• Nenhum resultado encontrado

First isolation and activity of a lipid transfer protein from noni ( Morinda citrifolia ) seeds

N/A
N/A
Protected

Academic year: 2018

Share "First isolation and activity of a lipid transfer protein from noni ( Morinda citrifolia ) seeds"

Copied!
9
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

International

Journal

of

Biological

Macromolecules

jo u r n al hom e p ag e :w w w . e l s e v i e r . c o m / l o c a t e / i j b i o m a c

First

isolation

and

antinociceptive

activity

of

a

lipid

transfer

protein

from

noni

(

Morinda

citrifolia

)

seeds

Dyély

C.O.

Campos

a

,

Andrea

S.

Costa

a

,

Amanda

D.R.

Lima

a

,

Fredy

D.A.

Silva

a

,

Marina

D.P.

Lobo

a

,

Ana

Cristina

O.

Monteiro-Moreira

b

,

Renato

A.

Moreira

b

,

Luzia

K.A.M.

Leal

c

,

Diogo

Miron

c

,

Ilka

M.

Vasconcelos

a

,

Hermógenes

D.

Oliveira

a,∗

aDepartmentofBiochemistryandMolecularBiology,FederalUniversityofCeará,CampusdoPiciProf.PriscoBezerra,60440-900Fortaleza,CE,Brazil bNUBEX—NúcleodeBiologiaExperimental,CentrodeCiênciasdaSaúde,UniversidadedeFortaleza—UNIFOR,60811-905Fortaleza,CE,Brazil cDepartmentofClinicalandToxicologicalAnalysis,FacultyofPharmacy,FederalUniversityofCeará,Fortaleza,CE,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received4November2015

Receivedinrevisedform7January2016 Accepted8January2016

Availableonline16January2016

Keywords: MorindacitrifoliaL. Rubiaceae Noni

Proteinisolation Antinociceptiveactivity Lipidtransferprotein

a

b

s

t

r

a

c

t

Inthisstudyanovelheat-stablelipid transferprotein, designatedMcLTP1,waspurifiedfromnoni (Morindacitrifolia L.) seeds,usingfour purificationstepswhichresulted inahigh-purified protein yield (72mg McLTP1 from100g of noni seeds).McLTP1 exhibited molecularmassesof 9.450and 9.466kDa,determinedbyelectrosprayionisationmassspectrometry.TheN-terminalsequenceofMcLTP1 (AVPCGQVSSALSPCMSYLTGGGDDPEARCCAGV),asanalysedbyNCBI-BLASTdatabase,revealedahigh degreeofidentitywithotherreportedplantlipidtransferproteins.Inaddition,thisproteinprovedto beresistanttopepsin,trypsinandchymotrypsindigestion.McLTP1givenintraperitoneally(1,2,4and 8mg/kg)andorally(8mg/kg)causedaninhibitionofthewrithingresponseinducedbyaceticacidin mice.Thisproteindisplayedthermostability,retaining100%ofitsantinociceptiveactivityafter30min incubationat80◦C.PretreatmentofmicewithMcLTP1(8mg/kg,i.p.andp.o.)alsodecreasedneurogenic andinflammatoryphasesofnociceptionintheformalintest.Naloxone(2mg/kg,i.p.)antagonisedthe antinociceptiveeffectofMcLTP1suggestingthattheopioidmechanismsmediatetheanalgesicproperties ofthisprotein.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

MorindacitrifoliaL.(Rubiaceae),aplantspeciesoriginatingfrom

Tropical Asia, has beenused for millennia as a sourceof food

and fabricdyes, as well asto treat disorders suchas diabetes,

rheumatoidarthritis, highblood pressure,inflammationandfor

painmanagement[1–3].Inadditiontoitsusein folkmedicine,

thereisalsoalotofevidenceofbiologicalactivityinvariousinvitro

andinvivoassaysystems[4–8].

Asaresultofvariousphytochemicalinvestigations,morethan

200secondarymetaboliteshavebeenidentifiedfromnonifruits,

roots, seeds and leaves, including anthraquinones, flavonoids,

polysaccharides, glycosides, iridoids, lignans and triterpenoids,

withthemostrepresentativebeingscopoletin,rutin,ursolicacid,

␤-sitosterol,asperulosideanddamnacanthal.Someofthese

com-∗Correspondingauthor.Fax:+558533669139. E-mailaddress:hermogenes@ufc.br(H.D.Oliveira).

poundshavebeensuggestedtobethesourcesofnoni’sbiological

andinvitroactivity[9–12].

Althoughnonibark,stems,leavesandfruitshave beenused

traditionallyformanydiseases,thereisalimitedamountof

infor-mationontherapeuticpropertiesof noniseeds.Air-dried seeds

constitute2.5%ofthefruit’stotalweight,howeverduringthe

pro-ductionofnonifruitpureetheyarediscarded[13].Inaddition,West

etal.[14]demonstratedthatnoniseedextractdidnotdisplayany

signoftoxicityinasubacute(28day)oraltoxicitytestin

Sprague-Dawleyrats,anddidnotexhibitgenotoxicpotentialinaprimary

DNAdamagetestinEscherichiacoliPQ37.Thus,noniseedscanbe

usedtoisolatecompoundswiththerapeuticpropertiesanda

high-addedvalue,leadingtogreatereconomicbenefitsforproducers

andanincreaseinthediversityofcompoundsderivedfromthis

species.

In contrast to their therapeutic actions, there are reports

of toxicity resulting from the consumption of noni

prod-ucts [15–18]. Secondary metabolites, such as anthraquinones,

have been suggested as the causative agents of toxicity.

1-Hydroxyanthraquinone,acomponentofnoniroots,wasshownto

http://dx.doi.org/10.1016/j.ijbiomac.2016.01.029

(2)

becarcinogenicinmaleratsandproducedadenomas,

adenocarci-nomasandbenignstomachtumoursinasmallnumberofanimals

[19].

Inthisstudywereport,forthefirsttime,theisolationand

char-acterisationofathermostablelipidtransferprotein(McLTP1)from

noniseedsthatexhibitspotentantinociceptiveactivitywhenorally

administeredtomice.McLTP1isthefirstbioactiveproteinisolated

fromthenonispeciesinrelationtothetherapeuticpropertiesof

theplant.

Plantnon-specificLTPs(nsLTPs)formaproteinfamilyofsmall

cationicpeptides ubiquitously distributed throughout theplant

kingdom[20,21].Theybelongtotheantimicrobialpeptidesgroup,

whichhasbeenincreasinglyconsideredasa sourceofpotential

therapeuticagents,exhibitingpotentialapplicationsasanalgesics,

immunomodulatorsorinthetreatmentofneurologicaldisorders

[22–25].Todate,thisisthefirstreportofalipidtransferprotein

demonstratingantinociceptiveactivityinmice.

2. Materialsandmethods

2.1. Chemicals

SephadexG-50, Superose12HR 10/30and molecularweight

markers(LMW-SDSmarkerkit)werepurchasedfromGE

Health-careLifeSciences.AgilentEclipseXBD-C18columnwaspurchased

from Agilent Technologies. Reagents and solvents for

pro-tein sequencing, acetic acid, trichloroacetic acid, indomethacin,

naloxonehydrochloride,morphinesolution(1mg/mL),diazepam

solution (1mg/mL) and formaldehyde were purchased from

Sigma–AldrichCo.,St.Louis,MO. Otherchemicalsusedwereof

analyticalgradeandobtainedfromlocalsuppliers.

2.2. Noniseeds

Noni(M.citrifoliaL.var. citrifolia)seedswerecollectedfrom

plantscultivatedattheAntonioAlbertoFarm,Ceará(3◦1640′′S,

39◦1608′′W) and supplied by Embrapa Agroindústria Tropical

(Embrapa—CNPAT),Ceará,Brazil.Asamplespecimen(no.44.566)

hasbeendepositedinthePriscoBezerraHerbariumoftheFederal

UniversityofCearáforfuturereference.Theseedswereground

usingakitchenblenderandtheresultingflourthoroughlydefatted

withpetroleumether(1:10,w/v)andstoredat−20◦Cuntilused.

2.3. PurificationofMcLTP1

Proteinswereextractedfromthedefattednoniseedflour(15g)

using0.050MTris–HCl/0.25MNaCl,pH8.5(1:10w/v)at4◦C.The

suspensionwasstirredfor3handthenfilteredthrough

cheese-cloth.Theresiduewasre-extractedundertheaboveconditionsfor

2handthenfiltered.Thefiltrateswerecombined,centrifugedat

10,000×g,4◦C for30minandtheclearsupernatantdesignated

ascrudeextract(CE).TheCEwassubjectedtoacidtreatmentby

theadditionoftrichloroaceticacid(TCA)toa2.5%(w/v)final

con-centration.After30minonice,the2.5%TCAsolublefractionwas

clarifiedbycentrifugationat10,000×gfor30minat4◦Candthe

supernatantdialysed(cut offMW3000) against distilled water

at4◦Candlyophilised.Thelyophilisedproteinfractionwas

dis-solved(4mg)in0.050MTris–HCl/0.15MNaCl,pH8.5andapplied

onaSephadexG-50(1.5×40cm)columnpreviouslyequilibrated

withthe same buffer. Fractions (2mL) from the protein peaks

weremonitoredat280nmandcollectedataconstantflowrateof

30mL/h.Twoproteinpeakswererecoveredusingtheequilibrium

buffer. The fractions showing antinociceptive activity (McLTP1)

wereselected,concentratedandsubjectedtoanalytical

reversed-phasehigh-performanceliquidchromatography(RP-HPLC).

2.3.1. RP-HPLC

Pooledfractionsof proteinobtainedfromgelfiltrationwere

subjectedtoreversed-phasehigh-performanceliquid

chromatog-raphy using a C18 column (Agilent Eclipse XBD-C18 column

(250×4.6mm,5␮m)).Proteinsweredissolvedinultrapurewater

toobtainasolutionof0.5mg/mLandwerethenfilteredthrough

a 0.22␮mmembrane beforebeinginjectedinto theHPLC

(vol-umeinjected:20␮Loffilteredproteinsample).Thecolumnwas

equilibratedwith0.02%aqueousaceticacidandtheproteinswere

elutedataflowrateof1mL/minunderisocraticmode.Elutionwas

monitoredat216nmusingadiodearraydetector(AllianceHPLC

System,Waters,Corp.,Milford,MA).Thepeakelutingat7.9min

wasvacuum-dried,dissolvedinultrapurewater andappliedon

SDS-PAGE.

2.4. Proteinquantification

Proteinconcentrations were determinedby thedye-binding

methodofBradford[26],withbovineserumalbumin(BSA)asthe

standard.

2.5. Molecularmassdetermination

ThemolecularmassofMcLTP1wasdeterminedbydenaturating

SDS-PAGEon12.5%gelsundernon-reducingconditions,

follow-ingstandardprocedures[27].Proteinbandswerevisualisedwith

CoomassieBrilliantBlueR-250(Sigma–AldrichCo.,St.Louis,MO)

foratleast2handdestained(40%methanol,50%water,10%glacial

aceticacid)for30min.

ThenativemolecularmassofMcLTP1(1mg)wasdetermined

bygelfiltrationonaSuperose12HRcolumncoupledtoanFPLC

System(GEHealthcare)and equilibratedwith0.050MTris–HCl

buffer/0.25MNaCl, pH8.5.Chromatography wascarriedout at

aconstantflow rateof0.3mL/minand1mLfractionswere

col-lected. The column was previously calibrated with proteins of

known molecular masses (BSA, 66kDa; egg albumin, 45kDa;

chymotrypsinogen,25kDa;ribonuclease,13.7kDa,andaprotinin,

6.5kDa).

Mass spectrometry of McLTP1 (0.2mg/mL dissolved in

water/acetonitrile 1:1,v/v) was carried outon a Synapt HDMS

Acquity UPLCinstrument (Waters,Manchester, UK)by

electro-sprayionisationinpositiveionmode(ESI+)andaNanoLockSpray

source.The intact massspectra wereeffectively acquiredfrom

m/z1000to4000,whichallowedtoobtainmultiplychargedmass

ions.Themassspectrometerwasoperatedinthe“V”modewith

aresolvingpowerofatleast10,000m/z.Thedatacollectionwas

performedusingMassLynx4.1software(WatersCo.,Milford,MA,

USA)andchargedistributionspectrawerethendeconvolutedby

theMaximumEntropyTechnique(Max-Ent).

2.6. N-terminalaminoacidsequenceanalysis

The N-terminal amino acid sequence was analysed on a

Shimadzu PPSQ-23A Automated Protein Sequencer, performing

EdmandegradationofMcLTP1blottedonpolyvinylidenefluoride

membraneafterSDS-PAGE.Thesequenceobtainedwassubmitted

toautomaticalignmentusingtheNCBI-BLASTsearchsystem[28].

Theproteinsequencedatareportedinthispaperwillappearinthe

UniProtKnowledgebaseundertheaccessionnumberC0HJH5.

2.7. Invitrodigestionassay

Invitrodigestibility of McLTP1 wasdeterminedaccordingto

themethodofSathe[29],withmodifications.McLTP1(1mg/mL)

wassuspended in 200␮L of0.1MHCl, pH1.8, forpepsin (E.C.

(3)

0.1MTris–HCl,pH8.1fortrypsin(E.C.3.4.21.4;10,100BAEEU/mg

protein,frombovinepancreas)andkeptfor10minat37◦C.Next,

40␮Lofenzyme(1mg/mL)wasaddedtostarttheproteindigestion

andthereactionmixturewasincubatedinashakingwaterbathat

37◦Cfor4h.Aliquotsof25Lweretakenat0and4hand25L

of0.5MTris–HClbuffer,pH6.8,containing0.1%SDS,added.The

digestswereimmediatelyheatedinboilingwater(98◦C)for5min

andanalysedbySDS-PAGE[27].

Sequentialdigestionexperimentsusingpepsin,trypsinand

chy-motrypsin(E.C.3.4.21.1;40U/mgprotein,frombovinepancreas)

werecarriedoutusingMcLTP1 (1mg/mL)dissolvedin0.1MHCl,

pH1.8andincubatedinawaterbathat37◦Cfor5min.Analiquot

ofpepsin(enzyme:protein1:10,w/w)wasaddedandthemixture

incubatedat37◦Cfor4h.Thedigestionwasimmediatelystopped

byheatingthemixtureinaboilingwater(98◦C)bathfor5min.

Next,thepepsin-digested mixturewasmixed withtrypsinand

chymotrypsin(enzyme:protein1:10,w/w)in0.1MTris–HCl,pH

8.1,forfurtherdigestionfor5h.Thereactionwasstoppedandthe

sampleanalysedbySDS-PAGEasdescribedabove.BSA(2mg/mL)

wasusedasacontrolforthedigestionreaction.Allassayswere

performedintriplicate.

2.8. Animals

Experimentalprocedureswereconductedusinggroupsof2–3

montholdSwissmalemice(25–30g)obtainedfromBiotério

Cen-tralofFederalUniversityofCeará.Theanimalswerehousedunder

standard environmentalconditions (24±1◦C, humidity45–65%

and12hlight/darkcycle)andreceivedfoodandwateradlibitum.

Groupsof6–8micewereusedineachexperimentandhabituated

tothelaboratoryconditionsforatleast2hbeforetesting.Care,

han-dlingandexperimentalprocedureswereperformedinaccordance

withtheethicalstandardsestablishedbytheNationalGuidelines

fortheUseofExperimentalAnimalsofBrazilandbytheDirective

2010/63/EUoftheEuropeanParliamentandoftheCouncilofthe

EuropeanUnion.Theexperimentalprotocolswereapprovedbythe

CommitteefortheEthicalUseofAnimalsoftheFederalUniversity

ofCeará(CEUA-UFCno.37/13).

2.9. AntinociceptiveactivityofMcLTP1

2.9.1. Aceticacid-inducedwrithingmethod

Thistestwasperformedusingamodifiedversionofthemethod

described byKosteret al.[30].Animalsweretreated

intraperi-toneally(i.p.)withnoniseedcrudeextract(10,30or90mg/kg),2.5%

TCAsolublefraction(8mg/kg),McLTP1(1,2,4or8mg/kg),vehicle

(NaCl0.15M)orindomethacin(positivecontrol;10mg/kg)30min

beforetheinjectionofa1.0%aceticacidsolution(0.1mL/10gbody

weight,i.p.).Thenumber ofabdominal writhes(pelvicrotation

followed byfull extensionof both hind legs)wascumulatively

countedovera periodof20min,soon aftertheaceticacidwas

administered.ToevaluatewhetherMcLTP1displaysoral

antinoci-ceptive activity, it was given orally (8mg/kg body weight) to

animals30or60minpriortoanaceticacidinjection.The

antinoci-ceptiveeffectwasexpressedasapercentageoftheinhibitionof

abdominalwrithing.

2.9.1.1. Thermalstability determination. Toestablishthethermal

stabilityoftheprotein,McLTP1(1mg/mL)dissolvedinNaCl0.15M

wasincubatedinawaterbathat80◦Cfor30min.Aftercooling

thetreatedMcLTP1onicefor10min,miceweretreatedwiththis

protein(8mg/kg(i.p.)),30minbeforeaceticacidsolutioninjection,

andtheantinociceptiveactivitymeasuredasdescribedinSection

2.9.1.

2.9.2. Formalin-inducedpainassay

Themethodusedwassimilartothatpreviouslydescribedwith

somemodifications[31].Thirtyminutesaftertheadministrationof

McLTP1(8mg/kgp.o.ori.p.),NaCl0.15M(vehicle;negativecontrol;

p.o.ori.p.)ormorphine5mg/kgi.p.(positiveopioidcontrol),20␮L

of2.5%formalin(formaldehyde36.5%solution)inasalinesolution

wasinjectedintothesubplantaroftherighthindpawsofthemice.

Animalswereplacedindividuallyinatransparentcageandthetime

(inseconds)spentlickingandbitingtheinjectedpawwastakenas

anindicatorofthepainresponse.Thepainresponsewasmeasured

for5min(firstphase)and20–25min(secondphase)afterthe

for-malininjection,representingbothneurogenicandinflammatory

painresponsesrespectively.

2.9.2.1. Involvementofopioidreceptors. Toidentifywhether

opi-oidreceptorsareinvolvedintheantinociceptiveactionofMcLTP1

(8mg/kg;p.o.ori.p.),groupsofmicewerepretreatedwitha

non-selectiveopioidreceptor antagonist,naloxone(2mg/kg),30min

beforeadministrationofMcLTP1ormorphine(5mg/kg)andtested

usingtheformalintest.

2.10. EffectofMcLTP1onlocomotoractivity

TheeffectoftheMcLTP1(8mg/kg)onspontaneouslocomotor

activityandexploratorybehaviourwasassessedusingthe

open-field test, using the methodset out by Martin et al. [32]. The

apparatus(45cmwidth×45cmlength×15cmheight)consisted

ofawoodenfieldinwhichthefloorwasdividedinto36equalareas.

MiceweretreatedwithMcLTP1 orally60minbeforethe

exper-imentor withthevehicle(NaCl 0.15M) or diazepam(2mg/kg)

intraperitoneally30minbeforethe experiment. Thenumber of

areascrossedwithallpawsandthenumberofrearingresponses

werethenrecordedduringa5minperiod.

2.11. Statisticalanalysis

Intheresultsthemean±SEMarepresented.Statisticalanalysis

wasperformedusingone-wayanalysisofvariance(ANOVA)

fol-lowedbyTukey’sposthoctests,usingGraphpadPrism6.0software

(SanDiego,CA,USA).Differencesbetweengroupswereconsidered

significantatalevelofp<0.05.

3. Resultsanddiscussion

3.1. PurificationandcharacterisationofMcLTP1

M. citrifolia L. has become popular in recent years, as it is

believedtobeabletohelppreventlifestyle-relateddiseases[33].

Nevertheless,scientific evidence forthesebenefitsis limited to

studiesdemonstratingbiologicalactivitiesofsecondary

metabo-litesfromdifferentnoniparts,whilestudiesreportingtheisolation

andcharacterisationofbioactiveproteinsfromthisspecieshave

beenlacking.

Whenadministeredintraperitoneallytomiceat dosesof10,

30 and 90mg/kg, noni seedcrude extract significantly reduced

(p<0.05)thenoxiousstimulusinducedbyaceticacid,ina

dose-dependent manner, by 23.2–41.8% compared with the control

group(Table1).Theantinociceptiveactivityofthenoniseedextract

atalldosestestedwasnotalteredafterdialysis(cutoffMW3000),

suggestingthattheeffectobservedwasrelatedtoaproteic

compo-nent.Therefore,weembarkeduponaguidedfractionationofthe

noniseedextract,seekingthisantinociceptiveagentusinganacetic

acid-inducedwrithingtestinmice.

The antinociceptive activity was also detected in the 2.5%

TCA soluble fraction after administration at a doseof 8mg/kg

(4)

Table1

SummaryofpurificationprocedureofMcLTP1fromnoniseedsguidedbyanaceticacid-inducedwrithingtestinmice.

Purificationstep Protein(mg) Yielda(%) Doseb(mg/kg) %inhibitionc Specificbiologicalactivityd Purificationindexe Crude

extract

189.04

±3.23

100 10 23.25±0.03 – –

30 37.20±0.02* – –

90 41.86±0.19* 0.46 1

2.5%TCAsolublefraction 12.80±0.95 6.77 8 81.39±0.08** 10.17 22.10

SephadexG-50column(McLTP1) 11.58±0.87 6.12 8 96.13±0.08** 12.01 26.10

aYield=(totalproteinfromthefraction/totalproteinfromthecrudeextract)

×100%.

b Micewerepretreatedintraperitoneally30minbeforeanaceticacidinjection.

c Inhibitionofaceticacid-inducedabdominalconstrictioninmice.Theresultsshowthemean

±SD(n=8).

d Specificbiologicalactivityiscalculatedbydividing“%ofmaximuminhibitoryactivity/dose(mg/kg)”ofeachstepofpurification.

ePurificationindexiscalculatedastheratiobetweenthespecificbiologicalactivityobtainedateachpurificationstepandthatofthecrudeextracttakenas1.0. * p<0.05.

** p<0.01comparedtocontrolgrouppretreatedwithNaCl0.15Mi.p.(ANOVAfollowedbyTukey’stest).

Fig.1. PurificationofMcLTP1.(A)Separationprofileof2.5%TCAsolublefractionfromnoniseedextractonaSephadexG-50column.(B)RP-HPLCchromatography.Pooled

fractionsobtainedfromgelfiltrationwereappliedtoaC18reverse-phasecolumnandruninaWatersCorp.apparatus.Elutionofproteinswasmonitoredbymeasurement oftheabsorbanceat280(A)and216nm(B).InsertCoomassie-stainedSDS-PAGE(12.5%)containing(left–right)molecularweightmarkers(lane1;14.4–97kDa),proteins extractedfromnoniseeds(lane2)and(lane3)McLTP1.

toaSephadexG-50column.AsdepictedinFig.1A,twoprotein

peakswererecoveredusingtheequilibriumbuffer.Afterbeing

col-lected,concentratedanddialysedthetopmostpartofpeak2,which

exhibitedantinociceptiveactivityinmice,thisproteinfractionwas

submittedtoanalyticalRP-HPLCusingaC18column,resultingin

onewelldefinedpeakelutedat7.9minunderisocraticconditions

(Fig.1B).Thepurifiedproteinwasshownasasinglebandon

SDS-PAGE,withanapparentmolecularmassof15.13kDaandayieldof

(5)

Fig.2.ESI-MSanalysisofnativeMcLTP1.

Nativemolecularmassoftheisolatedproteinwasalsoassessed

bygelfiltrationchromatography.Thepurifiedproteinwas

chro-matographedona Superose 12HR, showinga single peak with

a molecular mass of 10.09kDa (data not presented), which is

in agreementwiththemolecularmasses obtainedbyESI mass

spectrometryundernativeconditions,whichshowedtwopeaks

correspondingtoMWof9450.30and9466.20(Fig.2).

Thefirst33aminoacidsoftheN-terminalsequenceofthe

puri-fiedproteinshowedsignificantsimilaritiestoknownlipidtransfer

proteins(LTPs)isolatedfromvariousplants,includingfourofthe

eightcysteineresiduesconservedinotherLTPs(Table2).LTPsare

small,water-soluble,basicproteins,classifiedintotwo

subfami-liesaccordingtotheirmolecularmasses:LTP1s(9kDa)andLTP2s

(7kDa)[34].ThemolecularmassdeterminedbytheESI-MSofthe

proteinisolatedinthisstudyallowedittobeclassifiedasamember

oftheLTP1subfamily(designatedasMcLTP1).

SincethediscoveryofplantLTPsinthe1970s,anincreasing

numberoflipidtransferproteinshavebeenisolated,particularly

fromseeds[35–37].However,untilnowtherehasbeenno

infor-mationregarding theirpresence inM.citrifolia L.seeds. Zottich

etal.[38]reportedtheisolationofaLTP1fromCoffeacanephora

(Cc-LTP1—Rubiaceae)seeds,with␣-amylaseinhibitorand

antimi-crobialproperties.McLTP1,whichwasalsoisolatedfromaplant

speciesbelongingtoRubiaceaefamily,showed57%identitywith

Cc-LTP1.

The presence of two peaks withm/z values of 9450.30 and

9466.20 suggests the existence of isoforms of McLTP1. Other

authors have reported that LTPs are found in severalisoforms

indistinct planttissues andorgans coded bya multigene

fam-ily, as demonstrated by Arabidopsis thaliana and Oryza sativa

[20,34,39,40].

AlthoughthemolecularmassofMcLTP1,determinedbyESI-MS,

isconsistentwiththoseobservedforotherLTP1s,themolecular

masscalculatedusingSDS-PAGEundernon-reducingconditions

wasestimatedtobe15.13kDa.AccordingtoGorjanovicetal.[41]

LTPscanformdimersinplanttissuesandalsoundernon-reducing

Fig.3.SDS-PAGE(12.5%)profileoftheinvitrodigestibilityofMcLTP1bypepsin

(laneP),trypsin(laneT)andaftersequentialdigestionwiththecitedenzymesand chymotrypsin(laneS).BSA(lanes1and2,left–right)wasusedasacontrol.Lane 3representsMcLTP1(20␮g).ProteinbandswerestainedwithCoomassieBrilliant

BlueR-250.

SDS-PAGE,asdemonstratedfortheLTP1isolatedfromHordeum

vulgarewhichshowedanapparentmolecularmassof16kDawhen

calculatedusingSDS-PAGE.

Duetotheircompactstructures,whicharestabilisedbyfour

disulfidebridges,LTPstendtobeextremelystableandresistantto

thermaldenaturationanddigestionbyproteases[42–45].Inthis

study,McLTP1wassubjectedtoasimulatedgastricandintestinal

(6)

Table2

AlignmentoftheN-terminalaminoacidsequenceofMcLTP1withothernsLTPsfromplants.ProteinsequenceswerealignedwiththeBLASTalgorithm.Conservedcystein

residuesthatformdissulfidebridgesinnsLTPsarehighlightedingray.

NsLTPsource Plantfamily Residueno. Sequence Residueno. %identity SequenceID

Morindacitrifolia Rubiaceae 1 AVPCGQVSSALSPCMSYLTGGGDDPEARCCAGV 33 100 C0HJH5

Triticumaestivum Poaceae 26 AVSCGQVSSALSPCISYARGNGANPSAACCSGV 58 70 ABF14722.1

Aegilopstauschii Poaceae 26 AISCGQVSSALSPCISYARGNGANPTAACCSGV 58 67 EMT04675.1

Vitisvinifera Vitaceae 25 AVTCGQVETSLAPCMPYLTGGG-NPAAPCCNGV 56 67 XP002282792.1

Vignaradiata Fabaceae 25 AITCGQVASSLAPCISYLQKGG-VPSASCCSGV 56 61 CAQ86909.1

Fig.4. (A)EffectsofMcLTP1onaceticacid-inducedwrithingresponseinmice.

Vehi-cle(NaCl0.15M),McLTP1(1,2,4and8mg/kg),indomethacin(IND,10mg/kg)were

administeredi.p.30minbeforeanaceticacidinjection.(B)Antinociceptiveactivity ofMcLTP1(8mg/kg)afteroraladministrationinmice.Animalswerepretreated30

or60minbeforeanaceticacidinjection.Vehicle(NaCl0.15M)andindomethacin (IND,10mg/kg)wereorallyadministered30minbeforeanaceticacidinjection. Theresultsshowthemean±SD(n=8).Differencesbetweenthegroupswere deter-minedbyanANOVAfollowedbyTukey’stest,*p<0.05,**p<0.01whencompared tothecontrolgroup.

ofMcLTP1individuallydigestedwithpepsinandtrypsinandafter

sequentialdigestionwiththeaboveenzymesandchymotrypsin.

ThebandofMcLTP1 wasstableduringincubationwithpepsinor

trypsinfor4handwasalsodetectedevenafter9hofsequential

digestion.

3.2. AntinociceptiveactivityofMcLTP1

Whenadministeredtomiceintraperitoneally30minpriorto

acetic acid injection, McLTP1 (1, 2, 4, or 8mg/kg) significantly

reducedthenumberofabdominalconstrictionsobserved(p<0.05).

ThewrithingresponseinhibitionofMcLTP1wasdose-dependent

andatadoseof8mg/kgwascomparabletothatofindomethacin

10mg/kgi.p.(96.1%and98.3%inhibition ofabdominal

constric-tionreflexrespectively, Fig.4A).The antinociceptive activityof

Fig.5. EvaluationofthermalstabilityofthepurifiedMcLTP1usinganaceticacid

inducedwrithingresponseinmice.TheantinociceptiveeffectofMcLTP1(8mg/kg; i.p.)wasmeasuredafter0and30minpre-incubationat80◦C.Vehicle(NaCl0.15M)

andindomethacin(IND,10mg/kg)wereadministeredi.p.30minbeforeanacid aceticacidinjection.Theresultsshowthemean±SD(n=8).Differencesbetween thegroupsweredeterminedbyanANOVAfollowedbyTukey’stest,*p<0.05when comparedtothecontrolgroup.

McLTP1 was also observed after oral administration (p.o.)at a

doseof8mg/kg30(62.8%inhibition)or60min(86%inhibition)

priortotheaceticacidadministration.Theeffectobservedwhen

theprotein wasadministered60minprior toacetic acid

injec-tionwasnotsignificantlydifferentfromtheresponseobservedto

indomethacin10mg/kgp.o.(88%inhibition)(Fig.4B).Likeother

LTPs,suchasLJAMP2isolatedfromLeonurusjaponicusHoutt[46].

McLTP1displayedthermostability,retaining100%ofits

antinoci-ceptiveactivityafter1hincubationat80◦C(Fig.5).

Basedontheirinvitroactivities,numerousstudiesoverthelast

decadeshavelinkedplantLTPswitha myriadofbiological

pro-cesses,includingformationofthecuticlelayer[47],plantresponses

toabioticandbioticstresses[48–50]andasmodulatorsofplant

growthanddevelopment[51,52].However,thisisthefirstreport

ofalipidtransferproteinactingasamodulatorofthenociceptive

response.

Theacetic acid-inducedwrithingresponse isa sensitivetest

used for screening analgesic activity, regardless of the central

orperipheralcauses.Aceticacidisanirritantwhich causesthe

synthesis and release of pro-inflammatory mediators such as

prostaglandins(PGEandPGF2␣)andsympatheticnervoussystem

mediators that provoke pain nerve endings [53–55].

Intraperi-tonealororaltreatmentwithMcLTP1causedsignificantreduction

in the abdominal constriction produced by acetic acid,

indi-cating peripheral antinociception. Taissin-Moindrot et al. [56]

demonstratedthatplantLTPsareabletoaccommodatenotonly

phosholipids or fatty acids, but also a variety of hydrophobic

molecules,suchasPGB2,withoutmajorstructuralmodifications.

Thus, itcouldbeassumed that this proteininterfered withthe

blockade ortherelease of peripherallyacting endogenous

sub-stances,suchasprostaglandins,responsibleforpainfulsensations.

InordertofurtherclarifytheantinociceptiveeffectofMcLTP1,

(7)

Fig.6.Timespentonpawlickingafteroralorintraperitonealpretreatmentwith McLTP1(8mg/kg)onbothfirst(A)(0–5min)andsecond(B)(15–30min)phasesof theformalininducednociception.Dataareshownasthemean±SD(n=8). Differ-encesbetweenthegroupsweredeterminedbyanANOVAfollowedbyTukey’stest, *p<0.05vs.controlanimals.

(8mg/kg)administeredorallyorintraperitoneallycauseda

signifi-cant(p<0.05)inhibitoryeffectonbothphasesofformalininduced

pain,comparedtothecontrolcondition,withameanof51.1%(i.p.)

and32.7%(v.o.)intheearlyphaseand77.9%(i.p.)and65.1%(v.o.)

inthelatephase.Thepositivecontroldrug,morphine(5mg/kg),

significantlyattenuatedthepainresponsesofthetwophases.

Table3

EffectofMcLTP1onthetotalnumberofcrossedlinesandnumberofrearingsduring

5minofexposuretotheopen-fieldtest.Eachvaluerepresentsthemean±SEM

obtainedfrom8mice.StatisticaldifferencesweredeterminedbyANOVAfollowed byTukey’stest.

Groupa Dose(mg/kg) Crossedlines/5min Numberofrearings

Vehicle – 48.3±1.05 12.8±1.02

McLTP1 8mg/kg 39.2±2.32 12.3±1.56

Diazepam 2mg/kg 10.4±0.08** 2.01±0.04**

aMiceweretreatedwithMcLTP

1orally60minbeforetheexperiment.Vehicle

(NaCl0.15M)anddiazepam(2mg/kg)wereadministeredintraperitoneally30min beforetheexperiment.

**p<0.01(comparedwithsalinegroup).

Thefirstphaseoftheformalintest(0–5min)ischaracterised

by neurogenic pain caused by a direct stimulation of

nocicep-tors. Substance P and bradykinin are thoughtto participate in

thisphase[31].Thesecondphase(15–30min)ischaracterisedby

inflammatorypain,aprocessinwhichseveralinflammatory

medi-atorsarebelievedtobeinvolved,includinghistamine,serotonin,

prostaglandinsandbradykinin[31,57].Ingeneral,centrallyacting

drugsinhibitbothphasesequally,whileperipherallyactingdrugs

inhibitmainlythesecondphase[58].AsshowninFig.6,McLTP1

suppressedpainduringbothphases,indicatingthatthisprotein

hascentralandperipheralanalgesicproperties.

Pretreatment of animals with naloxone (2mg/kg), a

non-selective opioid receptor antagonist, partially reversed the

antinociceptiveactivityofMcLTP1,administeredorallyor

intraperi-toneally, suggestingthe involvementof theopioid routein the

observed activity. Opiates are generally believed to produce

antinociception exclusively via central mechanisms, but some

studiesindicatethat theymayalsoproduceantihyperalgesiain

peripheralsites.Thelater effectsaremediatedbyopioid

recep-torsonperipheralterminalsofsensoryneurons[59]and inthe

gastrointestinaltract[60].Thus,itispossiblethatMcLTP1bindsto

thesegastrointestinalsiteswhenadministeredorally,producing

theantinociceptiveeffect.Similarresultswerefoundforalectin

purifiedfromCanavaliabrasiliensisseeds[61].

Amajor concernin theevaluationof theanalgesicactionof

compoundsis whetherpharmacologicaltreatmentcausesother

behaviouralalterations,suchasimpairmentofmotorcoordination

or sedation, which might be misinterpretedas analgesic

activ-ity.Abehaviouralassessmentwascarriedouttodetermineifthe

antinociceptiveeffectsofMcLTP1werecausedbyanydisturbances

onthecentralnervoussystem.Locomotoractivitywasnotaffected

byMcLTP1,suggestingthattheantinociceptiveresponseobserved

washighlyselective(Table3).

4. Conclusion

In this study we purified, characterised and evaluated the

antinociceptive effect of McLTP1, a lipid transfer protein. It is

describedfor thefirst timeasapain modulator,amplifyingthe

rangeofbiologicalactivitiesdisplayedbythisgroupofmolecules

and alsoprovidingevidence ofitspotentialas asourceof new

painreliefdrugs.McLTP1demonstratedperipheralantinociceptive

activitythatwascomplementedbyitscentraleffect,dependenton

opioidergicinvolvement.Thisisalsothefirstreportoftheisolation

ofaproteinfromthenonispeciesassociatedwiththetherapeutic

propertiesoftheplant.

Conflictofinterest

Theauthorshavedeclaredthatthereisnoconflictofinterest,

includingfinancial,personaloranyotherrelationshipswithother

(8)

Acknowledgements

ThisworkwassupportedbyConselhoNacionalde

Desenvolvi-mentoCientíficoeTecnológico(CNPq)andFundac¸ãoCearensede

ApoioaoDesenvolvimentoCientíficoeTecnológico(FUNCAP).

References

[1]Y.Chan-Blanco,F.Vaillant,A.M.Perez,M.Reynes,J.M.Brillouet,P.Brat,The nonifruit(MorindacitrifoliaL.):areviewofagriculturalresearch:nutritional andtherapeuticproperties,J.FoodCompos.Anal.19(2006)645–654.

[2]A.R.Dixon,H.McMillen,N.L.Etkin,Fermentthis:thetransformationofNonia traditionalpolynesianmedicine(Morindacitrifolia,Rubiaceae),Econ.Bot.53 (1999)51–68.

[3]D.P.Sreekeesoon,M.F.Mahomoodally,Ethnopharmacologicalanalysisof medicinalplantsandanimalsusedinthetreatmentandmanagementofpain inMauritius,J.Ethnopharmacol.157(2014)181–200.

[4]R.AbouAssi,Y.Darwis,I.M.Abdulbaqi,A.A.Khan,L.Vuanghao,M.H.Laghari,

Morindacitrifolia(Noni):acomprehensivereviewonitsindustrialuses, pharmacologicalactivities,andclinicaltrials,Arab.J.Chem.(2015)(available online24.06.15).

[5]E.Dussossoy,P.Brat,E.Bony,F.Boudard,P.Poucheret,C.Mertz,J.Giaimis,A. Michel,Characterization:anti-oxidativeandanti-inflammatoryeffectsof CostaRicannonijuice(MorindacitrifoliaL.),J.Ethnopharmacol.133(2011) 108–115.

[6]S.Mahattanadul,W.Ridtitid,S.Nima,N.Phdoongsombut,P.Ratanasuwon,S. Kasiwong,EffectsofMorindacitrifoliaaqueousfruitextractanditsbiomarker scopoletinonrefluxesophagitisandgastriculcerinrats,J.Ethnopharmacol. 134(2011)243–250.

[7]S.Nima,S.Kasiwong,W.Ridtitid,N.Thaenmanee,S.Mahattanadul, GastrokineticactivityofMorindacitrifoliaaqueousfruitextractandits possiblemechanismofactioninhumanandratmodels,J.Ethnopharmacol. 142(2012)354–361.

[8]B.S.Siddiqui,F.A.Sattar,S.Begum,A.Dar,M.Nadeem,A.H.Gilani,S.R. Mandukhail,A.Ahmad,S.Tauseef,Anoteonanti-leishmanial,spasmolytic andspasmogenicantioxidantandantimicrobialactivitiesoffruits,leavesand

stemofMorindacitrifoliaLinn—animportantmedicinalandfoodsupplement

plant,Med.Aromat.Plants.3(2014),2167–0412.

[9]A.D.Pawlus,B.N.Su,W.J.Keller,A.D.Kinghorn,Ananthraquinonewithpotent quinonereductase-inducingactivityandotherconstituentsofthefruitsof

Morindacitrifolia(noni),J.Nat.Prod.68(2005)1720–1722.

[10]O.Potterat,M.Hamburger,Morindacitrifolia(Noni)fruit—phytochemistry pharmacologysafety,PlantaMed.73(2007)191–199.

[11]M.Wang,B.J.West,C.J.Jensen,D.Nowicki,C.Su,A.Palu,G.Anderson,Morinda citrifolia(Noni):aliteraturereviewandrecentadvancesinnoniresearch,Acta Pharmacol.Sin.23(2002)1127–1141.

[12]X.L.Yang,M.Y.Jiang,K.L.Hsieh,J.K.Liu,Chemicalconstituentsfromtheseeds ofMorindacitrifolia,Chin.J.Nat.Med.7(2009)119–122.

[13]S.Nelson,Noniseedhandlingandseedlingproduction.Fruitsandnuts-10. CooperativeExtensionService,CTAHR,UniversityofHawai’iatM¨anoa. [Internetdocument]<http://www.ctahr.hawaii.edu/noni/downloads/FN10. pdf>,2005(accessed13.03.15).

[14]B.J.West,C.J.Jensen,A.K.Palu,S.Deng,Toxicityandantioxidanttestsof

Morindacitrifolia(noni)seedextract,Adv.J.FoodSci.Technol.3(2011) 303–307.

[15]M.E.Carr,J.Klotz,M.Bergeron,Coumadinresistanceandthevitamin supplementNoni,Am.J.Hematol.77(2004)103.

[16]N.F.Q.Marques,A.P.B.M.Marques,A.L.Iwano,M.Golin,R.R.De-Carvalho,F.J.R. Paumgartten,P.R.Dalsenter,DelayedossificationinWistarratsinducedby

MorindacitrifoliaL.exposureduringpregnancy,J.Ethnopharmacol.128 (2010)85–91.

[17]G.Millonig,S.Stadlmann,W.Vogel,Herbalhepatotoxicity:acutehepatitis causedbyanonipreparation(Morindacitrifolia),Eur.J.Gastroenterol. Hepatol.17(2005)445–447.

[18]V.Stadlbauer,P.Fickert,C.Lackner,J.Schmerlaib,P.Krisper,M.Trauner,R.E. Stauber,Hepatotoxicityofnonijuice:reportoftwocases,WorldJ. Gastroenterol.11(2005)4758–4760.

[19]H.Mori,N.Yoshimi,H.Iwata,Y.Mori,A.Hara,T.Tanaka,K.Kawai, Carcinogenicityofnaturallyoccurring1-hydroxyanthraquinoneinrats: inductionoflargebowel,liverandstomachneoplasms,Carcinogenesis11 (1990)799–802.

[20]A.deOliveiraCarvalho,V.M.Gomes,Roleofplantlipidtransferproteinsin plantcellphysiology—aconcisereview,Peptides28(2007)1144–1153.

[21]M.Morales,M.Á.López-Matas,R.Moya,J.Carnés,Cross-reactivityamong non-specificlipid-transferproteinsfromfoodandpollenallergenicsources, FoodChem.165(2014)397–402.

[22]A.Alba,C.Lopez-Abarrategui,A.J.Otero-Gonzalez,Hostdefensepeptides:an alternativeasantiinfectiveandimmunomodulatorytherapeutics, Biopolymers98(2012)251–267.

[23]E.S.Candido,M.H.S.Cardoso,D.A.Sousa,J.C.Viana,N.G.Oliveira-Júnior,V. Miranda,O.L.Franco,Theuseofversatileplantantimicrobialpeptidesin agribusinessandhumanhealth,Peptides55(2014)65–78.

[24]C.I.Schroeder,K.J.Nielsen,D.A.Adams,M.Loughnan,L.Thomas,P.F.Alewood, R.J.Lewis,D.J.Craik,EffectsofLys2toAla2substitutionsonthestructureand potencyofomega-conotoxinsMVIIAandCVID,Pept.Sci.98(2012)345–356.

[25]E.F.Schwartz,C.B.F.Mourão,K.G.Moreira,T.S.Camargos,M.R.Mortari, Arthropodvenoms:avastarsenalofinsecticidalneuropeptides,Biopolymers 98(2012)385–405.

[26]M.M.Bradford,Arapidandsensitivemethodforthequantitationof microgramquantitiesofproteinutilizingtheprincipleofprotein-dyebinding, Anal.Biochem.72(1976)248–254.

[27]U.K.Laemmli,Cleavageofstructuralproteinsduringtheassemblyofthe bacteriophageT4,Nature227(1970)680–685.

[28]S.F.Altschul,W.Gish,W.Miller,E.W.Myers,D.J.Lipman,Basiclocal alignmentsearchtool,J.Mol.Biol.215(1990)403–410.

[29]S.K.Sathe,Solubilization,electrophoreticcharacterizationandinvitro digestibilityofalmond(Prunusamygdalus)proteins,J.FoodBiochem.16 (1992)249–264.

[30]R.Koster,M.Anderson,J.DeBeer,Aceticacidforanalgesicscreening,Fed. Proc.18(1959)412–417.

[31]S.Hunskaar,K.Hole,Theformalintestinmice:dissociationbetween inflammatoryandnon-inflammatorypain,Pain30(1987)103–114.

[32]J.R.Martin,K.Baettig,J.Bircher,Mazepatrolling:open-fieldbehaviorand runwayactivityfollowingexperimentalportacavalanastomosisinrats, Physiol.Behav.25(1980)713–719.

[33]L.Lv,H.Chen,C.T.Ho,S.Sang,ChemicalcomponentsoftherootsofNoni (Morindacitrifolia)andtheircytotoxiceffects,Fitoterapia82(2011) 704–708.

[34]J.C.Kader,Lipid-transferproteinsinplants,Annu.Rev.PlantPhysiol.Plant Mol.Biol.47(1996)627–654.

[35]S.Tsuboi,T.Osafune,R.Tsugeki,M.Nishimura,M.Yamada,Nonspecificlipid transferproteinincastorbeancotyledoncells:subcellularlocalizationanda possibleroleinlipidmetabolism,J.Biochem.111(1992)500–508.

[36]A.Carvalho,C.E.Teodoro,M.Cunha,A.L.Okorokova-Fac¸anha,L.A.Okorokov, K.V.S.Fernandes,V.M.Gomes,Intracellularlocalizationofalipidtransfer proteininVignaunguiculataseeds,Physiol.Plant.122(2004)328–336.

[37]M.S.Diz,A.O.Carvalho,S.F.F.Ribeiro,M.Cunha,L.Beltramini,R.Rodrigues, V.V.Nascimento,O.L.T.Machado,V.M.Gomes,Characterisation: immunolocalisationandantifungalactivityofalipidtransferproteinfrom chilipepper(Capsicumannuum)seedswithnovel␣-amylaseinhibitory properties,Physiol.Plant.142(2011)233–246.

[38]U.Zottich,M.DaCunha,A.O.Carvalho,G.B.Dias,N.C.M.Silva,I.S.Santos,V.V. Nacimento,E.C.Miguel,O.L.T.Machado,V.M.Gomes,Purification: biochemicalcharacterizationandantifungalactivityofanewlipidtransfer protein(LTP)fromCoffeacanephoraseedswith␣-amylaseinhibitor properties,Biochim.Biophys.Acta1810(2011)375–383.

[39]V.Arondel,C.Vergnolle,C.Cantrel,J.C.Kader,Lipidtransferproteinsare encodedbyasmallmultigenefamilyinArabidopsisthaliana,PlantSci.157 (2000)1–12.

[40]F.Vignols,G.Lung,S.Pammi,D.Tremousaygue,F.Grellet,J.C.Kader,P. Puigdomenech,M.Delseny,Characterizationofaricegenecodingforalipid transferprotein,Gene142(1994)265–270.

[41]S.Gorjanovic,E.Spillner,M.V.Beljanski,R.Gorjanovic,M.Pavlovic,G. Gojgic-Cvijanovic,Maltingbarleygrainnon-specificlipid-transferprotein (ns-LTP):importanceforgrainprotection,J.Inst.Brew.111(2005)99–104.

[42]R.Asero,G.Mistrello,D.Roncarolo,S.DeVries,M.Gautier,C.Ciurana,E. Verbeek,T.Mohammadi,V.Knul-Brettlova,J.H.Akkerdaas,I.Bulder,R.C. Aalberse,R.vanRee,Lipidtransferprotein:apan-allergeninplant-derived foodsthatishighlyresistanttopepsindigestion,Int.Arch.AllergyImmunol. 122(2001)20–32.

[43]K.Lindorff-Larsen,J.R.Winther,Surprisinglyhighstabilityofbarleylipid transferproteinLTP1,towardsdenaturant,heatandproteases,FEBSLett.488 (2001)145–148.

[44]E.Pastorello,C.Pompei,V.Pravettoni,L.Farioli,A.Calamari,J.Scibilia,A.M. Robino,A.Conti,S.Iametti,D.Fortunato,S.Bonomi,C.Ortolani,Lipid-transfer proteinisthemajormaizeallergenmaintainingIgE-bindingactivityafter cookingat100◦C,asdemonstratedinanaphylacticpatientsandpatientswith

positivedouble-blind.Placebo-controlledfoodchallengeresults,J.Allergy Clin.Immunol.112(2003)775–783.

[45]S.Scheurer,I.Lauer,K.Foetisch,M.S.Moncin,M.Retzek,C.Hartz,E.Enrique,J. Lidholm,A.Cistero-Bahima,S.Vieths,StrongallergenicityofPruav3,thelipid transferproteinfromcherry,isrelatedtohighstabilityagainstthermal processinganddigestion,J.AllergyClin.Immunol.114(2004)900–907.

[46]X.Yang,J.Li,X.Li,R.She,Y.Pei,Isolationandcharacterizationofanovel thermostablenon-specificlipidtransferprotein-likeantimicrobialprotein frommotherwort(LeonurusjaponicusHoutt)seeds,Peptides27(2006) 3122–3128.

[47]P.Sterk,H.Booij,G.A.Scheleekens,A.VanKammen,S.C.DeVries,Cell-specific expressionofthecarrotEP2lipidtransferproteingene,PlantCell3(1991) 907–921.

[48]S.Torres-Schumann,J.A.Godoy,J.A.Pintor-Toro,Aprobablelipidtransfer proteingeneisinducedbyNaClinstemsoftomatoplants,PlantMol.Biol.18 (1992)749–757.

[49]F.García-Olmedo,A.Molina,A.Segura,M.Moreno,Thedefensiveroleof nonspecificlipid-transferproteinsinplants,TrendsMicrobiol.3(1995) 72–74.

(9)

differentdevelopmentalpatternsofexpression,PlantPhysiol.116(1998) 1461–1468.

[51]A.White,M.A.Dunn,K.Brown,M.A.Hughes,Comparativeanalysisof genomicsequenceandexpressionofalipidtransferproteingenefamilyin winterbarley,J.Exp.Bot.45(1994)1885–1892.

[52]R.Ghosh,V.A.Bankaitis,Phosphatidylinositoltransferproteins:negotiating theregulatoryinterfacebetweenlipidmetabolismandlipidsignalingin diversecellularprocesses,Biofactors37(2011)290–308.

[53]I.D.G.Duarte,M.Nakamura,S.H.Ferreira,Participationofthesympathetic systeminaceticacid-inducedwrithinginmice,Braz.J.Med.Biol.Res.21 (1987)341–343.

[54]V.Martinez,S.V.Coutinho,S.Thakur,J.S.Mogil,Y.Taché,E.A.Mayer, Differentialeffectsofchemicalandmechanicalcolonicirritationon behavioralpainresponsetointraperitonealaceticinmice,Pain81(1999) 179–186.

[55]Y.Ikeda,A.Ueno,H.Naraba,S.Oh-Ishi,InvolvementofvanilloidreceptorVR1 andprostanoidsintheaceticacid-inducedwrithingresponseofmice,LifeSci. 69(2001)2911–2919.

[56]S.Taissin-Moindrot,A.Caille,J.P.Douliez,D.Marion,F.Vovelle,Thewide bindingpropertiesofawheatnonspecificlipidtransferprotein,Eur.J. Biochem.267(2000)1117–1124.

[57]M.Shibata,T.Ohkubo,H.Takahashi,R.Inoki,Modifiedformalintest: characteristicbiphasicpainresponse,Pain38(1989)347–352.

[58]A.Tjolsen,K.Hole,Animalmodelsofanalgesia,in:M.J.Besson,A.Deckeson (Eds.),ThePharmacologyofPain,Springer-Verlag,Berlin,Germany,1997,pp. 1–20.

[59]A.Barber,R.Gottschilich,Opioidagonistsandantagonists:anevaluationof theirperipheralactionsininflammation,Med.Res.Rev.12(1992)525–562.

[60]O.Pol,J.R.Palacio,M.M.Puig,Theexpressionofdelta-andkappa-opioid receptorisenhancedduringintestinalinflammationinmice,J.Pharmacol. Exp.Ther.306(2003)455–462.

Imagem

Fig. 1. Purification of McLTP 1 . (A) Separation profile of 2.5% TCA soluble fraction from noni seed extract on a Sephadex G-50 column
Fig. 3. SDS-PAGE (12.5%) profile of the in vitro digestibility of McLTP 1 by pepsin (lane P), trypsin (lane T) and after sequential digestion with the cited enzymes and chymotrypsin (lane S)
Fig. 5. Evaluation of thermal stability of the purified McLTP 1 using an acetic acid induced writhing response in mice
Fig. 6. Time spent on paw licking after oral or intraperitoneal pretreatment with McLTP1 (8 mg/kg) on both first (A) (0–5 min) and second (B) (15–30 min) phases of the formalin induced nociception

Referências

Documentos relacionados

The acid fraction (200 mg/kg) also showed significant antinociceptive activity in acetic acid-induced constrictions (57% inhibition) and formalin-induced pain (55% inhibition of

To investigate the involvement of the opioid system in the acetic acid-induced abdominal constriction and formalin tests animals were pretreated with naloxone (1 mg/kg; i.p.), then

The antinociceptive activity was evaluated by acetic acid-induced writhing, the hot plate test, and pain induction using formalin.. The administration of 1 (1

The antinociceptive profile of petroleum ether fraction (given oral; 100, 250 and 500 mg/kg) was established using the in vivo chemicals (acetic acid-induced abdominal constriction

The Streptoverticillium extract (ExS) 50 and 100 mg/kg (s.c.) produced a signifi cant inhibition of acetic acid-induced abdominal writhings thereby demonstrating an

Antipyretic activity of Mc LTP1 on lethal sepsis induced by CLP in mice. Effects of Mc LTP1 on total and differential leukocyte counts in mice with sepsis induced

Group one was given saline orally and served as the control; group two received 4 mg/kg of diazepam (ip), group three received 50 mg/kg BM orally, group four received 50 mg/kg

obtusata using classic models in mice (croton oil-induced ear edema and acetic acid-induced writhing) and a phospholipase A 2 activity test.. Qualitative analysis of the chemical