• Nenhum resultado encontrado

Braz. J. Phys. vol.31 número3

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.31 número3"

Copied!
5
0
0

Texto

(1)

Normal Modes Propagation in a Helial

Free-Eletron Laser with an Axial Guide Field

Riadh El-Bahi,MohamedNazih Rhimi, and AbdelWahab Cheikhrouhou

Department ofPhysis,Faulty ofSienes,

UniversityofSfax,

B.P802,Sfax 3018,Tunisia

Reeivedon5January,2001

Followingupthedetailedthree-dimensionalanalysisofthepartiledynamisinafreeeletronlaser

witha helialwiggler and auniform axialguide magnetield,ahievedby Rhimiet al. [1℄, we

studythe motionofthe eletronsinthe neighborhoodoftheideal trajetory. Thenormalmodes

^

h

of thequadrati Hamiltonianare analyzed numeriallyinboth thenormal and reversed-eld

ongurationsfordierentvaluesoftheratio ^

w= ^

0. Theeletrontrajetories arethusdisussed.

Itisfoundthatpseudo-irularandelliptitrajetoriesareharaterizingbothgroup-Iand

reversed-eldgroup-IImodeswhilethemotioninthenormalgroup-IImodeismuhmoreompliated.

I Introdution

TheeletrondynamisinaFreeEletron Laser(FEL)

with a helialwiggler eld and a uniform axial guide

eld hasbeenthesubjetofmanyresearhes[1-10℄,in

partiular when the spatial dependene ofthe wiggler

eld isinluded. Itwas establishedinearlyworksthat

apartiularase ofsteadymotionexists,in whih the

eletrons follow an axially entered helial path with

onstant axial veloity in suh a way that the

trans-verseveloityvetorof theeletronisparallel or

anti-parallel to thetransversemagnetield ateahpoint.

Of ourse, now eletron is likely to follow this ideal

trajetory,andthequestionofwhatthenon-ideal

tra-jetorieslook likearises. Freundand Ganguly[3℄have

studied the equations of motion in the neighborhood

of theidealtrajetory,andhaveobtainedtwosquared

frequenies, whih haraterize the osillations of the

eletronsaboutit. Rhimietal. [1℄haveextendedthis

workbyusingguidingentersoordinatestoshowthat

thekeyquantity(alledp^

z 0

)isaombinationoflinear

and orbital momentum whih is onserved along any

trajetoryasaonsequeneof thesrew-displaement

symmetry of the magnetield. For agiven eletron,

one determines thevalueof p^

z 0

from theinitial

ondi-tions,and provided ertainonditionsaremet, axed

point of the Hamiltonian exists. The Hamiltonian is

thenexpandedaboutthexedpoint,anditsquadrati

term may be redued by the use of the properties of

the\rotational"variable ^

htotwounoupledharmoni

osillators ofharateristifrequenies ^

, and

ampli-tudesj ^

h

(

^

t=0)j 2

thatareonstantsofmotion.

Inthispaper,weontinuetheworkofref. [1℄with

moni osillators. The general behavior of the

rota-tional variable ^

h

as afuntion of the normalized

ra-diushas been investigated for the values0.05 and 0.3

of theratio ^

w =

^

0

. Provided that the magnitudes of

theosillatoramplitudesarenottoolarge,theeletron

dynamisin theneighborhood ofthesteady-state

tra-jetoriesanbedesribedauratelyusingourmethod.

Itisthebehaviorofthoseamplitudeswithrighttothe

beam radius that is one of the most important tasks

ofourwork. As amatteroffat, itisthroughthe

ex-tensionofoftheanonialtransformationofChenand

Davidson[5℄andthedenitionoftherotationalvariable

^

hthatourformalismshowedtobeeÆienttodealwith

thephysial insightoftheproblem.

The organization of the paper is as follows: The

problem formulationis given in setion II.Setion III

isdevotedtothequadratiapproximationtothe

Hamil-tonianandtheinvestigationofnormalmodes. Weend

bytheonlusions.

II Problem formulation

Thephysialongurationweemployisthatofa

rela-tivistieletronbeampropagatingthroughanambient

magneti eld omposed of ahelially symmetri and

periodihelialwigglereld,and auniformguideeld

B=B

0 ^ e

z +B

w

(1)

whereB

0

denotesthemagnitudeoftheguideeld,and

thewigglereldB

w

(2)

B w =2B w L 0 1 (k w

r)sin ( k

w z)^e r +2B w [I 1 (k w r)=k w

r℄os( k

w z)^e 2B w I 1 (k w

r)os( k

w z)^e

z

(2)

represents the wiggler eld in ylindrial oordinates.

InEq. (2),B

w

desribesthe wiggleramplitude,k

w =

2=

w

isthewigglerwavenumber,

w

isthewiggler

pe-riod, and I

n (k

w

r) and I 0

n (k

w

r)represent themodied

Bessel funtion of order n and its derivative,

respe-tively.

The self-eletri and self-magneti elds are

ne-gleted within the neutral eletron beam. Then it

follows from the steady-state Maxwell equation that

B = rA and the vetor potential an be written

as

A= 2(B

w =k w )[I 1 (k w r)=k w r℄sin( k w z)^e r +[B 0 r=2 2(B w =k w )I 0 1 (k w

r)os( k

w z)℄^e

(3)

TheHamiltonianthatgovernsthemotionofaneletron

withinthebeamis:

H(x;P)=fm 2

2

+[P+(e=)A℄ 2 g 1=2 m 2 (4)

where P is the anonial momentum, is the

velo-ityof light, eand mare thehargeand themassof

theeletron,respetively;and istherelativistimass

fator

=[1+(p=m) 2

℄ 1=2

(5)

and the mehanial momentum p is related to the

anonialmomentumPby

p=P+eA= (6)

III Hamiltonian quadrati

ap-proximation and normal

modes

Inadditiontotheenergy,theseondonstantofmotion

^ p

z 0

isgivenby[1℄

^ p

z 0

=p^

z +( ^ h ^ h ^ h ^ h

)=p^

z + ^ L z (7) where ^ L z

is the z-omponent of the angular

momen-tum, ^ h = q ^ P exp(i) and ^ h = q ^

P exp(i ) are

the rotational variables orresponding to the angles

and , respetivelyr^

=(2 ^ P = ^ 0 ) 1=2

isthegyroradius

andr^

=(2 ^ P = ^ 0 ) 1=2

istheguidingradius[8℄.

Introduingdimensionlessparametersandvariables

dened by ^ 0;w = 0;w k w ; ^ P ; = k w P ; m ; ^ H = H m 2 ; ^ z 0 =k w z 0

; ^r=k

w r; ^ R= r k w m R ; ^

t=k

w t;

the Hamiltonian given by Eq.(4) is then expressed in

thedimensionlessformas

^ H( ^ h ; ^ h ; ^ h ; ^ h ; ^ P z )=[2

^ 0 ^ h ^ h ^ w (2 ^ 0 ) 1=2 (K ^ h +K ^ h ) ( ^ P z 0 ^ h ^ h + ^ h ^ h ) 2 + ^ 2 w KK +1℄ 1=2 (8) d where ^ 0w =eB 0;w =m 2 k w

arethedimensionless

non-relativistifrequeniesandtheomplexquantityK is

K=I

0 (k

w r)+I

2 (k w r) ^ R ^ R

The omplexquantity ^

R in the last equation is given

by ^ R= ^ h +i ^ h

=r^ q

^

0 =2e

i( z^ 0

)

Theone-dimensional aseorrespondingto K =1

has been studied extensivelyin the litterature[2,5-9℄.

Thethree-dimensionalasewasundertakenbyFreund

et al. [3℄ and Rhimi et al. [1℄ in dierent manners.

Provided axed point exists and after expanding the

Hamiltonian in aTaylorseriesabout it,and retaining

onlythelowest orderterms,weobtain[1℄

^

H(; ; ^

P

;

^

P ;p^

z 0 )= ^ H 0 0 =0; 0 = 2 ; ^ P 0 ; ^ P 0 ;p^

(3)

where ^

H

0

isthesteadystateHamiltonianevaluatedat

the xed points (exatly helial trajetories)and ^

H

Q

isthequadratipartoftheHamiltonian. Treating ^

H

Q

yieldedtwounoupledharmoniosillatorswhose

har-ateristi frequenies and amplitude are ^ + and ^ , and ^ h + and ^

h respetively. Thequadratipieeofthe

Hamiltonianisthuswritten as:

^ H Q = ^ + ^ h + ^ h + + ^ ^ h ^ h = ^ + ^ P + + ^ ^ P (10)

andthesolutiontoHamiltonsequationsaresimply

^ h ( ^ t)= ^ h ( ^

t=0)e i ^ ^ t = q ^ P ( ^

t=0)e i ^ ^ t (11)

givingtwoobviousonstantsofmotion ^

h

(t=0). The

ompletesolutionto theproblem, inthequadrati

ap-proximations,hasthusbeenfound.

Expressingtheosillatorrotationalvariables ^

h

as

alinearombinationofthedierentations ^ P and ^ P ,

andorrespondinganglesand

^ h = ( ^ P +i ^ P 0 )+ ( ^ P i ^ P 0 ) [ ^

P +i ( ^

P

0

+i=2)℄ [ ^

P i (

^

P

0

i=2)℄ (12)

d

The normalization of the rotational variable ^

h

is

obtained by requiring that the Poisson braket of ^

h

withitsomplexonjugate ^ h be [ ^ h ; ^ h

℄=i (13)

whihisequivalenttoimposing

2 2 + 2 2

=1=2 (14)

TheinvestigationoftheseoeÆientsthatdependonly

ontheratio ^ w = ^ 0

andthenormalizedradiusr^

0 ,will

allowthestudythedierentmodesofpropagationand

to identify, and then avoid the problemati operating

onditionsoftheonernedFEL.

The general behavior of these oeÆients as

fun-tions of ^r

0 and ^ w = ^ 0

is shown in Figs. 1-4. The

range of ^r

0

in eah gure has been limited to values

suhthatthelowerharateristifrequeny ^

isreal.

Both groupI (^r

0

<0) andgroupII(^r

0

>0)are

repre-sentedinFigs. 1and 3for ^ w = ^ 0

=0.05and inFigs.

2and 4for ^ w = ^ 0

=0.3. First,wesee in bothFigs. 1

and 2, that for groupI, the oeÆient

+ 1= p 2; while + ; + and +

are muh smallerin

magni-tude. This implies that the rotational variable ^

h

+ is

quasi-idential with ( ( ^

P ^

P

0

) i( =2)). We

anexpet thatthe rotationalvariable ^

h should

pre-dominantlyentail( ^ P ^ P 0

+i)and( ^ P ^ P 0 i).

LookingatFigs3and4forgroupI showsthat the

o-eÆients and

areindeed small,whileat the

viinityofthestabilitylimits(wherethefrequeny ^

beomes imaginary), both oeÆients

and

diverge. This divergene is aompanied by a

vanish-remainsnite. Forsmallervaluesofj^r

0 j, 1= p 2 with

0andonsequently ^

h should mainly

in-volve ( ^ P ^ P 0

+i). This advantageous situation

(quazi-onstantgyroradius)requireseitherhighenergy

orsmall axial elds [1℄. The ontribution of the

on-jugate ( ^ P ^ P 0

i) inreases with inreasing j^r

0 j,

making the gyroradius trajetory ellipti rather than

irular. Quasi-irulartransversemotionispreferable,

sinethe trajetory is lose to thesteady-state orbits

and the axial veloity has less ripple. Hene, on the

basisof theabovestated explanation, we deduethat

group-Imotionisluidprovidedonestaysfarawayfrom

thestabilitylimits.

Thebehaviorofthegroup-IImotionis muhmore

ompliated, as is apparent in Figs. 1-4. First, in

group-II reversed-eldharaterized by small positive

valuesof ^r

0 (^r 0 < ^ w = ^ 0

) andwhere the beam and

the axial elds are anti-parallel, the urves are

self-explanatory. The oeÆients

+

and are very

loseto 1= p

2and 1= p

2, respetivelyand all others

are muh smaller in magnitude. The rotational

vari-able ^

h

+

may thus be identied with ( ^ P ^ P 0 i)

(onstantgyroradiustrajetory)while ^

h is desribed

by ( ^ P ^ P 0

i( =2)) (onstant guiding enter

radius trajetory). The trajetories of the gyroradius

andtheguidingenterradiusintheomplexplaneare

thusirlesenteredat(2 ^ P 0 = ^ 0 ) 1=2 and(2 ^ P 0 = ^ 0 ) 1=2

swept out with frequenies ^ + and ^ , respetively.

For group-II reversed eld where r^

0

is very lose to

zero,thesituationisompletelyomparabletothe

(4)

Figure1. TheoeÆientsofthenormalmode ^

h+ asa

funtionof^r0 with ^

w= ^

0=0:05:

Figure2. SameasinFig. 1,for ^

w= ^

0=0:30:

Figure3. TheoeÆientsofthenormalmode ^

h asa

funtionof^r

0 with

^

w =

^

0 =0:05:

Figure4.SameasinFig. 3,for ^

w =

^

(5)

For the normal group-II motion, the situation

re-mains the same up to the region of losest approah

where thefrequenies repel eah other (^r

0

0:1). In

Figs. 1and3,itislearthatthisfrequenyrossingis

behindtheabruptriseoftheoeÆients

and

+

tothevalueof1= p

2andtheaompanyingfallof

+

and tozero( ^

h

+

isonvertedto ^

h andvie-versa).

Inthis asefor ^r

0

0:01; ^

h

+

desribesairleof

on-stantgyroradiusatfrequeny ^

+

, whileforr^

0

0:05;

^

h

+

, it traes out a irle of onstant guiding enter

radius at the samefrequeny. On the otherhand, ^

h

movesfrom airularmotionof onstantguiding

en-ter radius to airular motion of onstant gyroradius

but withafrequeny ^

:Beyondr^

0

0:015,asis

ap-parentin Fig. 3,

beomesnon-negligibleleading

to ompliatedtrajetories. Forlargervaluesofr^

0 , all

oeÆientsbeomesigniant,andthesimplebehavior

oftheosillatoramplitudes ^

h

+ and

^

h isnolongereasy

to touh (seeFigs. 1and3).

Asseenin Figs. 2and4andforthelargervalueof

^

w =

^

0

=0:3,thetransitionregionbeingmuhlargerin

thevariablehatr

0

reahesthestabilitylimitsbefore

be-ing omplete. All theoeÆientsare almostdivergent

and doontributetotheosillatorrotational variables

^

h

on the same feet, the thing that ompliates the

trajetoriesbeyond thevalueof r^

0

0:25. Obviously,

suhasituation worsenswithinreasing ^

w =

^

0 .

IV Conlusions

In this work, we are following up the detailed

three-dimensionalanalysisofthepartiledynamisin aFree

eletronlaser withahelialwigglerandauniform

ax-ial guide magneti eld,ahievedby Rhimi et al. [1℄.

Using Eq. (12), thegeneralbehaviorofthe rotational

variable ^

h

asafuntion ofthenormalizedradiushas

beeninvestigatedforthevalues0.05and0.3oftheratio

^

w =

^

0

. Providedthatthemagnitudesoftheosillator

amplitudes arenottoolarge,theeletrondynamisin

theneighborhoodofthesteady-statetrajetoriesanbe

desribedauratelyusingourmethod. Itisthe

behav-ior of those amplitudes with right to the beam radius

thatisoneofthemostimportanttasksofourwork.A

uniformlyreversedguideeldanpresentabetter

qual-ityoftrajetoriesforaneletronbeamdriftingthrough

thewigglereld. Infat,weobservethatinthelimitof

intense axialguideeldstheelliptimotionreduesto

a irular onein whih theradial displaement of the

guiding-enter from the axis of symmetryis onstant.

This simple and favorable situation persists into the

normalgroup-IIregion,butforsmalleldfortheradius

^ r

0

. Asthelimitsofstability(whereoneofour

osilla-torfrequeniesvanish) areapproahed,ertainnormal

mode oeÆients beome large, and the

orrespond-ing movement unpreditable. Pseudo-irular and

el-lipti trajetories are haraterizing both group-I and

reversed-eldgroup-II whilethe motionin thenormal

group-IIisfoundtobemuhmoreompliated. Under

ertainonditions,thesimplepitureofthetransverse

motion as a superposition of the ideal helial motion

andtheparasitiylotronmotionisidentied.

Theexpliit alulationofthe orbitsfollowedbya

partileforwhihthepresentformalismisadequate,is

under way and the results are postponed to a

subse-quentpubliation.

Referenes

[1℄ M.N. Rhimi, R. El-Bahi, and A. W. Cheikhrouhou,

\Classial Harmoni Osillator Approah of a

Helial-Wiggler Free-Eletron Laser with Axial Guide Field,"

Can.J.Phys.,toappear.

[2℄ R.E.Aamodt,Phys.Rev.A28,2895 (1983).

[3℄ H.P.FreundandA.K.Ganguly,IEEEJ.Quant.Eletr.

7,1073(1985).

[4℄ J.Fajans,D.A.Kirkpatrik,and G.Beke,Phys.Rev.

A32,3448(1985).

[5℄ C. Chen and R.C. Davidson, Phys. Fluids B 2, 171

(1990).

[6℄ C. Chen and R.C. Davidson, Phys. Rev. A 43, 5541

(1991).

[7℄ L.Wang.D.L.Bosley andJ.Kevorkian,PhysiaD88,

87(1995).

[8℄ L. Wang and J. Kevorkian, Phys. Plasmas 3, 1162

(1996).

[9℄ V.L.B. de Jesus, A.P. Guimar~aes, and I. S. Oliveira,

Braz.J.Phys.29,541(1999).

[10℄ P.W. Milloni and J.H. Eberly, Lasers (Wiley, New

York,1998).

[11℄ J.P.BlewettandR.Chasman,J.Appl.Phys.48,2692

(1977).

[12℄ W. Dittrih and M. Reuter, Classial and

Quan-tum Dynamis: from Classial Paths to Path Integrals

Imagem

Figure 1. The oeÆients of the normal mode ^ h+ as a funtion of ^ r0 with ^ w= ^ 0 = 0:05:

Referências

Documentos relacionados

A negative lag time and an obstructive pattern were significantly more common in the DO group while a completely normal curve and a normal lag time were more prevalent in the

undergoes a hange in topology from spherial to toroidal as exhange energy grows or surfae..

a ferrogel, we assume that the dissipative mehanism. that ouples the nanopartiles and the matrix is

The animals were divided in two groups: group I received filling with caustic hydroxyapatite in the left mandible and group II had the left side bone defect filled

Although an increase in the latency of waves I and II was not observed in WH animals, the AH group presented greater wave I latency than the WH group at 18

accordance with the manufacturer’s directions and each sample was packed in accordance with the group assignments: Group I and II (CLA-MICRO): Clássico conventional

The more diffuse hyperintense T2 signal observed in patients with atrophic lesions (group 2) indicates that gliosis is more pronounced in this group, as the glial tissue contains