• Nenhum resultado encontrado

Braz. J. Phys. vol.31 número3

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.31 número3"

Copied!
6
0
0

Texto

(1)

Overview of the Phase Diagram

of Ioni Magneti Colloidal Dispersions

F. Cousin ()

, E. Dubois ()

,V. Cabuil ()

, F. Boue ()

,and R.Perzynski ()

()

Laboratoire desLiquidesIoniquesetInterfaes Chargees,CNRSUMR7612,

ase63,UniversitePierre etMarieCurie,4,

PlaeJussieu,75252Parisedex05,Frane

()

Laboratoire LeonBrillouin,CEA-CNRSUMR12,

CE-Salay,91191 Gif-sur-Yvette,Frane

()

LaboratoiredesMilieuxDesordonnesetHeterogenes, CNRSUMR7603,

ase78,Universite PierreetMarieCurie,4, Plae Jussieu,75252Parisedex05,Frane

Reeivedon8January,2001

Westudyionimagnetiolloidaldispersions,whihareonstitutedof-Fe2O3 nanopartiles

dis-persedinwater, andstabilized witheletrostatiinterpartilerepulsion. Thephase diagramV

versus (: osmoti pressure, V: partile volume,: partile volumefration) is explored,

es-peially inthe range of high and high . The osmoti pressure of the olloidal dispersion

is knowneitherbyameasurement eitherbeause itis imposed duringthesamplepreparationby

osmoti ompression. The struture of the olloidal dispersion is determined from Small Angle

NeutronSattering (SANS).Tworegimes anbedistinguished. Athigh pressure,uidand solid

phases anexist. Theirstrutureisgovernedbystrongeletrostatirepulsion, therangeofwhih

is hereevaluated. At lowpressure, gas,liquidand glassysolidsanexist. Their strutureresults

fromastikyhardspherepotential.

I Introdution

Ioni magneti olloidal dispersions are onstituted of

nanometrimagnetipartilesdispersed inwater[1-3℄.

Suhdispersions arewidelyused fortehnial

applia-tionsbeausetheyare sensitiveto aversatileexternal

parameter,themagnetield. Inthepresentwork,the

hemiallysynthesized nanopartilesareonstitutedof

maghemite (-Fe

2 O

3

). They are oated with itrate

ligands, whih ensureanegativedensity ofhargeson

the partile surfae. The resulting interpartile

ele-trostatirepulsionensuresthestabilityoftheolloidal

solution[4℄.

Suh olloidaldispersionsan bedesribedassolid

spheressuspendedinaontinuousmedium,thesolvent.

This allowsmakingananalogybetweenthe phase

be-haviorofolloidaldispersions andatomisystems.

Al-though thespatial sales are very dierent, the

inter-partilepotentialhasasimilar shapein bothsystems.

Therefore,oneanexpetthesamekindsofphasesfor

olloidaldispersionsasforatoms: gas(lowpartile

on-entration), liquid (largepartile onentration), uid

(abovearitial point)and solid (amorphousor

rys-olloidalsystemlookslikethephasediagramofatomi

systems,withgas-liquidanduid-solidtransitions[5,6℄.

Suh agas-liquidtransition resultsfromaspeial

bal-aneofattrativeandrepulsiveinterations[7℄,balane

whihsarelyoursforeletrostatiallystabilized

ol-loidal systems, as the one onsidered and here [8,9℄.

Moreover, for our magneti olloids, the existene of

thisgas-liquidtransitionalsomeansthat themagneti

dipolar interationhasamarginalinuene onthe

in-terpartilepotentialinzeromagnetieldexperiments

(asthose performedhere)[10,11℄.

Partoftheexperimental phasediagram ofthe

ol-loidal dispersion onsidered here (osmoti pressure

versusvolumefration)hasbeenpreviouslybuiltup

by oupling Small Angle Neutron Sattering (SANS)

measurements to determinations of phase separation

thresholds[6℄. Thesepreviousworksweredealingwith

low osmotipressuresand smallvolume frations,and

withgas-liquidphasetransitions. Hereweshallexplore

the borders of the previous diagram, i.e. the range

of high osmoti pressuresand large volume frations,

using samples prepared byosmoti ompression. Our

(2)

to SANS struture fator determinations allows us to

givearstharaterizationoftheirloalstrutureand

to loatethem on the diagram with respet to

thegas-liquidphaseseparations.

II Samples and methods

The partiles are hemially synthesized in water by

opreipitation ofFeCl

2

andFeCl

3

in analkaline

solu-tion [12℄. It leadsto -Fe

2 O

3

partilesof density =

5g/m 3

dispersedinanaidiaqueousmedium(pH

2). Theirsurfaeisthen oatedwithtrisodiumitrate

moleules, andthepH of thesolutionisset to 7. The

partilessurfaehargeisnegative,saturatedatavalue

of2harges/nm 2

,andneutralized byNa +

ounterions

[4℄. As the adsorbed itrate ions are in equilibrium

with unadsorbeditrate ions,theionistrengthin the

solutionisduetotheonentration[Cit℄

free

ofthese

un-adsorbeditrateionsandto theirsodiumounterions.

Thevolumefrationofthesolutionisdetermined

from hemial titration of iron [13℄. The partile size

distribution, assumed to be a lognormal one, is

ex-tratedfromthemagnetizationurvesmeasuredforlow

volume frations ( < 1%) [3℄. A two parameter t

of these urvesallowsdetermining the meandiameter

d

0 (lnd

0

=< lnd>) and thedistribution width [3℄.

The twosamples A and Bused herehavesame mean

diameter d

0

= 7nm but adierentpolydispersity

in-dex:

A

= 0:35 and

B

= 0:2. In order to hek the

gooddispersionofthepartilesatlowvolumefration,

transmissioneletronmirosopy(seeFig. 1)hasbeen

performedonaplatinum-arbonrepliaobtainedafter

ahigh-pressurefreezefrature(77Kand200bars)[14℄.

Figure1. Transmissioneletronmirosopypiture aftera

freeze fratureunderhighpressure forsampleAwith=

0.05%.

Attheendofthehemialsynthesis,theitrate

on-entration[Cit℄

free

isatleast 5:10 2

mol/L, leadingto

amaximalosmotipressureoftheorderof4000Paat

= 10%. Suh pressuresare measuredfor <10%

with a membrane osmometer(Knauer ref A0330)

be-tween 10 Pa and 4000 Pa with an auray of 5 Pa

[15,16℄. The membrane (ellulose 20 kDa) separates

twoompartments,onelledwiththeolloidal

disper-sionandtheotherlledwithasodiumitratesolution,

the onentration of whih equals [Cit℄

free

in the

ol-loidaldispersion.

In order to reah experimentally higher osmoti

pressures,thesamplesareheresubmittedtoanosmoti

ompression.Theolloidaldispersion,plaedina

dial-ysis bag (12-14 kDa), is immerged in a bath solution

of known osmoti pressureand known ioni strength.

Theosmoti pressureis xed by apolymer(Dextran,

M

W

= 110000 g/mol, Fluka) plaed in the reservoir,

polymer whih xes the hemial potential of water.

Thepressureisalibratedandindependentoftheioni

strength [17℄. The ioni strength is imposed by the

itrate onentration of the bath solution. The

equi-librium is reahed in a few weeks. The pressure and

theionistrength oftheolloidalmagnetisuspension

thenequalthat oftheexternal bath. As thenal

vol-umefration dependson and [Cit℄

free

, itis dierent

fromtheinitial value,anditis determinedagainafter

equilibrium.

SANS experiments are performed on the PAXY

spetrometer (Orphee reator, LLB, CEA Salay,

Frane). Three dierent ongurations of neutron

wavelengthand detetordistane ( =10

A, =

3.1m),(=5

A,=1m),(=5

A,=3.1m)were

used. Itleadstoaglobal rangeofsatteringvetorsq

between0.008 A 1 and0.4 A 1

. Theexperiments

be-ingperformedinlightwater,themeasuredintensity

af-tersubtrationoftheinoherentsignalisproportional

tothenulearontribution ofthepartiles[18℄. In

or-der to determine the form fator of the partiles, the

satteredintensityofsamplesAandBismeasuredfor

non-interating dilute partiles, i.e. avolumefration

0

around 1%in theonditionsofionistrength used

here. ThestruturefatorS(q;)ofonentrated

dis-persions isdeduedfromthedetetedintensityI(q;)

using: S(q;)=(I(q;)=)=(I(q;

0 )=

0 ).

III Results and disussion

Osmotipressuremeasurements:

These measurementsareperformedwiththe

mem-braneosmometerforsampleAatthreedierentitrate

onentrations. TheresultsareplottedinFig. 2as=

versus. At low,=maybeexpanded inavirial

development = kT V (1+ 2 N a VA 2 +O( 2 )); (1)

whereV isthevolumeofthepartile(thatweshall

as-similatefurtherontoitsweightaverage),isthe

den-sityofthepartile(g/m 3

)N

a

istheAvogadronumber,

andA

2

istheseondvirialoeÆient(mol.g 2

.m 3

). If

tendstoward0,=tendstowardkT=V thatequals

here30Pa. Inthepresentexperiment:

-=inreaseswith whih isharateristiofa

(3)

-=versusstronglydependsontheitrate

on-entration.

-thelineardevelopmentof=asafuntion of

giveninexpression(1)isnolongervalidin our

experi-mentalrangeof. Higherordertermshavetobetaken

intoaounthere.

Figure2. Reduedosmoti pressure = asa funtionof

volume fration for sampleA at threedierent [Cit℄free

values. Fromtoptobottom,[it℄

free =10 3 mol/L;5.10 3 mol/L;10 2

mol/L.Dashed line, dotted line and full line

respetively orrespond tobesttsofexpressions 2and3,

withÆ =68

A,48

Aand38

A.

Thus otherexpressions of involvinghigherorder

terms have to be used to desribe the system.

Car-nahan and Starlinghave proposed for hard spheres a

semi-empirial equation of state that gives the exat

virialoeÆientsuntil thefourthorder [19℄:

=

kT

V

1++ 2 3 (1 ) 3 ; (2)

In ourolloidal dispersions, in theregime explored in

Fig. 2,theinteration isrepulsiveandthesysteman

be onsidered as onstituted of eetive hard spheres

ofdiameter d

0

+2Æ,where Æsalesastherangeofthe

interpartileinteration. Theeetivevolumefration

HS

anbedenedby:

HS = 1+ 2Æ d 0 : (3)

Thebesttsofthe=datausingexpressions(2)and

(3) are presentedin Fig. 2. It givesan evaluation of

Æ for the three dierent ioni strengths of the

exper-iment ([Cit℄

free = 10

3

mol/L, Æ = 68 A; [Cit℄ free = 5.10 3

mol/L, Æ =46

A; [Cit℄

free = 10

2

mol/L,Æ =

38

A). Wesee that theinteration rangeÆ is[Cit℄

free

dependent.

WeanomparethisinterationrangeÆtothe

De-byelengththatharaterizestherangeofthe

1 0 = 4l B X i i z 2 i ! 1 2 (4) l B

being the Bjerrum length (7.2

A in water at 298

K),

i andz

i

beingrespetivelytheonentrationand

thevalenyoftheionispeiesi. Sodiumitrateis

ex-peted to behave asa 3:1 eletrolyte. This leads, for

[Cit℄ free = 5.10 3 mol/L,to 1 0 =18

A ,value muh

smaller than the experimental value of Æ in the same

onditions, 46

A . As a matter of fat, if we suppose

nowthatsodiumitratebehavesasa1:1eletrolyteof

sameonentration,weobtain 1

0

=43.5

Afor[Cit℄

free

=5.10 3

mol/L.Itis muh losertotheexperimental

valueofÆ.

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

0.01

0.1

1

10

100

Π

V (Pa.Å

3

)

Φ

(%)

Gas

+ Liquid

Gas

Liquid

Solid

Fluid

*

Critical

point

A

2

= 0

Solid

Figure 3. Phase diagram V versus from referene [6℄.

The open dots orrespond to the oexistene lines of the

gas-liquidtransition and thedashedlineis aguidefor the

eye,showingtheloationoftheritialpoint. Thefulldots

and full lines orrespond respetively to the data and ts

from Fig. 2. The straight line orrespondsto V for A2

=0. Theblaksquareorrespondstotheonditions ofthe

freeze frature piture of Fig. 1. The blak triangle

or-respondstotheonditions ofoexistene assoiated tothe

thresholddeterminationsofFig. 4. Thetwoopendiamonds

orrespondtotheuidphasesfromFig. 5. Theopen

trian-gleorrespondsto thesolidphasefromFig. 6observedat

highosmotipressure. Theopensquareorrespondstothe

solidphase fromFig. 7observed at lowosmoti pressure.

Thedottedlineisanevaluationofthefrontierbetweensolid

anduidphases.

These =data and theirts arealso reported in

Fig. 3 that represents the phase diagram of the

ol-loidalsystem, asdeterminedin referene[6℄. Itshows

thattheseosmotipressuredeterminationsarerealized

inthemonophasiuidareaofthediagram,abovethe

straightlineA

2

=0. Inthis area,A

2

>0,andthe

re-pulsiveinterationisdominating. Pleasenotethat the

onditions of thefreeze frature experimentof Fig. 1

(=0:05%andV =2.110 6

Pa.

A 3

),alsoreportedin

Fig. 3,orrespondto thesameregime. ForlowerV

values, A

2

(4)

phase transition (measured using optial mirosopy)

onrm the speial behaviorof theitrate eletrolyte.

Thephaseseparationanbeinduedbysaltaddition,

hereeitheritrateorsodiumhloride,theseondbeing

a monovalent eletrolyte. Fig. 4 plots the thresholds

for sample B at = 0.09% andV =3.6.10 6

Pa.

A

3

. Itshowsthatitrateadditionisnearlyequivalentin

onentration to NaCl addition to produe the phase

separation and thus onrms that sodium itrate

be-haveshereasa1:1eletrolyte. This ouldresultfrom

nite size eets of itrate ions assoiated (or not) to

ounterionsondensation.

Figure4. Liquid-gasphaseseparationinduedby addition

of NaCl (SampleB, =0.09 %, V =3.6.10 6

Pa.

A 3

)

-ThresholdofNaClonentrationasafuntionoftheinitial

sodiumitrateonentrationofthesolution.

SmallAngleNeutronSatteringexperiments:

These experiments have been used to explore the

area of veryhigh osmoti pressures in the phase

dia-gram,areawhereinterpartilerepulsionisdominating.

This areaanonlybeexplored withsamplesprepared

byosmotiompression. Twodierentkindsofphases

an be observed: uid ones, whih ow under

grav-ity, and solid ones, whih do not ow under gravity.

The struture fator is determined by SANS for two

uid phases (Fig. 5) and one solid phase (Fig. 6).

The two uid phases are made of sample B with the

samevolumefrationofpartiles(7%)andtwodierent

ionistrengths([Cit℄

free

=2.5.10 3

mol/Land1.5.10 2

mol/L, see Fig. 5). The twoorrespondingstruture

fators S(q) are very lose to eah other. Their low

value(0.15)intheverylowqlimitisharateristiof

Figure5. Fluidphases -Struture fatorS(q) for sample

Bat=7%andtwoitrateonentrations. [it℄

free =2.5

10 3

mol/L(fullsymbols);[it℄free =1.510 2

mol/L(open

symbols).

Thesolidphase(Fig. 6) ismade ofsampleA with

avolumefration29.5%andanionistrength[Cit℄

free

=10 2

mol/L.Itsstruturefatorhasthesameshape

asthatofaliquid,andisthusharateristiofaglassy

struture. Suh a lak of long range order probably

results from a too large polydispersity in size of the

nanopartiles[8,20℄.

Figure6. Solidphaseathighosmotipressure(=50000

Pa)-StruturefatorS(q)forsampleAat=29.5%and

[it℄free =10 2

mol/L.

Inthis high-pressureregime,the distane d

qmax =

2=q

max

, whihis assoiated to themaximum q

max of

thestruture fator,orrespondstothemean distane

d

mean

betweenpartiles in thesolution. Forexample,

for the uid sample with [Cit℄

free

= 2.5.10 3

mol/L,

d

q max =137

Aandd

mean

=136.5

A.Wealsoobserve

that d

q max

varies as 1=3

, like d

mean

. We onlude

that, for suh high pressures, the partiles are

(5)

At lower osmoti pressures, the phase diagram

(Fig. (3)) presentsat lowvolumefration agas-liquid

transition assoiated to aritial point [6,15℄. In the

area of large partile volume frations, a glassy solid

phase, prepared by osmoti ompression, is also

ob-served. Fig. 7presentsthestruturefatorofasolution

based on sample B of volume fration 30% and ioni

strength[Cit℄

free

=1.5mol/L.Contrary totheformer

ase,themaximumofthestruturefatororresponds

heretotheontatdistanebetweentwopartiles

(tak-ing into aountthe thiknessof the adsorbed itrate

layer): d

qmax =75

Aandd

ontat =80

A.Forsuhlow

pressures, the partiles are no longer homogeneously

dispersed inthesample. Letusalsonoteanupturnof

S(q)at lowq,harateristiofaninterpartile

attra-tion. It results that the interpartilepotential is that

ofstikyhardspheres.

Figure7. Solidphaseatlowosmotipressure(=750Pa)

-StruturefatorS(q)forsampleBat=30%and[it℄free

=1.5 mol/L.

IV Conlusion

We are able to prepare highly onentrated

disper-sionsofmagnetipartilesofknownionistrengthand

knownosmotipressure,whihallowustoexplorelarge

areasatthebordersofthephasediagram. Tworegimes

anbedistinguished:

at low salinity (high osmoti pressure), the system

presentsuidphasesandsolidphasesonly. Their

struture is ruled by thestrong eletrostati

re-pulsion, therange ofwhih ishereevaluated. It

is of the order of the Debye length if it is

al-ulated onsidering thesodium itrate asan 1:1

eletrolyte. Thesolid phasehereobtainedhas a

olloidal glass struture. This has to be related

rst to thesample polydispersity, and seond to

maynotallowittoexploreallongurations.

athighsalinity(lowosmotipressure),aglassysolid

phase is also observed at large partile volume

frations. The struture fator is then modied

byan attrative interation. Within this range,

therepulsion issreened,andtheattrativepart

oftheinterpartile potentialanbeseendiretly

on the struture fator. The resulting potential

anbedesribedasthatofstikyhardspheres.

Inthat work, we haveexplored the borders of the

phase diagrams towards large pressures and volume

frationsassummarizedinFig. 3. Althoughthisgives

agoodideaoftheglobalphasebehavior,severalpoints

remaintostudyin forthomingworks:

- where is exatly the boundarybetweenthe uid

andthesolidphase?

-howdoesthe olloid behavein the neighborhood

oftheritialpoint?

-arethereatriplepointandaoexistenebetween

gasandsolidphasesat lowosmotipressure?

- is there a oulation area in the diagram, for

low ioni strengths, when the surfae harge density

dependsonthe[Cit℄

free

onentration?

As mentioned in the introdution, the magneti

dipolar interation has a negligible inuene for suh

experimentswithoutanappliedmagnetield. We

ob-serve the same kindof phasediagram aswith a

non-magnetiolloidaldispersion. Thenextstepwill beof

ourse the study of the uid, liquid and solid phases

obtainedundermagnetield.

Aknowledgments

We thank Delphine Talbot for preparing the

ini-tialolloidaldispersions. High-pressurefreezefrature

replias have been done by J.P. Lehaire in

Labora-toiredeBiologieMarine,UniversiteParisVI.The

or-responding eletron mirosopy piture has been

ob-tainedbyM. Lavergnein Centre RegionaldeMesures

Physiques,UniversiteParisVI.

Referenes

[1℄ R.Rosensweig,inFerrohydrodynamis(Cambridge

Uni-versityPress,Cambridge,1985).

[2℄ E. Blums, A. Cebers and M.M. Maiorov in Magneti

uids,editedbydeGruyter(NewYork,1997).

[3℄ inMagnetiuids andAppliations -Handbook, edited

byBerkovsky(BegellHouse,NewYork,1996).

[4℄ E. Dubois, V. Cabuil, F. Boue, and R. Perzynski, J.

Chem.Phys.111,7147(1999).

[5℄ F. Cousin and V. Cabuil, Prog. Colloid Polymer Si.

115,77(2000).

(6)

Lang-[7℄ C.F. Tejero, A. Daanoun, H.N.W. Lekkerkerker, M.

Baus,Phys.Rev.Lett.73,752(1994).

[8℄ P.N. Pusey, in Liquids, freezing and glass transitions,

edited by J.P. Hansen, D. Levesque, J. Zinn-Justin

(North-Holland,Amsterdam,1991)765.

[9℄ J.M. Vitor and J.P. Hansen, J. Chem. So., Faraday

Trans.2, 81,43(1985).

[10℄ M.E.vanLeeuwenandB. Smit, Phys.Rev.Lett. 71,

3991(1993).

[11℄ M.J. Stevens and G.S. Grest, Phys. Rev.E 51, 5962

(1995).

[12℄ R. Massart, IEEE Trans. Mag. MAG-17,1247 (1981);

R.Massart,FrenhPatent79-188-42(1979);U.S.Patent

4329241(1982).

[13℄ G. Charlot, in Les methodes de la himie analytique,

editedbyMassonetCie(Paris,1966)737.

[14℄ D.Fauhadour, T.Pouget, J-P.Lehaire,L. Rouleau

and L. Normand, Revue de l'Institut Franais du

Petrole,vol54(4),513(1999).

[15℄ F.CousinandV.Cabuil,Journalofmoleularliquids,

83(1-3),203(1999).

[16℄ F. Cousin, Thesis of the University Paris VI, Paris

(2000).

[17℄ C.Bonnet-Gonnet,Thesis oftheUniversity Paris VI,

Paris(1993).

[18℄ F. Gazeau, F. Boue, E. Dubois, S. Neveu and R.

Perzynski,tobepublished.

[19℄ N.F.CarnahanandK.E.Starling, J.Chem.Phys.51,

635(1969).

Imagem

Figure 1. Transmission eletron mirosopy piture after a
Figure 3. Phase diagram V versus  from referene [6℄.
Figure 6. Solid phase at high osmoti pressure ( = 50000
Figure 7. Solid phase at low osmoti pressure ( = 750 Pa)

Referências

Documentos relacionados

hemial speies are present on the maghemite surfae by hanging the laser exitation energy.. Maghemites modied by the adsorption of asparti and glutami aids as well as those

Some fundamentals of M ossbauer spetrosopy and of utuating magneti hyperne interations..

Thermal diusivity results obtained with the ollinear mirage tehnique, are reported for dierent.. onentrations surfated ferrouid and for a set of aid ferrouids with variable

We onsider that one of the uids is a ferrouid and that an external magneti eld is applied.. The interfaial instabilities whih arise between the uids are studied for various

Ferrouid drops are freely suspended in air by using magneti elds to.. reate an attrative fore

The phase diagram of a magneti olloid in a Hele-Shaw ell is alulated.. As a funtion

the dispersion equation is then used to analyse the apillary-wave resistane, that is the drag fore.. assoiated to the emission of waves by a moving disturbane at a free

urv ature salar vanishes and the salar eld hanges from real to purely imaginary..