Later,Bernardietal.(2010)assessedtheeffectsofcrudeextract, aqueousfractionandethyl-acetatefractionobtainedfrombarks ofT.catiguaonthereplicationofbovineherpesvirus.Thetested concentrationsvariedfrom12.5to100␮g/ml,withthesamples beingadded1and2hbefore,during(zerotime–0h)and1and2h aftertheviralinfection.CytotoxicitywasobservedinHep-2cellsat higherconcentrationsthan400mg/mlforallsamples.Attimezero andinthevirucidaltestofcrudeextract,inhibitionwas100%atall concentrations.Inhibitionoftheviruswastotalatconcentrationsof 50and100mg/mlaqueousfractionandethyl-acetate,bothattime zero.TheresultssuggestthatextractsandfractionsofT.catigua actintheinitialphaseofreplicationofbovineherpesvirusandalso directlyontheviralparticles.

Thesamegroup evaluatedtheantiviralactivityof T. catigua (crudeextract,aqueousandethyl-acetatefractions)inthe repli-cation ofthe herpessimplex virus(HSV-1), bovine herpesvirus (BoHV-1)andpoliovirus(PV-1).Allsamplesshowedalowtoxicity (CC50>400␮g/ml)andlowinhibitoryconcentration(IC50),Thus, itpresentsahighvirucidal effectandtheability toinhibitviral adsorption(Espadaetal.,2015).

Trypanocidal

InastudybyPizzolattietal.(2002a),thetrypanocidalactivityof someextractsandfractionsofthirteenspeciesofBrazilianplants,

includingT.catigua,wasevaluated.Theextractsweretestedinvitro againstculturesepimastigotesofT.cruzi.InthecaseofT.catigua, theextractthatshowedactivitywashydroalcoholic,obtainedfrom barksaswellasthefractionshexane,dichloromethaneandethyl acetate,withanLD50of10␮g/ml.Thedichloromethanefraction stillhasactivityagainsttrypomastigotespresentintheblood,with areductionof74%inaconcentrationof500␮g/ml.

Antioxidant

Evidencesuggeststhatdiseasescausedbyoxidativereactionsin biologicalsystemscanbedelayedbytheintakeofnatural antiox-idantsfoundinthediet,particularlyphenoliccompounds,which includeflavonoidsandtannins(Dattner,1999).Thismotivatesthe search for new antioxidants. Some studies involvingT. catigua speciesaredescribedbelow.

Bruyneetal.(1999)demonstratedtheantioxidantpropertiesof condensedtannins,frontofDPPHradical (2,2-diphenyl-1-picryl-hidrazila),superoxideanionandthehydroxylradical.Cinchonain Ib,obtainedfromtheethyl-acetatefractionofthebarksfromT. catigua,showedthebestantioxidantactivityintheDPPHmethod. Tangetal.(2007)observedantioxidantactivityinmethanolic extractof thebarkand sixcompoundsisolatedfromT. catigua, catiguanineAandB,andcinchonainsIa,Ib,IcandId.The methano-licextractshowed48%inhibitionataconcentrationof10␮g/ml intheDPPHtest.Theisolatedsubstancesthatshowedthe high-estDPPH radicalscavengingactivitywerecinchonainsIcandId withIC50(50%inhibitoryconcentration)valuesof2.5and2.3␮M, respectively.

Resende(2007)evaluatedtheantioxidantcapacityofacetone crudeextract,aqueousfractionandethyl-acetatefractionofthe barksfromT.catigua.Allextractshadhighantioxidantcapacity, andtheethyl-acetatefractionshowedhighercapacitythan vita-minCandTrolox(withrecognizedantioxidantsubstances)against thefreeradicalDPPHandtotalcapacityreductionofFe3+toFe2+. Theauthorobservedthatthehigherthetotalpolyphenolandtotal tannincontentpresentintheextract,thegreateritsantioxidant capacity. Thiswould explain thehigher antioxidantcapacity of theethyl-acetatefraction,sinceitwouldbeanextractenriched inphenoliccompounds,mainlytannins.

Resende(2007)isolatedninesubstancesofethyl-acetate frac-tionofbarksfromT.catigua,andevaluatedtheantioxidantactivity ofsevenofthemagainsttheDPPHmethod.Thesubstanceswere epicatechin,procyanidinB2,cinchonainsIa,Ib,IIaandIIb,and pro-cyanidinC1,allofwhich havehigherantioxidant capacitythan vitaminCandTrolox.Themostsignificantantioxidantactivitywas procyanidinC1(IC504.08±0.01␮M);forothersubstancestheIC50 valuerangedfrom5to10␮M,whileTroloxandvitaminCshowed IC50ofabout30␮M.Inaddition,theauthorevaluatedthereducing powerofthecomplexFe+3/ferrocyanideferrousformforthesame substancesabove.SimilarlytotheDPPH,procyanidinC1showed thegreatestactivity,followedbycinchonainsIb,IIa,IIbandIa, pro-cyanidinB2,andepicatechin.Resende(2007)alsonotedthatthe activityofsequesteringphenolicfreeradicalislargelyinfluenced bythenumberofhydroxylgroupspresentinthearomaticring: thegreaterthenumberofhydroxylgroups,thehighertheradical scavengingactivity.ProcyanidinC1has12hydroxyls,whileinthe othercompoundsthenumbervariesfrom4to9hydroxylgroups.

(10)

Albrechtetal.(2006)evaluatedtheantioxidantactivityofthe acetonecrude extract,aqueousphase andethyl-acetatefraction obtainedfromthebarkofT.catigua,showingIC50valuesofthe sam-plesof5.48,8.67and3.79␮g/ml,respectively.Basedontheresults, theauthorsconcludedthattheethyl-acetatefractionshowedthe besthydrogenatomdonorcapacity,therebyreducingfreeradical DPPH.TheauthorsevaluatedtheantioxidantactivitybyDPPH radi-calofcinchonainsIaandIb,withIC50valuesof7.87and7.64␮g/ml, respectively.

Recently,Chassotetal.(2011)comparedtheantioxidant capac-ityofethyl-acetatefraction,crudeextractandreferencesubstances, Trolox,ascorbicacidandvitaminC,withtheethyl-acetatefraction showingthemostsignificantantioxidantpower.

Withthehelpofstatisticaltools,specificallytheuseofamixture ofplanning,likesimplex-centroidtype,principalcomponent anal-ysis,hierarchicalclusteranalysisandresponsesurface,Lonnietal. (2012a)workedtowardstheoptimizationofextractsofthebarks fromT.catigua,whichhadthehighestyield,highcontentoftotal polyphenolsandantioxidantactivityhigherthanvitaminCandE.

Anti-cellulite

The association between crude extract of T. catigua, Pty-chopetalum olacoides and Pfaffia sp. has been used in topical formulationsforthetreatmentandpreventionofgynoid lipodys-trophy(cellulite).ThisrawmaterialismarketedasSlimbusterH®

(Chemyunion,Brazil),whichconsistsofastandardizedextractwith acontentof1.02%(w/w)oftotalflavonoids,expressedasrutin.The concentrationusedinsemi-soliddosageformsis5%.Thelipolytic effectisduetothestandardizationoftotalflavonoidsandsaponins containedintheextract(Babyetal.,2006;Babyetal.,2007); how-ever,theefficacyfortopicalusehasnotbeenprovensofarinthe literature.

Photoprotector

Naturalproductsthathavephenolicsubstancesintheir com-positionhavebeenconsideredaspotentialresourcesforworking synergisticallywithchemicalandphysicalsunscreenstoexpand thesunprotectionfactor(SPF)insunscreens.Thus,Munhozetal. (2012)analyzedthecrudeextractofT.catiguaastoitsFPSincrease, anditscorrelationwiththetotalpolyphenolcontentand antiox-idant capacity. The results demonstrate that the formulations werestableaftertheadditionoftheextracts,the physicochemi-calcharacteristics(macroscopiccharacteristics,centrifugationand pHtest),whencomparedtocontrol.Theantioxidantcapacitywas directlyproportionaltothetotalpolyphenolcontent.However,the invitroSPFtestshoweddecayoftheFPSincreasedformulationsof T.catiguaextract.

Aphrodisiac

T.catiguaisaplantpopularlyusedasanaphrodisiacinBrazil, andisusedtotreatsexualimpotence,stress,fatigueandmemory deficits(Pizzolattietal.,2002b).

CatuamaisaproductmarketedbyCatarinenseLaboratory,and isregisteredbytheBrazilianNationalHealthSurveillanceAgencyas aphytomedicine,inthecategoryofadrugpsychoanalepticor stim-ulant.Currently,thecompositionconsistsofamixtureofextractsof T.catigua,PaulliniacupanaKunthandCrotonheliotropiifoliusKunth, andisavailableascapsulesorasanoralsolution.Butitsprevious formulationwasbasedonthehydroalcoholicextractsofP.cupana, T.catigua,ZingiberofficinaleandPtychopetalumolacoidesBenth.This tonichasbeenonthemarketforover20yearsandisindicated

forsomedisorders,suchasmentalandphysicalfatigue,stressand muscularasthenia.

CalixtoandCabrini(1997)demonstratedthattheproduct pro-duced a vasorelaxation response, wasconcentration-dependent significantinvesselsisolatedfromdifferentanimalspecies(mice, guineapigsandrabbits)andshowedthattheseeffectsarelargely dependentonthereleaseofnitricoxideandsubstancesderived fromnitricoxide.Theconcentrationsfromthestudyrangingfrom1 to3000␮g/ml.Theyalsodemonstratedthatthevasorelaxantaction oftheproductappearstobeduetotheactionoftheactive ingredi-entspresentmainlyinP.cupana,T.catigua,andtoasmallerextent Z.officinalis.

Antunesetal.(2001)andGomes(2007)evaluatedtheeffects ofCatuamaconsideringitsoldformula.Itseffectontherelaxation ofthecorpuscavernosumofrabbitswasinvestigated,aswellas theeffect ofhydroalcoholic extractsisolated fromeach species presentintheproduct.Theproductandextractisolatesproduced adose-dependentrelaxationofshortdurationinisolatedcorpus cavernosum.ExtractsofT.catiguabarksproducedaprolongedand sustainedrelaxation.Therelaxationofthecorpuscavernosumis thekeystepinpenileerection(Antunesetal.,2001).

NeitheraqueousnormethanolicextractsoftheT.catigua ref-erence material nor alkaloid-enriched fractions of commercial samplesshowedanyeffectontherabbitcorpuscavernosuminan invitrotest(Kletteretal.,2004).

Gomes (2007) evaluated theeffects of extracts of T. catigua (aqueousinfusion)andsolutionoftheproductoncorporal biomet-ricvalues,vesiculargland,seminiferoustubulesandcomponentsof thetesticularinterstitialspaceofadultWistarrats.Aqueous infu-siondosesof36and72mg/animal/daywereadministered,andthe solutionofthecommercialproductat0.7ml/kg/animal/day,for56 days.Inalltreatmentstherewasmaintenanceofbodymasses, tes-ticularandvesicular glands,andtheGSI(gonadosomaticindex) increasedsignificantlyinanimalstreatedwiththeproduct solu-tion,comparedtothegrouptreatedwiththehighestconcentration of“catuaba”.Whenconsideringthetesticularparenchyma,there werenosignificantvariationswithrespecttodiameter,lengthand volumeoftheseminiferoustubules,aswellastheheightofthe seminiferousepithelium.Theextractsandsolutionadministered promotedasignificantdecreaseintheproportionofLeydigcells (responsiblefortheproductionoftestosterone)andmacrophages in alltreated animals.The nuclearand cytoplasmicvolumesof theLeydigcells underwentsignificantreductionsinthetreated groups,alongwiththetotalvolumeoccupiedbythesecellsand tes-ticularpergramtotalweight.Theseresultsshowedthatinfusions administeredduringtheexperimenthadadeleteriouseffectonthe populationandthevolumeofLeydigcellsinthetestesoftreated animals.

Antiarrhythmic

InotherstudieswithCatuama,accordingtoPontierietal.(2007) it was observed that this drugwas able toreverse ventricular fibrillation,avoidingthereinductionandprolonged intraventric-ularconductioninisolatedheartrabbits,andthismayactasan antiarrhythmiceffect.ThissameeffectwasobservedforT.catigua extracts.TheresearcherspointedoutthatT.catiguaextractwas mainlyresponsibleforthisactionassignedtotheproduct.

Antidepressant-likeeffects

(11)

Camposetal.(2004)investigatedtheantidepressant-likeeffect ofCatuamaandsuggestedpharmacologicalandneurochemical evi-denceforantidepressantaction.Itwasdemonstratedthatchronic and acute oral treatment resulted in a significantreduction in theimmobilitytime intwomodelsofdepressioninrats,forced swimmingandtailsuspension,whenusingadoseof200mg/kg administeredorally.

Invivo experiments indicated that treatmentwith alcoholic extractofT.catiguabarksproducedasignificantreductioninthe immobilitytimeintheclassicalmodelofforcedswimminginrats andmice,indicatingapotentialantidepressant-likeeffect.These studiesprovideevidencethattheantidepressant-likeeffectis mod-ulatedby dopamine.Theconcentrations thatdemonstrated the activityweredosesof200–400mg/kgadministeredorally6hprior totheassay(Camposetal.,2005).

Recently, Chassot et al. (2011) evaluated the possible antidepressant-likeeffect,aswellasanxiolytic,motorand cogni-tiveeffects,ofthecrudeextractandethyl-acetatefraction(EAF) ofT.catiguabarksindosesof200–400mg/kgand100–400mg/kg, respectively.Theauthorsconcludedthatasingleadministrationof differentdosesdidnotchangethebehaviourofanimals submit-tedtotheelevatedplusmazeortheirmotoractivityintheopen fieldtest.Theantidepressanteffectwasdetectedwitha doseof 400mg/kgEAF,afteracuteadministration.Bothextractand frac-tionimprovedmemoryinmice.

In 2012, continuing the work, the same group assessed whether the subchronic administration of EAF maintained the antidepressant-likeeffect and this effect was related to neuro-genesis.Oraldosesof200–400mg/kgwereadministeredfor 14 days.Theresultsconfirmthat thedoseof400mg/kgpromoted anEAFantidepressanteffectandthiseffectwasaccompaniedby anincrease incellproliferationinthedentategyrusofthe hip-pocampusafter24htreatmentswerediscontinued.However,the proliferative effect did not affect cell survival or neurogenesis (Bonassolietal.,2012).

Grossoetal.(2015)evaluatedinvitroanti-MAO-Aactivityofthe herbalteasofT.catigua,AnnonamuricataL.,Cereusgrandiflorus(L.) Mill.andHyssopusofficinalisL.,aswellasoftheirbinarymixtures. ThemostactivewasT.catiguawithanIC50valueof7.25␮g/ml,but twoeffectswerepresented:a concentration-dependentenzyme inhibitioninlowerconcentrations,whileinhigherconcentrations thiseffectdecreased.Thiswasattributedtothe antioxidant/pro-oxidanteffectofcatechins.

Anti-inflammatoryandanalgesiceffect

The analgesic effect was first studied in Catuama product andthehydroalcoholicextractsthatcomprisedthispreparation. Theresearchwasconductedinchemicalandthermalmodelsof nociceptionin male Swiss mice (Vaz et al.,1997).The authors alsoevaluatedtheacute(200–5000mg/kg,orally)andsubchronic (500–1000mg/kg, orally, for 15 consecutive days) toxicity in Swiss mice, male and female, and there was no sign of tox-icity. The 200mg/kg (orally) product produced antinociceptive time-dependent and long-lasting. In general,for all tests (con-tractioninducedbyaceticacid,capsaicin-andformalin-induced licking, tail-flick and hot-plate assays) the maximum analgesic effectwasachievedafter6hoforaladministration.The hydroalco-holicextractsinhibitedthepaininducedbyaceticacid(T.catigua 82±2%;P.cupana66±2%,P.olacoides42±2%,Z.officinale30±4%).

IntheformalintesthydroalcoholicextractsofT.catigua,P.cupana, P.olacoidesandtoalesserextentZ.officinale(200mg/kg,orally, 6hbefore)alsoinhibitedbothphasesof formalin-inducedpain. Basedontheresults,theauthorsconcludedthatthe antinocicep-tiveactioncausedbytheproductseemstoinvolveasynergistic

interactionoftheactiveingredientspresentinallplantsthat com-poseit,andthemechanismseemstobeinvolved,atleastinpart, withtheopioidsystem.

Themobilizationofarachidonicacid(AA)bytheenzyme phos-pholipaseA2(PLA2)andsubsequentsynthesisofprostaglandins areconsideredprimaryeventsintheinflammatoryprocess.Thus, drugs that inhibit PLA2, thereby blocking the cyclooxygenase enzymepathwaysofAAinthecascade,couldbeeffectiveinthe treatmentofinflammatoryprocesses.Inthisregard,new strate-giesforthetreatmentofinflammatoryprocessescanbeachieved intheresearchofactive substancesof plantoriginthatcontrol theproductionoflipidmediatorsbyinhibition ofPLA2.Awide exploratoryinvestigationoftheeffectsofT.catiguademonstrated thatPLA2activitywascompletelyinhibitedbythe hydroethano-licextractofthebarkofthisplantataconcentrationof120␮g/ml inradioenzymaticassaysinvitrowithhumanplatelets, suggest-ingthatthisplantmayproducesubstanceswithanti-inflammatory activity(Barbosaetal.,2004).

Quintãoet al. (2008) demonstrated that the antinociceptive effectoftheproductinmodelsofinflammatoryandneuropathic paininrats,orallyadministered,inbothacuteandchronic treat-ment, consistently inhibits the mechanical allodynia (pain by motion)induced by intraplantarinjectionofcomplete Freund’s adjuvant (CFA). In another series of experiments, the product caused a notablereduction of mechanicalallodynia inducedby Escherichiacoli.However,itwasnoteffectiveinalteringthe produc-tionofthepro-inflammatorymediatorsIL-1␤,TNF␣,PGE2orLTB4 afterintraplantaradministrationofsalinecontainingE.coliinrat paws.Theresultsshowthattheproductreducestheinflammatory nociceptiveresponse,butnotinneuropathicrats,withthe mecha-nisminvolvinginterferencewiththedopaminergicpathways.

Vianaetal.(2011)evaluatedtheeffectofhydroalcoholicextract ofT.catiguapeelsinabehaviouralmodelofnociceptioninSwiss malemiceandassessedthepossiblemechanismsinvolvedinthis action.Theanimalsweresubjectedtothehotplatetest, abdomi-nalcontractionandthevonFreytestafteroraltreatmentwiththe extractinadoseof200mg/kg.Theextractexhibitedan antinoci-ceptive effect in the three models. For the hot plate test, the extractshowedantinociceptiveeffect3hafteroraladministration. Theauthorsattributedthe possibleactionof theextracttothe dopaminergicsystem,which wassupportedbyaugmenteddata regardinghypothermiainducedbyapomorphineandthe preven-tionofhaloperidol-inducedcatalepsy.

Otheractivities

Catuamawasabletosignificantlyalleviatethesymptoms man-ifestedbypatientswithburningmouth syndrome(Spanemberg etal.,2012).

(12)

Insimultaneousstudies,thegroupassessedtheeffectofthese drugsonmotoractivityandreversingtheamnesiceffectinduced byscopolamineinapassiveavoidancemodelinmaleSwissmice treatedintraperitoneallyacutely.Themotoractivitywasevaluated inboxesequippedwithphotoelectricsensors,andtheT.catigua onlydrugstestcausedasignificantincreaseinthehandlingof ani-malsinadoseof10mg/kg.Passiveavoidancewasaccomplishedina light/darkchamber,subjectingtheanimalstothetaskafter admin-istrationofscopolamine(2mg/kg)and/orlyophilizedextractafter 24handaretentiontestwascarriedout.T.catigua,P.paniculata andV.cognatadidnotaffecttheseparameters,damagedlearning andmemoryinmice(Diasetal.,1996).

Mendes and Carlini (2007) pointed to T. catigua as one of the adaptogenic effects of participants, comprising anti-stress effects, improvingmemory, and increasingphysical and sexual performance,alongsideotherplantssuchas:Heteropterys aphro-disiacaMachado(Malpighiaceae),P.cupanaKunth(Sapindaceae), P.olacoides(Olacaceae)andTurneradiffusaWilld.(Passifloraceae). ThespeciesPfaffiaglomerata(Spreng)PedersenandP.paniculata (Amaranthaceae)areobjectsofpharmacologicalstudiesaimedat confirmingthispossibleactivity.

The neurodegenerative processes induced by global brain ischaemiainmicewereattenuatedbytreatmentwithT.catigua ethyl-acetatefraction,sothefractionpromotedfunctionalrecovery anddecreasedthedelayedhippocampalcellloss,thereby confer-ringneuroprotection(Truitietal.,2015).

WiththeresultsofantioxidantactivityagainstDPPHradical, Tangetal.(2007)showedanimportantpotentialofT.catiguafor thetreatmentofneurodegenerativediseases.Thus,theyexamined theneurotropicactivityoftwocompoundsisolatedfromthe ethyl-acetatefraction,andcatiguanineAandcinchonainIa.Forthis,PC12 cellswereused;however,neithercompoundshowedanyeffectfor thesecellsandorforPC12cellsmediatedbyfactornervegrowth atconcentrationsof1–100␮mol/l.

Bogorniand Vendramim (2005) sought alternativesfor pest managementontheleavesofcornandfoundinaqueousextractsof leavesandtwigsofT.catiguaapotentialinsecticidalactivityagainst larvaeandpupaeofSpodopterafrugiperda,aswellasinotherspecies ofTrichilia.TheyfoundthattheextractofleavesofT.catigua1% (w/v)affectedinsectdevelopment.

Matos et al. (2006) also evaluated the biological activity of organicextractsofleavesandbranchesofthreespeciesofTrichilia (T. catigua, T. claussenii and T. elegans) on S. frugiperda. The leavesandbranchesweredriedandgroundseparately.The sol-vents used to obtain the hexane extracts were methanol and methanol/water(1:1).Theextractswereincorporatedintoan arti-ficialdiet ina proportionof100mg ofextractper100gofdiet andofferedtoS.frugiperdalarvae.Thehexaneextractsofleaves ofmethanolandhexanebranchesofT.clausseniiwerethemost efficient,presentingahighlarvalmortalityrate(exceeding60%). Allextractsaffectedinsectdevelopment,delayinglarval develop-mentin2,1.3and3.2days,respectively,butdidnotaffectthepupal period.

Furthermore,thesamegroupevaluatedthebiologicalactivity offruitorganicextractsofT.elegansandT.catiguaonS.frugiperda. Thehexaneextracts,methanolandhydromethanolicofT.catigua seedscausedmoderatelarvalmortality(approximately50%).The highestlarvalmortalityrate(100%) wasobtainedfromthe hex-aneand methanolextracts of fruits of T. elegans(Matos et al., 2009).

Toxicology

ToxicologicalstudiesaboutT. catigua havebeenfew andfar between,leavingawideopenfield,agapthatourgrouphasbeen

seekingtomeetwithnewtoxicitystudieswhosedatahavenotbeen published.SomeoftheresultscanbeseeninLonni(2012),where thesafetyofatopicalformulation-typemultipleemulsionW/O/W containingT.catiguaextractforcosmeticusewasassessedthrough analysisoftoxicity,comedogenicityandhistopathologyinrabbits (NewZealand).Thedeterminationofexvivopermeationofthe for-mulationwascarriedoutbymeansofphotoacousticspectroscopy technique.After14daysoftreatment,thehistological,biochemical andhematologicresultsshowedthattheformulationsaresafeand thereisnoreactioninthetissue,whichdemonstratestheabsenceof toxicityandtheformulationsshowednocomedogenicity.The per-meationformulationmadebyphotoacoustictestshowedthatthe extractispresentbothintheepidermisandinthedermis(Lonni, 2012).

Galvãoetal.(1996)administereddosesof1000mg/kginmice andthehydroalcoholicextractofT.catiguacauseddeathwithin4h afteradministration.

Thestudyofclinicaltoxicologywasofthecommercial prepara-tionCatuama.Theauthorsinvestigatedthechronicadministration of25mlofCatuamatwicedailyfor28daystoevaluateany evi-denceoftoxiceffectsinhealthyhumanvolunteersofbothsexes.No severeadversereactionsorhematologicandbiochemicalchanges wererecorded(Oliveiraetal.,2005).Addedtothis,theproducthas beenmarketedinBrazilsince1995.

Thebehaviourofmicetreatedwithcrudeextract and ethyl-acetatefractionofT.catiguabarksappearednormal.Therewasno evidenceoftoxiceffectsatdosesupto5000mg/kgand3000mg/kg ofcrudeextractandethyl-acetatefraction,respectively.Nodeath wasobservedinanystudygroup,anditwasnotpossibleto estab-lishtheLD50(Chassotetal.,2011).

Santosetal. (2011)investigatedwhethermaternalexposure tocrudeextractofT.catiguacouldinterferewiththe reproduc-tiveparametersofmaleoffspring.Wistarratsreceived400mg/kg of crude extract from the first day of gestation to postnatal day 21. On the 90th postnatal day, male offspring preference and sexual behaviour, and sperm count in the testis and epi-didymis, were observed. The results do not show a significant differencewhencompared tothecontrol.Thus,maternal expo-sure does not interfere with reproductive parameters of male offspring.Theresultssuggestthattheuseofcrude extractofT. catigua during pregnancy and lactation couldbe analternative treatment for depression, but more studies are needed. Fur-thermore,in subsequentstudies,thesamegroupdemonstrated that thematernalexposuretocrude extract ofT. catigua could interferein initialphases ofpregnancy,for examplein implan-tation,orexertembryotoxicityorembryolethality(Santosetal., 2015).

TheeffectofmaternalexposuretoT.catiguacrudeextractonthe productionofantibodies(IgM,IgG1andIgG2a)intheoffspringof micewasevaluatedbySilvaetal.(2011).Theauthorsadministered 400mg/kgofcrudeextractfromthefirstdayofpregnancyuntil21 daysafterthebirthofthepuppies.Theresultsindicatethat mater-nalexposuretocrudeextractdidnotinfluencetheproductionof antibodiesintheoffspring.

(13)

Analyticalmethodsandpharmaceuticalforms

Pharmacognosticanalysishelpsinqualitycontrol;afterall,it characterizestheconditionsoftheplantdrugasitdoeswiththe grossrawmaterialforotherprocesses.

Resende (2007) evaluated the quality of the vegetable raw material,T.catigua,usingdeterminationofmoisture,particlesize distribution,extractivecontentandtotalpolyphenolcontent,just likeSereiaet al.(2012),who alsoanalyzed thetotal ashesand acidinsolubleashes.Theresultswererelativelysimilarin both works,differingonlyinaverageparticlediameterandextractive content.Meanwhile,Resende(2007)obtainedanaverage diame-terof0.56mmand19.16%extractivecontent,whileSereiaetal. (2012)obtained0.149and25.99%,respectively.Brazetal.(2012) obtained24.62% extractivecontent,andtheauthorsalso evalu-atedthemoisturecontentandtotalashes.Thesedifferencesare probablyrelatedtovariationsinmethodology(e.g.temperature, agitation,pH),equipment,solventsandreagents,andespeciallyin plantmaterial,suchas:placeoforigin,soilcomposition,growing conditions,waterandnutrientavailability,intensityandamountof lightincidence,seasonal,climate,geneticandcircadianvariations, ageanddevelopmentstage,content moisture,particlesize and periodandstorageconditions(Mello,1989;MelloandPetrovick, 2000;Audietal.,2001;Delaporteetal.,2001;Cardoso,2002;Silva, 2005; Lagos,2006; Farias, 2007; Gobbo-Netoand Lopes, 2007; Resende,2007;Sonaglioet al.,2007; Yunesand Cechinel-Filho, 2012).

Oliveiraetal.(2011)performedobtainedphysico-chemicaldata ofbarksofT.catigua andsuggestedminimumspecificationsfor quality control: total ash at maximum 6%, minimum aqueous extractivescontentof19%,minimumfoamindexof250,contentof tanninsbetween10and12%,andsaponinsbetween17and21%.

ThebarkextractsofT.catiguaarerichintotalpolyphenolsand totaltannins.Crudeextractacetone:waterhasabout36%and27%, respectively.Thepreparationofafractionrichinpolyphenolsand tanninshas81%and55%ofpolyphenolsandtotaltannins(Chassot etal.,2011).

Theplantqualitycontrolisbasedonthechemicalmarker,which ingeneraldoesnotmatchtheoverallideaofthecomplexityof chemicalcompositionthatisthedrugplant(Daolioetal.,2008). Ananalyticalmethodofqualitycontrolisessentialinassuringthe drugplantquality,intermediateproductandfinalproduct.

Takingintoconsiderationseveralplantsthathavebeen com-mercialized,suchascatuaba,Daolioetal.(2008)createdanew analyticalmethodaimedatdeterminingtheplants’identityatthe sametime asofferingquick informationonauthenticityand/or tampering.TheauthorsobservedthattheusageofNMRwouldbea possiblewaytodetermineawiderangeofmetabolites.This tech-niquewasassociatedwithHPLCalongwithmultivariateanalysis forclassificationofcommercialsamplesofcatuaba.Thesesamples weretakenfromsomepharmaciesandcompaniesinSãoPaulo, ParanáandMatoGrossodoSulstates.Theauthorsshowed dif-ferencesbetweenthecommercialsamplesandthestandards(T. catigua and A. arvense barks and leaves). The differences were detectedintheregionreferringtothechemicalshiftsof hydro-gen,whichcorrespondtocarbohydratesand aromatics,asthey havesugarandothercomponents.Theyshowedthatthe analy-sisofhydrogenNMRmaybeusedinthefutureasthefirststepin screeningtodetermineandcharacterizedifferencesinthe molec-ularcompositionofplantsamples.

For the commercialextract with T. catigua and P. olacoides, an analytical method using UV spectrophotometry has been developed. The authors have established parameters of linear-ity,interval,specificity,limitofdetection,limitofquantification, recovery,precisionandaccuracy,usingrutinasanequivalent.By analysingtheresults,theauthorscametoavalidatedmethodfor

quantifying total flavonoids, equivalentin rutin, of commercial extractcontainingT.catiguaandP.olacoides(Rolimetal.,2005).

Fourteencatuabacommercialsamples,barksfromthespecies Anemopaegma,ErythroxylumandTrichilia,havebeenexaminedin termsofidentityandpurity.Onlyaminorityoftheanalyzed cat-uabasampleshadcrudeextractonthelabelandmorethanhalf oftheproductshadbeenadulteratedwithdifferentextracts.Most ofthesamplescontainedbarksfromT.catigua.Fingerprintingby TLChasconfirmedheterogeneity.Alkaloidsinseveral concentra-tionshavebeen detectedin50% ofthesamples.TLCand HPLC methodsforseparationandidentificationofalkaloidshavebeen created.Thestructureofthetwomainalkaloids,catuabinDandits hydroxymethylderivative,waselucidated(Kletteretal.,2004).

The TLC was used to assist in quality control of drugs and plants.Thesemi-purifiedextractofcatuabawasevaluatedwiththis approach,usingasimpleeluentsystemconsistingofchloroform, aceticacid,methanolandwater,vanillinperchloricchromogenic agentandthestandardsubstancewascinchonainIb.Byrevealing theTLCplate,thestandardpresentedayellowstainwithRfvalueof 0.58,andacorrespondingspotwasidentifiedinthecatuabaextract, confirmingthepresenceofcinchonainIb(Brazetal.,2012).

Beltrameetal.(2006)evaluatedthehydroalcoholicextractof T.catiguabyHPLC.CinchonainIbwasisolatedandusedas exter-nalstandardforthedevelopmentandvalidationoftheanalytical method.AsaresourcefortheisolationofcinchonainIbtheauthors usedcounter-currentchromatography.

Lagos(2006)obtainedachromatographic profilebyHPLCof phenoliccompoundsfromcrudeextractsofthebarkandleaves ofT.catigua.Theauthorconfirmedthedataofretentiontimesand UVspectraofcatechin,chlorogenicacidandepicatechinwiththe standardspreviouslyinjected.Achromatographicprofilewasalso obtainedbygaschromatography(GC)ofcrudeextractsofthebark andleavesofthespecies,verifyingthepresenceofstigmasteroland

␤-sitosterol.

Thechromatographicprofileoftheethyl-acetatefractionwas alsodevelopedandvalidatedbyourresearchgroup,quantifying procyanidinB2andepicatechin.Thestabilityoftheworking solu-tionwasevaluated,andthiswasstableforthreedays,afterwhich timethecolourchangedfromlightyellowtoorangeandnewpeaks appearedinthechromatogram.However,monitoringof antioxi-dantactivityfor49daysofastabilitystudyshowednosignificant difference.Theformationofnewcompoundshasbeensuggested, whichmaybequinones,asalsosuggestedbyMartinelli(2010). T.catiguacontainsmanysubstanceswithreactivegroupssuchas hydroxylandcarbonylofwhichatomscanmakehydrogenbonds breaklinksorotherinteractions.Theseresultsareconsistentwith thehighreactivityofthecompoundspresentintheextract,and theireasyandrapidoxidationtogivenewcompounds(Longhini etal.,2013).Casta˜neda-Ovandoetal.(2009)proposedafree rad-icalmechanismforstabilizingthesemiquinoneformedoxidation ofcyanidin(anthocyanidin),andLonghinietal.(2013)suggested thatthesamemechanismcouldoccurwithchinchonains,dueto theirstructuralsimilarity.Theyalsopointedtoanotherplausible explanationthattheinstabilityofanalytes,includingcinchonains IaandIb,isduetothepresenceofthehydroxylgroupinposition3 oftheCring.Theeliminationofthehydroxylgroupaswatergives risetoadoublebondbetweenC2andC3,leadingtoconjugation withtheoxygeninposition1,resultinginamorestablecompound. Grosso etal. (2015) studiedthe herbalteas of T. catigua, A. muricata,C. grandiflorusand H. officinalis and theirbinary mix-turesbyHPLC-DAD.InT.catiguafourphenoliccompoundswere identified (catechin,epicatechin, epicatechin-3-O-gallateand 5-caffeoylquinicacid),andtheextracthasabout85mg/gofphenolic content.

(14)

To study the effects of different solvents (water, acetone, methanol and ethanol) and their mixtures on yield, the total polyphenolcontentandantioxidantactivityofbarksofT.catigua, Lonnietal.(2012a)usedastatisticaldesign.Theauthors demon-stratedthroughexperimentalresultsandresponsesurfacemodels thatthequaternarymixturescontainingequalproportionsofall solventsprovidedhigheryields,polyphenolcontentand antioxi-dantactivityfollowedbytheternarymixtures.Thissystemresults ineighteenpeaksinthefingerprintofthechromatography,and anincorrectchoiceofextractionsolventhindersthedetectionofa maximumnumberofpeaksandproducesapoorchromatographic fingerprint(Lonnietal.,2011).

Martinelli(2010)alsooptimizedthepreparationofextracts,but variedthealcoholratio,watermixtureatdifferenttemperatures, extractiontimeanddrug-solventratio,toobtainahigher propor-tionofcinchonainsIaandIb.Thus,itwasestablishedthatthebest conditionforextractionofcinchonainswasdrug:solvent propor-tion10%,50%ethanolsolutionandrefluxforonehourat60◦C.Also, thechromatographicprofilewasdevelopedandvalidatedbyHPLC forquantificationofcinchonainsIaandIb.

OthertechniqueshavebeentestedasalternativestoHPLC,for example capillary electrophoresis. Thismethod is a more eco-nomicaltechniquebecauseitinvolvessmallerspentsolventsand is oftenfaster, especially in relation tothenumber of theoret-icalplates involved (Baker, 1995).Sereiaand Mello(2012) and Sereia(2013)appliedcapillaryzoneelectrophoresis,a methodol-ogydevelopedforidentifyingapolyphenolfractionofsemipurified barksofT.catigua.Duringdevelopment,thewavelength,voltage, concentrationand borate bufferpH, type and concentration of cyclodextrinsareevaluated.The methodusingvoltagegradient andthechiral selector2-hydroxypropyl-␤-cyclodextrinafforded theelectropherogram witha resolution suitable for identifying ninesubstances,catechin,epicatechin,procyanidinsB1andB2, cin-chonainsIa,Ib,IIaandIIb,andchlorogenicacid,inarelativelyshort timeanalysis(15min).

Someresearchgroupshavedevelopedsemi-solid pharmaceuti-calformsandanalyticalmethodstoquantifytheactivesubstance contentand/ormarkertoevaluatethequality.

AmongthemweshouldmentionthepapersofBabyetal.(2006), whodevelopedandvalidatedamethodusingUV spectrophoto-metrytoquantifytotalbiflavonoids,anO/Wemulsioncontaining standardizedextractofT.catiguaandP.olacoides.Themethod pre-sentedislinearforreferencechemicalrutin,withtheconcentration rangingfrom5to15␮g/mlwithspecificityfortotalbiflavonoids (expressedinrutin)to361nmwiththeabsenceofinterfering com-plexmatrix.

Thesamegroupevaluated theacceleratedchemical stability oftheO/Wemulsiondeveloped.Stabilitywasdeterminedbased onthetotal flavonoids,expressedasrutin, containingthesame standardized extract ofT. catigua and P.olacoides. Thesamples wereevaluatedfor90daysandstoredat5±0.5◦C,24±2Cand 40±0.5◦C. Accordingtotheresults,theO/W emulsionshowed

acceptablechemicalstabilityduringthe90daysoftheexperiment whenstoredat5±0.5◦Cand24±2C.Intemperatureconditions of40±0.5◦Citwasshownacceleratethedegradationprocessof

thetotalflavonoids(Babyetal.,2007).

Thesameresearchgroupalsoevaluatedthequantificationof theflavonoidsinO/WemulsionwithBrazilianplantextracts.Rolim etal.(2006)usedthemethodofderivativespectrophotometryto quantifythetotalflavonoids.Theformulationalsocontainsplant extracts of T. catigua and P.olacoides as in theformulation of Babyetal.(2006),differentiatingthewavelengthoftheanalysis asbeing388nmandhadlinearityfortheconcentrationofrutinof 10–60␮g/ml.

Comparedtopharmaceuticaldevelopment,Velascoetal.(2008) developedcosmeticemulsionscontaining5%ofthecommercial

extractof T.catiguaand P.olacoides.Fourteentestformulations werepreparedandevaluatedbymacroscopicstability,apparent viscosity,pHcompatibilitywiththeskinandproper organolep-ticcharacteristics,bymeansofpreliminarytestsandaccelerated stability. The formulations are grouped into two groups: fluid emulsionsandmoreviscousemulsions.Afteranalysis,eighttest formulationswereconsideredsuitableforsubmissiontoa prelim-inarystabilitytest.Ofthese,fivetestformulationswereselected fortheacceleratedstabilitytest.Assayswereconductedon stor-ageconditions,lightandtemperatureextremes.Attheendofthe study,onlytwotestformulationsshowedthemoststableprofiles, bothbeingfluidemulsionsconsistingofself-emulsifyingwaxes, and0.3%(w/w)ofanaturalpolymer,andoneofthemalsoadded 2%soybeanlecithin.

ThemultipleemulsionW/O/WcontainingT.catiguaextractwas preparedbytheemulsificationphaseinversionmethod,with veg-etableoil,suchasandiroba,buritiandcanola.Thebestformulation wasobtainedwithcanolaoilandshowednon-Newtonianflowand pseudoplasticbehaviour.Thereleaseprofileinvitroofthese sys-temsdemonstratedthatemulsionscontaining1to0.5%ofextract ofT.catiguacanreleasephenoliccompoundsinacontrolled man-neroveraperiodof16and23h,respectively.Acceleratedstability testswerecarriedoutafter90days,andthepH,conductivity,sizeof droplets,rheologicalpropertiesandpolyphenolcontentsofthese systemswereevaluated.Hightemperaturesandhumidity accel-eratedtheprocessof degradationof thetotalpolyphenols, and resultedinphaseseparation(Lonni,2012;Lonnietal.,2015;Lonni etal.,2012b).

Challenges

Thesetofdatapresentedallowsustoforeseethedevelopment ofhigh-performancecosmeticproducts,suchasproductsforthe treatmentofcellulite,productswithfattyregulatoractivitydueto thehighcontentoftanninsaswellasforthetreatmentof acne-proneskin.Furthermore,thedevelopmentofformulationsthatare appropriatequalitativelyandquantitativelybasedonthe protec-tionof variouscutaneouscellularcompartmentsmaydelaythe onsetofsignsofsenescence,aswellasimprovingtheappearance ofskin.

In view of theantioxidant capacity of bioactivecompounds present in plants, extracts and fractions, particularly in the barks of catuaba, the antioxidantpotential of T. catigua shown in previous studies (Albrechtet al., 2006; Bruyne et al., 1999) for both the pharmaceutical field and the cosmetic area is emphasized.

Thestandardizedextractorfractionsderivedfromthisspecies, associatedornotwithotheravailabledrugs,mayrepresenta poten-tialalternativeforthetreatmentofdegenerativediseasestriggered byfree radicals(Brighenteetal., 2007;Resende,2007), inflam-matoryprocesses(Barbosaetal.,2004)andneurologicaldisorders (Camposetal.,2005;Chassotetal.,2011)wheretheclassical treat-mentisnoteffective.

Imagem

Fig. 2. Macroscopic aspects of intact and ground bark of Trichilia catigua.

Referências

Documentos relacionados

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

O objetivo deste estudo foi avaliar a adoção de Boas Práticas (BP), Procedimentos Operacionais Padronizados (POP) e sistema de Análise de Perigos e Pontos

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Table 1 - The Minimal Inhibitory Concentration of aqueous extract ( AE ), soluble ethyl acetate fraction ( SEA ), non soluble ethyl acetate fraction ( NSEA ) and bergenin ( Berg

The ethyl-acetate fraction, the aqueous fraction, the crude extract and the isolated compounds were analyzed by the method of scavenging of the DPPH free radical (Amarowicz et al.

This study evaluated the cicatrizant effect of an ointment containing 1% of the ethyl-acetate fraction extracted from the stem bark of “barbatimão” ( Stryphnodendron adstringens ),