• Nenhum resultado encontrado

REPOSITORIO INSTITUCIONAL DA UFOP: Computational and physical simulation of fluid flow inside a beamblank continuous casting mold.

N/A
N/A
Protected

Academic year: 2019

Share "REPOSITORIO INSTITUCIONAL DA UFOP: Computational and physical simulation of fluid flow inside a beamblank continuous casting mold."

Copied!
11
0
0

Texto

(1)

JournalofMaterialsProcessingTechnology233(2016)89–99

ContentslistsavailableatScienceDirect

Journal

of

Materials

Processing

Technology

j ou rn a l h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / j m a t p r o t e c

Computational

and

physical

simulation

of

fluid

flow

inside

a

beam

blank

continuous

casting

mold

Johne

Jesus

Mol

Peixoto

a,∗

,

Weslei

Viana

Gabriel

a

,

Leticia

Queiroz

Ribeiro

a

,

Carlos

Antônio

da

Silva

a

,

Itavahn

Alves

da

Silva

a

,

Varadarajan

Seshadri

b

aDepartmentofMetallurgicalEngineering/REDEMAT,FederalUniversityofOuroPreto,OuroPreto,Brazil bDepartmentofMetallurgicalEngineering,FederalUniversityofMinasGerais,BeloHorizonte,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received16October2015

Receivedinrevisedform7January2016 Accepted12February2016

Availableonline17February2016

Keywords: Beamblank Fluidflow Continuouscasting Nearnetshapes PIV

a

b

s

t

r

a

c

t

Themainfeaturesoftheflowfieldinsideabeamblankcontinuouscastingmoldhavebeenassessed throughmathematicalandphysicalmodelingtechniques.Experimentaltechniquessuchasparticle dis-persionthroughadditionofdyeandparticleimagevelocimetryhavebeenusedinaphysicalmodelofthe moldtoassesstheflowpattern.Differentcombinationsofnozzlegeometryandthroughputhavebeen employedandtheexperimentalresultshavebeenanalyzed.Inthecaseoftwotubularnozzles,which shouldensuregoodthermalandflowsymmetry,sixvorticeswereobservedinthemold,twonearthe webandtwoineachoftheflanges.Increasingtheflowrateofthefluidfrom100L/minto150L/min leadstoachangefrom0.74mto0.84minthejetpenetrationdepth.Howeverevena67%increaseof thenozzlecrosssectiondidnotaffectthisparametersignificantly.Experimentswithonesingletubular nozzle(53.2mminsidediameter)werealsocarriedoutandtheresultingflowasymmetryhasbeen char-acterized.Thedifferenceinthefluidvelocitiesatthefiletscouldleadtounequalsolidshellgrowth.The depthofjetpenetrationislargerthanmoldnominallength(0.8m).Fluidflowstructureasdetermined byPIVmeasurementsandCFDsimulationsshowagoodagreement.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Actualexperimentaltrialstodetermineoptimumconditionsof operationinthecontinuouscastingunitcanleadtointerruptions intheproduction scheduleandconsequentlylossof productiv-ityandprofitability.Mathematicalanalysisandphysicalmodeling experimentsinthelaboratoryareanalternativetoachieve opti-mumconditionsforachievingincreasedproductivityandimproved qualityoftheproduct.Hibbeleretal.(2009)developeda math-ematical model for simulating thetemperature profileand the stress/deformationfieldinsidethesolidifyingshellinabeamblank continuouscastingmold.Thismodelisalsocapableofthrowing lightonthemechanismofcrackformationatthefiletregion,dueto acombinationofathinnershell,mechanicalstressandanextended airgap.

Leeetal.(2000)hadobservedthattheairgapwasmainlyformed intheflange-tip,whichretardstheshelldevelopmentinthisregion. Theirregularadvanceofthesolidifyingshelliscausedby

nonuni-∗Correspondingauthor.

E-mailaddress:johnepeix@yahoo.com.br(J.J.M.Peixoto).

formheattransferandthestressconcentrationinthethinnestpart ofthesolidifiedshell,implyingahigherprobabilityofoccurrenceof cracks.Zhaoetal.(2014)detectedthatalargetemperature differ-encebetweenthefiletandotherregionsonthesurfacecancause longitudinalcracksatthefillet,andanoptimizationinthecooling systemcanimprovethequalityofthebeamblank.

Theflowfieldinsidethemoldisknowntoimpactthesteel inter-nalcleanlinessandthegrowthoftheshell.Intheconventional continuouscasting,theflowfieldisinfluencedbymoldgeometry, castingvelocity,nozzlegeometryaswellasimmersiondepth.Chen etal.(2012a)hashighlightedtheseeffectsforthebeamblank cast-ingprocess.Yangetal.(2006)consideredtheeffectsofagrowing shellontheflowandfoundittobesignificantduetothelocalized smallflowsection.

Chenetal.(2012a)haveperformedstudiesontubularnozzles andconcludedthattheycausedeepsteelpenetrationdepthsand smallmeniscusvelocity.Thiscouldleadtoadecreaseinthe likeli-hoodofinclusionflotationandalsodecreasingentrapmentofmold powderbythebulkmetal.Theauthorssuggestanozzleimmersion depthintherangeof50–100mm.

TheusualarrangementofSENforbeamblankcontinuous cast-ingemploystwotubularnozzles,atthecenterofeachflange.To

(2)

Fig.1.(a)Schematicsof1:1beamblankmodelofamold;(b)isometricviewofthebeamblankwithonenozzle;(c)beamblankdimensions;(d)crosssectionofbeamblank depictingcuttingplanesAA,BB,andCC.

improvetheproductqualityandproductivity,otherconfigurations havebeensuggested.Yangetal.(2004)analyzedthefluidflowin beamblankmoldfittedwithtwonozzles,andfoundthatthe con-figurationofaSENwithafrontalandtwolateraloutlets,withan angleof120◦ betweentheoutletsandaportinclinationof+15◦ leadtobetterinclusionremovalfrommoltensteel.Accordingto Chenetal.(2012b),inthecaseofathreeholeSEN,thesteel pen-etrationdepthwouldbereducedwithasubstantialchangeinthe velocityatthefreesurfaceaccompaniedbyamoreintense fluctu-ation.Thishelpsinthemeltingofthemoldpowderandleadsto abetterabsorptionofnon-metallicinclusions.Therecommended portinclinationangleinthiscasewas+9◦.

Employmentoftwonozzlesinthemoldiscomplexandrequires agoodflowcontrolascomparedtoasinglenozzlearrangement. Nozzle´ısmispositioningcanstimulatenon-symmetricalflow lead-ingtoproductdefects.Ontheotherhand,asinglenozzlefeeding canresultinahighliquidsteelvelocityinthemold,whichis harm-fultotheshellintegrityand meniscusstability.De Santis etal. (2014)proposedin thecase of beamblankcontinuouscasting, feedingthemetalwithonlyonenozzle.Multi-holesnozzle geome-trieshavebeenanalyzedthroughmathematicalmodeling.Anozzle witha50mmdiameterthroat,a50mm×60mmellipticallateral portinclined25◦downwards,anda20mm-diameterbottomhole, hasbeenproposedasthebestSENdesignundertheiroperational conditions.

Asitcanbeseenfromtheabovesurveytheflowfieldinsidethe moldisfundamentalincontrollingtheproductqualityand pro-ductivityandhenceshouldbeoptimizedbycontrollingdifferent variablesrelevanttotheprocess.Inthiscontribution, mathemat-icalandphysicalmodelingofflowfieldinsideabeamblankmold havebeencarriedoutandtheeffectofnozzlegeometry,casting velocityandotherparametershavebeenanalyzed.

2. Methodology

Experimentswereconductedinaphysicalmodel(acrylic)with thefollowingdimensions:499mm×415mm×125mmwiththe moldlengthof 1.5m. Fig.1 representsthephysicalmodel con-structedwithascaleof1:1oftheprototypeofbeamblankmold.The physicalmodelisbasedonsimilaritycriteriabetweentheindustrial steelsystemandamodelemployingwaterastheworkingfluid. ThishasbeendiscussedbySzekelyandIlegbusi(1989). Accord-ingtothem,theisothermalflowsimilarityisachievedifReynolds andFroudedimensionlessgroupsaretakenintoconsideration.A modelwith1:1scaleispreferredconsideringthephysical proper-tiesofwater(25◦C)andsteel(1600C)suchasdynamicviscosity anddensity.Hencethemodelvolumetricflowrateisequaltothe volumetricflowrateofsteelintheindustrialunit.Howeverthe effectofagrowingshellandtheconvectivemotionduetovariation oftemperatureinthesteelpoolinthemoldcouldnotbetakenin considerationsincethefluidusedinthephysicalmodeliswaterin isothermalconditions.Thetechniquesinvolvedintheexperiments withthephysicalmodelwereasfollows.

Acontinuousflowofdyewasinjectedinthenozzle.Dye disper-sionwasfollowedbytakingamoviefromwhichdifferentframes fordifferenttimescouldbedetached.Inadditiontodispersion,the penetrationdepthsofliquidjetwerealsomeasured.

(3)

J.J.M.Peixotoetal./JournalofMaterialsProcessingTechnology233(2016)89–99 91

Fig.2. PIV(ParticleImageVelocimetry)accordingtoDANTEC®.

Source:http://www.dantecdynamics.com/measurement-principles-of-piv

Fig.3.Spreadingofadyeinjectedatthetubularnozzleasafunctionoftime.Type1nozzle,liquidflowrateof100L/min—(a)t=1s;(b)t=2s;(c)t=3se(d)t=4s.

Quantitativeanalysisofflowfieldwasmadepossiblethrough the adoption of PIV technique (Particle Image Velocimetry), developed by DANTEC® (Fig. 2). More details of this tech-niquecanbefoundelsewhere(http://www.dantecdynamics.com/ measurement-principles-of-piv).PIVwasemployedtoevaluatethe

(4)

73 75 77 79 81 83 85

90 110 130 150

je t pe ne tr at io n de pth (c m )

Liquid flow rate (L/min) Type 1 nozzle

Type 2 nozzle

b)

73 75 77 79 81 83 85

90 110 130 150

mc ( ht pe d n oi t ar te ne p te j)

Liquid flow rate (L/min) Type 1 nozzle

Type 2 nozzle

a)

Fig.4.Comparisonbetweenvaluesofpenetrationdepth(a)dyedispersionat2s;(b)CFDresults.

Fig.5.VelocityvectorplotfromCFDforflowrateof125L/min(a)sectionAA,nozzletype1;(b)sectionAAnozzletype2;(c)sectionBBnozzletype1;(d)sectionBBnozzle type2.

Theexperimentalresultsfromthephysicalmodelhasthe objec-tiveofsubstantiatingtheresultsofCFDmodelling,sothatthelatter canbeusedasareliabletoolforimprovementandoptimizationof theprocess.CFDmodelingwasaccomplishedbyusingAnsys®CFX 15.0,assumingisothermalsteadystateconditions.Thestandardk -C

-- turbulencemodelwasused.Thenthefollowingequationshave beensolved:

Continuity:

t +

•(U)=0 (1)

NavierStokesequation:

∂U

∂t + ∇ •

␳U⊗ U

− ∇ •

eff∇U

= −∇p+ ∇ •

eff∇U

T

+ B (2)

Effectiveviscosityequation:

eff =+t (3)

Equationsofthek-␧turbulencemodel:

(k)

t +

•(Uk)=

+t

k

K

+Pk−ε (4)

(ε)

t +

•(Uε)=

+t

ε

ε

k(Cε1Pk−Cε2ε) (5)

t=C

k2

ε (6)

Here␳istheliquiddensity(Kg/m3);tisthetime(s);

isthe Nablaoperator;Uistheaveragevelocity(m/s);effistheeffective

viscosity(Pa.s);Bisthebodyforce(N);isthemolecularviscosity; tistheturbulentviscosity(Pa.s);kistheturbulentkineticenergy

(m2/s2);Pkistherateofproductionofkineticenergydueto

vis-cosityandbuoyancyeffects;εistherateofdissipationofturbulent kineticenergy(m2/s3);Cε1,Cε2,C,kareconstants.

(5)

J.J.M.Peixotoetal./JournalofMaterialsProcessingTechnology233(2016)89–99 93

Fig.6.Velocityvectorplotatthemeniscusregionforliquidflowrateof125L/min:(a)type1nozzleand(b)type2nozzle.

Fig.7. VelocityvectorplotsasafunctionofdistanceYfromthemiddleofthenozzle.PIVvaluesatadepthfromthemeniscusof:(a1)250mm,(b1)500mm,(c1)750mm; CFDvaluesatadepthfrommeniscusof(a2)250mm,(b2)500mm,(c2)750mm.Nozzletype1.

Nonslippingconditionateachliquidsolidinterface,nozzleand

walls.ThenU,kandεvaluesaretakenaszeroattheselocations.

Freesurfaceconditionatliquidatmosphereinterface,withUw

equaltozero.

Anaveragevelocityatentrynozzlecanbeestimatedfromthe

(6)

respec-Fig.8.VelocityvectorplotatplaneBBforflowrateof125L/min:(a)CFDsimulation;(b)physicalsimulation—PIV.

tively);accordinglyaveragevaluesofkandεhavebeenestimated assuming(Lietal.,2001):

k=0.01V2 (7)

ε= k

1.5

R (8)

whereVistheaverageliquidvelocityatthenozzleinletandRis thenozzleinternalradius.

A simplerapproach to achieve symmetrical flow in a beam blank mold is by using twin tubular nozzles. One single noz-zlealwaysresultsinanon-symmetricalflow.Thetwocasesare detailedhere.Fortwonozzles,symmetricalflow,a combination oftubularnozzlesofdifferentinsidediameters(type1:26.7mm; type2:34.6mm)andcastingvelocities(100L/min,125L/minand 150L/min)havebeenemployed.Thesevolumetricliquidflowrates correspondto the linear casting velocities namely0.78m/min; 0.98m/minand1.2m/min,respectively.Nozzledepthof immer-sionwaskeptat100mm.Physicalandnumericalsimulationsfor onenozzlenon-symmetricalflowhavebeencarriedout consid-eringonetubularnozzlewith53.2mmofinsidediameter(type3 nozzle)atthesameflowrates.Theresultshavebeencompared withthosefromanarrangementwithtwonozzleswith26.7mm insidediameter(type1nozzle).

3. Resultsanddiscussion

3.1. Twonozzles,symmetricalflow

Fluidflowcharacteristicshavebeendeterminedattwocutting planes,AAandBBasshowninFig.1(b) and(d).Themaximum depthreachedbytheincomingliquidjetwasdeterminedusingdye dispersiontechniqueinthemold.Thistechniquehadbeenused byChenetal.(2012b)andZhangetal.(2014).Framesobtained fromdyedispersionexperiments,arerepresentedinFig.3.Itwas observedthatafterroughly2s,dyedispersionwasmainlyinthe horizontaldirection,withaminorinertialcomponentpushingthe dyetowardthebottom.Aframeofdyedispersionat2sofinjection wasusedtodefinethesteelpenetrationdepth.

(7)

J.J.M.Peixotoetal./JournalofMaterialsProcessingTechnology233(2016)89–99 95

Fig.9.Velocityvectorplotfromydistancefromthecenterofthenozzle,planeBB:PIVatadeepdowndistancefromthemeniscusof(a1)250mm,(b1)500mm,(c1)750mm; CFDsimulationatadeepdowndistancefromthemeniscusof(a2)250mm,(b2)500mm,(c2)750mm.Nozzletype3.

Chenetal.(2012a)havealsofoundthatincreasingflowrates leaded to increasing steel penetration depth. However values obtainedby them were greater than 1m for casting velocities of 0.7m/min to 1.3m/min in the case of a beam blank mold ofdimensions550mm×450mm×90mm,usingtubularnozzles withinternaldiametersfrom40mmto75mmrespectively.The differencecanbeascribedtothemoldgeometry,anarrowerweb andalongerflangeimpairingthefluidflowtowardtheweband thenkeepingtheflowrestrictedtotheflangeregions.

CFD simulationshighlight similar features of theflow field. Fig.5(a)and(b)showsthattheliquidjetspreadsitselftowardthe bottomandthengetsbacktothesurface,generatingtwoeddies inthewebregion.Theliquidmovestotheliquidjetregionand thenisdraggeddown.AlsoinFig.5,onecannoticethepresence oftwoeddiesclosetothesurface.Liquidfromtheseeddiesmoves fromtheflangetothewebandthendownintothejet.This behav-iorissimilartothatfoundbyChenetal.(2012b).Sixeddieswere observedbyZhangetal.(2014).

Nosizableeffectontheoverallfluidflowwasobserved,when changingthenozzleinsidediameterfrom26.7mmto34.6mm.This isseeninFig.5(a)and(b)—planeAA—andinFig.5(c)and(d)—plane BB.Fluidbehaviorissimilarforbothnozzles,althoughjetaverage velocitydecreasesforlargernozzleasexpected.Zhangetal.(2014) alsoobservedthatlargerSENinnerdiameterwouldleadtosmaller liquidlevelfluctuationandanincreaseintheinclusionremoval rate.

Fig.6showsa velocityplotatthemeniscusregion.Onecan noticeaflowfromtheflangestothecentralpartoftheweb.Higher valuesofvelocitywereobservedclosetothefillets.Smallernozzle diameterleadstohighervelocities.Leeetal.(1998)pointedout thattherecirculatoryflowatthewebandatthetipoftheflange

influencesthegrowthofsteelshell.Thegrowthofsteelshellatthe filetregionsisslowerduringtheearlysolidificationstages.Alsothe growthofsolidshellatthefiletregionandatthemiddleoftheweb canberetardedbydirectimpingementofthesteeljetcomingfrom thenozzleupontheshell.

It is important to remember that very low velocities at the meniscusregionare related tosmallerrateofpowder melting, inclusionflotationandremovalbythetopslag.Ontheotherhand excessivevelocityatthemeniscuscanleadtomeniscusoscillation andslagentrapment.DeSantisetal.(2014)suggestedameniscus velocityaround0.30m/sinordertoensuretherequiredpowder meltingrate.AsitcanbeseenfromFig.6,thevaluesofvelocity atthemeniscusarebelowthiscriticalvalue.Enlargingthe noz-zleinsidediametercanfurtherdecreasethevelocity.Thiscould berelatedtosmallervelocitiesattheupperrecirculationeddies showninthevectorplotofFig.5(c)and(d).

Fig.7showstheverticalcomponentofvelocityinahorizontal measurementlinedrawnthroughtheplaneBB—Fig.1(d).The mea-surementlinesare250mm,500mmand750mmdeep,downthe meniscus.Thisfigureprovidesacomparisonbetweenphysical sim-ulation(PIVvalues,leftside)andCFD(rightside)modelingresults. Largervaluesofvelocityareatthemiddleregion,aroundthecore ofthejetcomingfromthenozzle.Velocitiesdecreasetowardthe walls,asexpected.Thesmallervelocityvaluesintheregion,deep downfromthemeniscusareduetojetspreading.Increasingflow ratesleadtohigherjetvelocity(negativevalues)andto recircula-tion(positivevalues).

(8)

Fig.10.VelocityplotsasafunctionofdistanceYatplaneCC.PIVatadeepdowndistancefromthemeniscusof(a1)250mm,(b1)500mm,(c1)750mm;CFDsimulationat adeepdowndistancefromthemeniscusof(a2)250mm,(b2)500mm,(c2)750mm.Nozzletype3.

inorder toensureproductivityrateswithoutcompromisingon qualityandthisshouldnotexceed1.1m/min.Chenetal.(2012a) observedthatwithincreasingthroughputs,thegeneralaspectsof fluidflowinsidethemolddonotchange.However,thesteel pen-etrationdepth,themeniscusvelocityandthesurfaceoscillation doincrease.Allotherparametersbeingconstant,castingvelocity shouldbeintherange0.9m/minto1.3m/min.

Itisworthnoticingthatthechangeofsignofvelocity,asshown inFig.7,isanindicationofaneddy(fromtheflange),asalready showninFig.5(c)and(d).PlotsattheleftsideofFig.7(PIVvalues), showthat thecenterof thiseddyislocatedat75mmfromthe jetcore,some125mmfromthefillet.Ingeneral,thevaluesfrom physicalsimulation(PIV)andfromCFDsimulationsareingood agreement.

3.2. Onenozzlenon-symmetricalflow

Datagatheredfromtheflowfieldhavebeenacquiredinthree measurementplanes:averticalplanecuttingthroughtheweb sym-metryplaneAA,Fig.1(d);averticalplaneparalleltotheflangeand cuttingthroughthecenterofthenozzle,planeBB;andataplane parallelandatadistanceof25mmfromtheotherflange,planeCC. ThisisshowninFig.1(b)and(d).

Fig.8showsacomparisonbetweenvelocityvectorplotsfrom physicalmodel(PIVmeasurements)andnumericalCFDmodeling atplaneBB.Theflowstructuresasdepictedfromthese simula-tionsarequitesimilar.Velocityvaluesathorizontallineslocated at250mm,500mmand750mmfromthemeniscus-Fig.1(b)-,at planeBBdeterminedfromexperimentsinphysicalmodel(PIV)and CFDmodelingareshowninFig.9.Bothtechniquessuggestthat thecastingspeeddonotsignificantlychangetheoverallfluid-flow

patternofthejet.ThePIVmeasurementsshowlargervelocities andnarrowerjetsthanthosepredictedbyCFDsimulations.In gen-eral,thereisagoodagreementbetweenthemprovingthattheCFD modelingisareliabletoolforthistypeofprocessanalysis.Velocity valuesatthemiddleregionoftheflangearefoundtobehigher, duetofluidjetcomingfromthenozzle.Higherthroughputsleadto bothhighersteeljetvelocities(downwards)andhigherreturning (upwards)velocitiesattheoppositeflange.

Fig.10representsvelocityvaluesobtainedfromphysicalmodel experiments(PIV)andCFDmodelingatplaneCC-Fig.1(b)-,at hor-izontal lines250mm,500mm,750mmdownthemeniscus.As expected,thevelocityvaluesarecomparativelysmallerthaninthe planeBB.Deeperdownfromthemeniscus,thevelocityincreases duetotheproximityofturningpointoftherecirculationflow.The smallervaluesofvelocityclosetocenteroftheflange,at250mm, areduetoaneddylocatedatthisregion.

Steelpenetrationdepthsforflowratesof100L/min,125L/min and150L/minhavebeendetermined.Thevaluesarerespectively 0.92m,1.19mand1.29mwiththetype3nozzle(53.2mminside diameter). These values are higher than mold nominal length (0.8m).Steelpenetrationdepthsinthecaseoftwotubular noz-zles(type1,26.7mmofinsidediameter)were0.76m,0.81mand 0.84munderthesameconditions.Chenetal.(2012a)hasmadean analysisoffluidflowinsideabeamblankmoldusingtwotubular nozzlesandhasfoundapenetrationdepthof1.09mfora cast-ingvelocityof0.9m/min.Accordingtotheseauthors,ahighvalue ofpenetrationdepthisrelatedtoasmallerlikelihoodofinclusion removal.

(9)

J.J.M.Peixotoetal./JournalofMaterialsProcessingTechnology233(2016)89–99 97

Fig.11.CFDsimulationsofflowfieldatwebsymmetryplaneAA,type3nozzleunderflowratesof:(a)100L/min,(b)125L/minand(c)150L/min.

flangeandlateritisengulfedbythedownwardfluidjet.Attheplane BB,Fig.12(a)–(c),formationoffoureddiescanbenoticed.Twoof themdowninthemoldarealsocausedbythespreadingofthejet andtheothersclosetothenozzleareformedduetothemeetingof thefluidstreamonthefreesurfacewiththefluidengulfedbythe jet.Eddiesalsoappearintheupperregionattheoppositesideof thetubularvalve—planeCC,Fig.12(d)–(f).Theseareformeddueto interactionbetweentheupstreamflowwiththeflowintheregion ofthemeniscus.

Fig.13showsthemovementofdispersedplasticparticlesinside themoldasafunctionoftimeafterinjection.Theparticleshave beenlitbyalaser sheet.Thejetcanbeconsideredcompleteley developedaftersome12ssincetheparticlesarecompletely dis-persedinthemold.Herealsothereisevidenceforexistanceofthe vortexalreadyshowninFig.11.Theextensionandlocationofthis vortexstructurehavebeenverywellpredictedbyCFDsimulations. Alsoitisclearthatthejetstreamgoesdeepdownto0.8mbefore returningtotheupperportionofthemoldthroughtheopposite flange.

Acomparisonofmeniscusvelocitiesforalinearcastingspeed of0.98m/minand forthe casesof oneand two nozzlesshows noremarkabledifference.Themaximumvaluesare0.15m/sand 0.17m/s, respectively. This is smaller than a limiting value of 0.3m/ssuggestedbyDeSantisetal.(2014).Foronenozzle con-figurationthemaximumvaluecanbefoundattheregionranging fromthewebtothefiletsclosetothenozzle,asit canbeseen fromFig.14(a)and(b).Inthecaseoftwonozzles,themaximum valuesareatthefillets,Fig.14(d).Velocitiesatthewebcenterare ashighas0.09m/s—Fig.14(c).AccordingtoChenetal.(2012a)

toolowmeniscusvelocitycanleadtoalowpowdermeltingrate. XuandZhu(2015)observedthatlowertemperaturesandan inac-tivemeniscusstatusinducedbythestraightSENaffectadversely themeltingthepowderfluxandconsequentlytheproductquality. Beatonetal.(2015)testedonevalvedesignedwithtwopouring holes,oneatthebottomandotheratthelateralsidefacingthe web.TheseauthorsfoundthatwiththisSEN,thecombinedeffect ofevenpowderfeedingandastablemeniscus,resultedinasmooth surfaceoftheproduct,withoutsuperficialholes.

Thehighervaluesofvelocityintheregionbetweenthefiletand thenozzlecanleadtothinnersteelshellatthisregion. Accord-ingtoYangetal.(2004)thefiletregionispronetothinnershells. Thenon-symmetricalflowandthevelocitydifferencesbetween thefiletflowregionscanleadtoshellsofdifferentthicknessatthe fillets.

4. Conclusions

Generally speaking there is a good agreement between the resultsobtainedfromphysicalmodelusingPIVtechniqueandCFD modelling.ThismeansthatCFDmodelingtechniquecanbeused forthistypeofprocessanalysis.Thefollowingconclusionscanbe reachedinrespectofresultsobtainedfortwonozzlesarrangement andthesinglenozzlearrangement:

4.1. Twonozzles,symmetricalflow

Physicalmodelingshowsastronginfluenceofliquidflowrateon

(10)

Fig.12.CFDsimulationsofflowfield,type3nozzleunderflowratesof100,125and150L/min:(a),(b)and(c)planeBB,throughthenozzle,paralleltotheflange,(d),(e) and(f)planeCC,paralleltooppositeflange,250mmfromit.

(11)

J.J.M.Peixotoetal./JournalofMaterialsProcessingTechnology233(2016)89–99 99

Fig.14.Velocityvaluesthemeniscus:(a)type1nozzle,(b)type3nozzle.Velocityvectorplotatmeniscus:(c)type1nozzle,(d)type3nozzle.Flowrateof125L/min.

oftheflowrate.Howevertheresultsarecomparablewiththe physicalmodelexperiments.

Thereisnosignificantchangeinthebehaviorofthefluidflow

whenthenozzleinside diameterischangedfrom26.7mmto 34.6mm.Enlargingthenozzlediameteron68%didnotresult onsizablereductionofthejetpenetrationdepth.

Therecirculationoffluidgeneratestwoeddiesintheregionof

thewebandtwoineachflange.

4.2. Onenozzlenon-symmetricalflow

Jetpenetrationdepthwithflowratesof100L/min,125L/minand

150L/min were0.92m,1.19mand1.29m,respectively.These valuesarelargerthanmoldnominallength(0.8m);

ThereisarecirculationeddydowninthemoldandatplaneBB

foureddiescouldbenoticed;

Non-symmetricalflowandvelocitydifferencesbetweenthefilet

flowregionssuggestshellsofdifferentthicknessesatthefillets.

Acknowledgement

The authorswish to acknowledgethe help provided bythe researchinstitutionsinBrazilnamelyCNPq,CAPES,Fundac¸ão Gor-ceixandFAPEMIG.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.jmatprotec.2016. 02.011.

References

Beaton,J.W.,Sgro,A.,Burini,A.,Razza,P.,Azizola,Ali.,2015.Beamblankin submergedpourcasting:Danielitechnologyandexperience.In:Proceedings ofMETECand2ndESTADConference,Düsseldorf,Germany,pp.15–19.

Chen,W.,Zhang,Y.Z.,Zhu,L.-G.,Zhang,C.-J.,Chen,Y.,Wang,B.X.,Wang,C.,2012a. ThreedimensionalFEMstudyoffluidflowinmouldforbeamblank continuouscasting:influenceofstraightthroughconduittypeSEN.Ironmak. Steelmak.39(8),551–559.

Chen,W.,Zhang,Y.Z.,Zhang,C.J.,Zhu,L.G.,Zhang,C.J.,Chen,Y.,Wang,B.X.,Wang, C.,2012b.Three-dimensionalFEMstudyoffluidflowinmouldforbeamblank continuouscontinuouscasting:influenceofnozzlestructureandparameters onfluidflow.Ironmak.Steelmak.39(8),560–567.

DeSantis,M.,Cristallini,A.,Rinaldi,M.,Sgro,A.,2014.Modelling-basedinnovative feedingstrategyforbeamblanksmouldcastingaimedatas-castsurface qualityimprovement.ISIJInt.54(3),496–503.

Hibbeler,L.C.,Xu,K.,Thomas,B.G.,Koric,S.,Spangler,C.,2009.Thermomechanical modelingofbeamblankcasting.IronSteelTechnol.6(7),60–73.

Lee,J.-E.,Yoon,J.-K.,Han,H.N.,1998.3-dimensionalmathematicalmodelforthe analysisbeamblankcastingusingbodyfittedcoordinateofcontinuous system.ISIJInt.38(2),132–141.

Lee,J.-E.,Yeo,T.-J.,Oh,K.H.,Yoon,J.-K.,Yoon,U.-S.,2000.Predictionofcracksin continuouslycaststeelbeamblankthroughfullycoupledanalysisoffluidflow, heattransfer,anddeformationbehaviorofasolidifyingshell.Metall.Mater. Trans.A31A(1),225–237.

Li,B.,Okane,T.,Umeda,T.,2001.Modelingofbiasedflowphenomenaassociated withtheeffectsofstaticmagnetic-fieldapplicationandargongasinjectionin slabcontinuouscastingofsteel.Metall.Mater.Trans.B32B(6),1053–1066. Szekely,J.,Ilegbusi,O.J.,1989.ThePhysicalandMathematicalModellingof

TundishOperations.Springer-Verlag,NewYork,pp.34–38.

Xu,M.,Zhu,M.,2015.Transportphenomenainabeam-blankcontinuouscasting moldwithtwotypesofsubmergedentrynozzle.ISIJInt.55(4),791–798. Yang,J-w.,Du,Y-p.,Shi,R.,Cui,X-c.,Liu,C.,2004.EffectofSENparameterson3D

flowfieldinmouldofbeamblankcontinuouscasters.J.IronSteelRes.Int.11 (6).

Yang,J.W.,Du,Y.P.,Shi,R.,Cui,X.C.,2006.Fluidflowandsolidificationsimulation inbeamblankcontinuouscastingprocesswith3Dcoupledmodel.J.IronSteel Res.Int.13(4),17–21.

Zhang,L.,Chen,D.,Long,M.,Xie,X.,Zhang,X.,Ma,Y.,2014.Hydraulicsimulations offluidflowinbeamblankcastingmoldwithdoublenozzles.In:Yurko,J., Zhang,L.,Allanore,A.,Wang,C.,Spangenberger,J.S.,Kirchain,R.E.,Downey, J.P.,May,L.D.(Eds.),ProceedingsofEPDCongress2014.Hoboken,NJ,USA,pp. 375–384.

Imagem

Fig. 1. (a) Schematics of 1:1 beam blank model of a mold; (b) isometric view of the beam blank with one nozzle; (c) beam blank dimensions; (d) cross section of beam blank depicting cutting planes AA, BB, and CC.
Fig. 2. PIV (Particle Image Velocimetry) according to DANTEC ® . Source: http://www.dantecdynamics.com/measurement-principles-of-piv
Fig. 5. Velocity vector plot from CFD for flow rate of 125 L/min (a) section AA, nozzle type 1; (b) section AA nozzle type 2; (c) section BB nozzle type 1; (d) section BB nozzle type 2.
Fig. 6. Velocity vector plot at the meniscus region for liquid flow rate of 125 L/min: (a) type 1 nozzle and (b) type 2 nozzle.
+7

Referências

Documentos relacionados

This moment is produced by the actuator which is mounted over the beam and rotating with constant angular

A computer simulation of heating and cooling liquid food during sterilization process using computational fluid dynamics. Numerical simulation of natural convection heating

(In Portuguese).. K., Mathematical modelling of single and multi-strand tundish for inclusion analysis, Applied Mathematical Modelling, v. K., On the application of

por nós empregados indistinctamente, porque os consideramos synonymos; sendo certo todavia, que julgaríamos este ultimo preferível, visto qne d'esse modo se evitaria toda a

For Scheme 3 ( Fig. 2 ), which corresponds to the layout of a cross flow grain dryer with three drying stages ( Fig.. net/devpascal.html ) and consists of tools for geometry

This work focuses on the fluid dynamics of the mold filling proc- ess and on the analysis of time and filling behavior. A computational tool was developed, which utilizes the

6 suggest that for a fixed blood flow rate, the dependence between the final temperature of the fluid inside the endometrial balloon and the depth of the affected

Nesse capitulo são apresentados os resultados obtidos junto ao gestor de uma indústria e comercio de vidros temperados, em estudo de caso realizado em setembro de 2018,