• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.26 número2

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.26 número2"

Copied!
6
0
0

Texto

(1)

w ww.e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

UPLC–QTOF–MS

and

NMR

analyses

of

graviola

(

Annona

muricata

)

leaves

Ingrid

Vieira

Machado

de

Moraes

a

,

Paulo

Riceli

Vasconcelos

Ribeiro

a

,

Flávio

Luis

Schmidt

b

,

Kirley

Marques

Canuto

a

,

Guilherme

Julião

Zocolo

a

,

Edy

Sousa

de

Brito

a

,

Rensheng

Luo

c

,

Kristy

M.

Richards

d

,

Kevin

Tran

d

,

Robert

E.

Smith

d,∗

aEmbrapaAgroindústriaTropical,Fortaleza,CE,Brazil

bDepartamentodeTecnologiadeAlimentos,FaculdadedeEngenhariadeAlimentos,UniversidadedeCampinas,Campinas,SP,Brazil

cUniversityofMissouri,St.Louis,MO,USA

dFoodandDrugAdminsitration,Lenexa,KS,USA

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received6April2015 Accepted7December2015 Availableonline6February2016

Keywords:

Graviola

Annonamuricata

UPLC–QTOF–MS Parkinson’sdisease NMR

a

b

s

t

r

a

c

t

Graviolaleaves(AnnonamuricataL.,Annonaceae)areusedbysomepeopletotrytotreatoreven curecancer,eventhoughover-consumptionofthefruit,whichcontainstheneurotoxinsannonacin andsquamocinhascausedanatypicalformofParkinson’sdisease.Inpreviousanalyses,thefruitswere extractedwithmethanolunderambientconditionsbeforeanalyses.Inthepresentstudy,UPLC–QTOF–MS andNMRwereusedtoanalyzefreeze-driedgraviolaleavesthatwereextractedusingdrymethanoland ethanolat100◦Cand10MPa(100atm)pressureinasealedcontainer.Methanolsolubilized33%ofthe metabolitesinthelyophilizedleaves.Ethanolsolubilized41%ofmetabolitesinthelyophilizedleaves.The concentrationsoftotalphenoliccompoundswere100.3±2.8and93.2±2.0mggallicacidequivalentsper gofsample,forthemethanolicandethanolicextracts,respectively.Moreover,thetoxicophore (unsat-urated␥-lactone)thatispresentinneurotoxicacetogeninswasfoundinthelipophilicportionofthis extract.TheconcentrationsoftheneurotoxinsannonacinandsquamocinwerefoundbyUPLC–QTOF–MS tobe305.6±28.3and17.4±0.89␮g/g-dw,respectively,inthedriedleaves.Pressurizedmethanol solubi-lizedmoreannonacinandsquamocinthanethanol.Ontheotherhand,ahot,aqueousinfusionsolubilized only0.213%oftheannonacinandtoolittleofthesquamocintobedetected.So,graviolaleavescontain significantamountsoftheneurotoxinsannonacinandsquamocin,aswellassomepotentiallyhealthy phenoliccompounds.Finally,thepotentialneurotoxicityofwholeleavesindietarysupplementscould bemuchhigherthanthatofatea(hotaqueousinfusion)thatismadefromthem.

©2015SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

Graviola (Annona muricata L.) is a tropical fruit in the AnnonaceaefamilythatisgrowninAsia,SouthAmericaandmany tropicalislands(Lannuzeland Michel,2009;Gajalakshmiet al., 2012).Theleavescanbeusedtomakeatea(Port’setal.,2013; Hansraetal.,2014)orconsumedwholeasdietarysupplementin capsulesthatmayhavesomehealtheffects(Torresetal.,2012). However,over-consumptionofgraviolaandproductsmadefrom itmayhavecausedanatypicalformofParkinson’sdiseasesonthe FrenchCaribbeanislandofGuadeloupeandthePacificislandof

∗ Correspondingauthor.

E-mail:Robert.smith@fda.hhs.gov(R.E.Smith).

Guam(Caparros-LefebvreandElbaz,1999;Champyetal.,2005; BadrieandSchauss,2009).Thisisduetothepresenceof neuro-toxicacetogenins,suchasannonacin(1)(C35H64O7,MW596.88)

andsquamocin(2)(C37H66O7,MW622.92).Likeotherneurotoxic

acetogenins,theycontainanunsaturated␥-lactonegroupthatis thetoxicophore(Smithetal.,2014).However,theneurotoxicity couldbestronglydependentonthedose.Thatis,thefirstruleof toxicologyisthatthedoseisthepoison(Smith,2014).Itwas over-consumption,notconsumptionofgraviolathatcausedParkinson’s disease.Thedoseofneurotoxicacetogeninsthatoneconsumesis verydependentontheformofgraviolathatisingested.For exam-ple,onestudyusedateamadefrom10to12dryleavesthatwere boiledin8oz(about237ml)waterfor5–7min(Hansraetal.,2014). Sinceacetogeninshaveverylowsolubilitiesinwater(Höllerhage etal.,2009),thiswouldhavebeenarelativelylowdose.Thedose

http://dx.doi.org/10.1016/j.bjp.2015.12.001

(2)

canbeestimatedfromapreviousstudythatfoundabout56mg of annonacinperkgof leaveswhen about2.5g ofleaveswere boiledfor10mininwater(Champyetal.,2005).Ontheotherhand, muchhigherdoseswouldbeconsumedifoneweretoingestthe entireleavesinadietarysupplement.Thatis,onegroupreported thatthe“therapeuticdose”ofgraviolaleavesis2–3g,taken3or4 timesdaily(Sunetal.,2014).Ifwholeleavesareconsumed,the expecteddosewould behigher than thatin a tea.To estimate theconcentration,100gofdriedleaveswereextractedwith1lof methanol(Champyetal.,2005).Thisrecoveredalmostsixtimes asmuch annonacin(about 300mg/kg)as didtheboilingwater. However,thisanalysiswasdonewithmatrixassistedlaser desorp-tionandionizationcoupledtotimeofflightmassspectrometryor MALDI–TOFMS(Champyetal.,2005),whichseparatesanalytes basedontheirmolecularweights.So,annonacinwillnotbe sepa-ratedfromitsisomers.Thiscouldcauseanover-estimationofthe concentrationofannonacin,sinceitsisomerswillalsobedetected by theMALDI–TOF MS. It was observed,boiling methanolwas notabletosolubilizealltheannonacin(1)orsquamocin(2)from anotherfruitintheAnnonaceaefamily,theNorthAmerican paw-paw(Asiminatriloba;Pottsetal.,2012).Thatis,themethodusedto extractannonacinandsquamocincanaffecttheresultsofthe analy-sis.Boilingwaterwillnotsolubilizealltheannonacinorsquamocin. Instead,pressurizedliquidextractionusingdrymethanolat100◦C and10MPa(100atm)pressurecansolubilizeoverseventimesas muchannonacinandevensomesquamocinfromthefruits(Potts etal.,2012).So,itisimportanttousehot,drypressurizedmethanol toextractalltheannonacinandsquamocin.Itisalsoimportantto useliquidchromatographycoupledtohighresolutionmass spec-trometry(LC-HRMS)toseparateanddetectisomersofannonacin andsquamocin(Levineetal.,2015).

LC-HRMSisespeciallyusefulwhentryingtoquantifytrace com-ponents,like acetogenins.TheMS canbetunedsothat it isas sensitiveaspossiblefortheanalytesofinterest(Smith,2014). How-ever,thesensitivitiesforotheranalytesthatarepresentinasample arequitedifferent.So,standardsarerequiredwhenquantifying analytesbyMS.Ontheotherhand,1H NMRhasthesame

sen-sitivityfor allthehydrogens(1Hisotope)inthesample(Smith,

2014).So,itcanbeusedwithoutstandardstodeterminetherelative concentrationsofdifferenttypesofhydrogensinasample(Smith, 2014).Moreover,13CNMRcanbeusedtodeterminehowmany

differentkindsofcarbonsareinasampleandtoidentifythetypes ofcompoundsthatarepresent(Smith,2014).Therefore,NMRcan beveryusefulinanalyzingrelativelyunknownsamples.NMRwas usedtoanalyzeextractsofA.muricataforthepresenceofthe␣,␤ -unsaturated-␥-lactonetoxicophorethatis presentinneurotoxic acetogenins(Machadoetal.,2015).

Even though graviola leaves have been reported to contain about300mg/kgannonacin(Höllerhageetal.,2009),32mg/kgtotal phenolicsand5.6mg/kgtotalflavonoids(Port’setal.,2013),little isknownaboutitsmajorchemicalconstituents.Eventhe concen-trationoftotalsolublesubstancesisnotwellknown.Thatis,the concentrationdependsonthemethodusedtoextractthesoluble substances.Forexample,whendriedleavesweresoakedin dis-tilledwater for48h,about 5%ofthesolids dissolved(Florence et al.,2014).Another obtainedonly a 3.62% yield when leaves wereextractedtwicewithdistilled water atroomtemperature (AdewoleandAjewole,2009).Whensoakedfor48hin80%ethanol, about10.55%ofthecompoundsintheleavesdissolved(Foongand Hamid,2012;Hamizahetal.,2012).Adifferentstudypercolateddry leaveswith95%ethanoltogeta19.3%yieldofsolublesubstances (Singletonetal.,1999).

So, the aims of this work were characterizing the extracts obtainedbythistechniqueandseeifmethanolandethanolpresent differentresults,aswellasanalyzeannonacinandsquamocinby UPLC–QTOF–MS.

Materialsandmethods

Chemicalsandgraviolaleaves

Methanol(CH3OH),chloroform(CHCl3), acetonitrile(CH3CN)

andethanolwerefromHoneywellBurdick&Jackson(Muskegon, MI, USA). Deuterated chloroform (CDCl3), deuteratedmethanol

(CD3OD)anddeuteratedwater(D2O)werefromSigmaAldrich(St.

Louis,MO).Leucine-enkephalinwaspurchasedfromWaters(North Kingstown,RI,USA).Lyophilizedgraviolaleaveswereobtainedby Ingrid de Moraes froma commercialcultivationlocated in the cityofTrairi(Ceará,Brazil),latitude3◦2215.98′′Sand longitude 39◦1734.46′′W.VoucherspecimensarekeptatEmbrapain For-taleza.Thevouchernumberis49002.Afterbeingharvested,the leaveswerewashed,sanitizedwithasodiumhypochlorite solu-tion(100␮ll-1or100ppm)andthenlyophilizedinamodelLP510

lyophilizer(Liobrás,SãoCarlos,SP-Brazil),atEmbrapaTropical AgroindustrylocatedinFortaleza,Ceará,Brazil.

Extractions

About10goflyophilizedleavesweremixed withenoughof HydroMatrixTM (SigmaAldrich, St. Louis, MO) to fill the 100ml

stainlesssteelsamplecellusedinanAcceleratedSolvent Extrac-tor(ASE, ThermoFisher Scientific, Sunnyvale, CA).Then, CH3OH

orethanolwasaddedwhilethetemperatureandpressurewere increasedto100◦Cand10.3MPa(100atm)overa3mintime(static time).Next,thesolventwaspurgedintoacollectionvessel.Atotal offourcycleswereruntostaticallyextractthesample,resulting inatotalvolumeofabout160ml.Thesolventwasevaporatedoff and theoily residuesremaining afterextractionwitheach sol-vent wereweighed.Aportionoftheresidueobtainedfromthe methanolextractionwasdissolvedin99.99%CD3ODandanalyzed

byNMR.Portionsofthemethanolicandethanolicresidueswere analyzedfortotalphenolics,asdescribedbelow.Then,portionsof theresiduesobtainedfromthemethanolicandethanolic extrac-tionwerepartitionedbetweenCHCl3andwater.TheCHCl3phase

wascollected,thesolventevaporatedoff,theresidueredissolved inCDCl3andNMRspectraacquired.Finally,a10gportionofdried

leaveswereextractedbyultrasonication.Itwasdonewith200ml of50%ethanolplus50%waterat40◦Cfor10min,usingan Ultra-celaner1450ultrasonicatorfromUnique(Indaia,SP,Brazil).Itwas doneatafrequencyof20kHzandwith800Wpower.Thisextract wasalsoanalyzedfortotalphenolics.

Also,threeportionsofabout2.5gandoneportionofabout5.0g oflyophilizedleaveswereaddedto237ml(onecup)ofwaterat 90◦Cfor10min,afterwhichthesolutionswerefilteredand ana-lyzedbyLC–MS/MS.

NMRanalyses

1Hand13C{1H}-NMRspectrawereobtainedusinganAgilent

DD2600MHzNMR (SantaClara,CA).A30◦ pulsewidthand 1s pulsedelaywereusedforthe1HNMR,whilea30pulsewidthand 2spulsedelaywereusedforthe13CNMRspectra.Chemicalshifts

werereferencedtoeithertheCD3ODpeaksat3.35and4.78(for1H)

and49.3ppm(for13C)ortheCDCl

3peaksat7.27and77.23ppm

for1Hand13C,respectively.

Analysisfortotalphenoliccompounds

(3)

previously(Singletonetal.,1999).Resultswereexpressedasmg gallicacidequivalentspergofsample,ormgGAE/g-dw.

UPLC–QTOF–MSanalysis

First,about10mgofeachoftheresiduesremainingafter evapo-ratingthesolventoffofthehot,pressurizedextractswasdissolved in 5ml of ethanol:H2O (1:1, v/v) and passed through a LC-18

Supelcoclean 6ml (0.5g) solid phase extraction (SPE)cartridge (Supelco,Bellefonte,PA,USA)thatwaspreconditionedby wash-ingitthreetimeswithCH3OHandthenequilibratedwith3mlof

deionizedwater.Theacetogeninswereelutedwith6mlofCH3CN.

TheCH3CNwasevaporatedoffandtheresidueredissolvedin1ml

ofCH3CN:H2O(15:7,v/v).Theresiduesfromeachsamplewere

ana-lyzedbypositiveionUPLC–MSanalysisusingaXevoUPLC-QTOF fromWaters(Milford,MA)andanAcquityUPLCBEHC18column, 1.7␮m,2.1mm×100mm.Agradientelutionwasusedwitha mix-tureofH2OandCH3CNand0.1%formicacid,flowingat400␮l/min.

Thatis,eventhoughtheconcentrationsofH2OandCH3CNvaried,

theconcentrationofformicaciddidnot.Itwasheldconstantat 0.1%.Itstartedwith35:65H2O/CH3CN(v/v)forthefirst25min,

thenincreasedlinearlyto1:9H2O/CH3CN(v/v)from25to30min.It

washeldat1:9H2O/CH3CN(v/v)from30to35min,thendecreased

linearlyto35:65H2O/CH3CN(v/v)from35to36minandheldat

thisfrom36to40min.TheMSspectrawereacquiredinpositiveion modewithanelectrosprayionization(ESI)source.TheMS param-eterswereasfollows:desolvationtemperature350◦C, capillary voltage3.2kV,samplingconevoltage32V,extractioncone volt-age1.0V,sourcetemperature120◦C, conegas2l/h,desolvation gasflow350l/h,purgegasflow350l/h,collisionenergy5.0V. Cen-troiddatawerecollectedforeachsampleinarange110–800Da, andthem/zvalueofallacquiredspectrawasautomatically cor-rectedduringacquisitionbasedonlockmassbyinfusing200pg/lof leucine-enkephalinthoroughLocksprayataflowrateof20␮l/min. Thecalibrationwasperformedtoachieveanacceptableaccuracy errorof±5ppm.Theaccuratemassandmolecularformula denom-inationwereacquiredwiththeMassLynx4.1software(WatersMS Technologies).

Annonacinand squamocinstandards fromPierreChampy at theUniversity of Paris were used toidentify and quantify the peaksduetoannonacin(1)andsquamocin(2).Theyelutedat14.1 and15.6min,respectively.Ionswithm/z=597.47and623.48Da were used to quantify annonacin and squamocin, respectively. Calibrationcurveswereobtainedusing10–200ng/mlannonacin and squamocin, assuming that the standards were 100% pure. Sampleswereinjected intriplicatewithresultsreportedasthe average±standarddeviation.

Resultsanddiscussion

Extraction

Drymethanolat100◦Cand10MPa(100atm)pressure solubi-lized33%oftheleaves,whileethanolunderthesameconditions solubilized 41%. So, hot, pressurized methanol extracted much morematerialthanboiling(orpercolating)underambient pres-sure,which solubilized19.3% of theleavesin a previousstudy (Port’setal.,2013).Theconcentrationoftotalphenoliccompounds thatwerefoundusinghot,pressurizedmethanolextractionwas 100.3±2.8mgGAE/g.Thiscomparesto93.2±2.0mgGAE/ginthe hot,pressurizedethanolextract,54.6mgGAE/gintheultrasonic extractusing50%ethanolandthevalueof33mgGAE/gthatwas foundbyotherswhenleaveswereextractedwithboilingwater. So,extractionwithdrymethanolat100◦Cand10MPa(100atm)

CD3OD CD3OD 2

4

1

3

5

9 8 7 6 5 4 3 2 1 ppm

Fig.1.1H-NMRspectrumofmethanolicextract(100C,100MPascal)oflyophilized

graviolaleaves,inCD3OD.Peaks:1:–CH3;2:–(CH2)n;3:H2C–CH CH–;4:HCOof

sugars5:phenylsand/orphenolics.

pressurecanextractmorephenoliccompoundsthanboilingwater underambientpressure.

NMRanalysis

The1Hand13C{1H}-NMRspectraofthemethanolicextractof

lyophilizedgraviolaleavesareshowninFigs.1and2.Theyboth containsignals(chemicalshifts)duetotheCH3–(CH2)nCH2COOR

of esters (1H: 0.66–1.0 and 1.1–1.4ppm; 13C: 14.6, 16.3–39.3

and 175–177ppm), the –HCOH and –H2COH of

carbohy-drates (1H: 3.0–5.4ppm; 13C: 62.2–108.8ppm) and the

HC C of aromatic hydrogens in phenolic compounds (1H:

6.4–8.1ppm;13C:125.5–166.2ppm).Therearealsosignalsdueto

–CH2–HC CH–portionof unsaturatedfattyacyls (1H:6.4ppm; 13C: 108.9–119.5ppm). The relative contributions to the total

peakareainthe1Hspectrumwere24%alkyl(CH

3–(CH2)n),46%

carbohydrate,and 4.2%phenyl.Therewerenopeaksdueto di-ortriglycerides.Thealkyl,carbohydrateandcarbonylcarbonsall producedchemicalshiftsthatwereconsistentwiththepresence of esters of fatty acyls and sugars. These are more commonly calledfattyacidglycosides.Theyhavebeenfoundinthetropical fruitcallednoni(Morindacitrifolia)andhaveanticancerproperties

CD3OD

CH2

CH3 CHO of glycosides

Aromatic carbons

C=O

180 160 140 120 100 80 60 40 20 ppm

Fig.2.13C{1H}-NMRspectrumofmethanolicextract(100C,100MPascal)of

(4)

CHCl3 2

1

3

4 5 6

11 10 9 8 7 6 5 4 3 2 1 ppm

Fig.3. 1HNMRspectrumoftheportionofthemethanolicextract(100C,10MPa)of

ovendriedgraviolaleavesthatpartitionedintoCHCl3,redissolvedinCDCl3.Peaks:

1:–CH3;2:–(CH2)n;3:H2C–CH CH–;4:HCOofsugars;5:HC CH;6:HC Cin

theunsaturated␥-lactonetoxicophoreinacetogenins;0.1%CHCl3in99.9%CDCl3

solvent.

(Smithetal.,2014;Akihisaetal.,2007;Kim,2010).Itshouldalso benotedthateventhoughthemethanolicextractwasgreendue tothepresenceofchlorophyll,thechlorophyllwaspresentattoo lowofaconcentrationtoproducepeaksintheNMRspectra.There mayalsobesomesignals due toterpenesthatmay beslightly solubleinmethanol,eventhoughtheyareusuallyextractedusing hexane.

O

O

O

O

O O

O

OH

OH OH

1

2

OH OH

OH OH

OH

About37.5%ofthemethanolicextractpartitionedintoCHCl3.

The1Hand13C{1H}-NMRspectraofthislipophilicportionofthe

methanolicextractareshowninFigs.3and4.Therearechemical shiftsatorabout7.0and7.2ppmduetotheunsaturated␥-lactone toxicophorethatis inneurotoxicacetogenins(Luoetal.,2013), andverysmallsignalsdue tofourdifferentHC C hydrogensin chlorophyllat8.00,8.55,9.29and9.52ppm.

Incomparison,the1Hand13C{1H}-NMRspectraoftheportion

oftheethanolicextractthatpartitionedintoCDCl3areshownin

theSupplementaryMaterial.Thechemicalshiftsduetothe unsat-urated␥-lactonetoxicophorearealsopresent.

LC–MSanalysis

Seven point calibration curves each for annonacin (1) and squamocin(2)showedadequatelinearcorrelationbetween con-centration and area (R2>0.99), the linear range of standard

compounds was between10 and 200ng/ml for standard com-pounds. Standardsand samples wereinjected in triplicate.The

CDCl3 (CH2)n

CHO of glycosides

Aromatic carbons

Ester C=O

180 160 140 120 100 80 60 40 20 ppm

CH3

Fig.4. 13C{1H}-NMRoftheportionofthemethanolicextract(100C,10MPa)of

ovendriedgraviolaleavesthatpartitionedintoCHCl3,redissolvedinCDCl3.

injections showed that theresults are highly reproducible and repetitive. The LC–MS chromatograms of 200ng/ml annonacin andsquamocinstandardsandthemethanolicextractofgraviola leaves are shown in Fig. 5. The concentrations of the neuro-toxins annonacin and squamocinwere found tobe 1.68±0.08 and0.023±0.001mg/g-dw,respectivelyinthedriedleaves. Pres-surized methanol solubilized more annonacin and squamocin thanethanol.Thatis,305.6±28.3␮g/g-dwannonacinwasfound

in the methanolic extract and 226.0±0.07␮g/g-dw was found in the ethanolic extract. On the other hand, 17.4±0.89␮ g/g-dw squamocin was found in the methanolic extract, and 4.75±0.41mg/g-dwsquamocinwasfoundintheethanolicextract. Ontheotherhand,ahot,aqueousinfusion(tea)solubilizedonly 0.213%(0.65±0.07␮g/g-dw)oftheannonacinfrom2.5gofdry leavesandtoolittleofthesquamocintobedetected.When5.0gof leaveswereusedtoprepareatea,only0.108%(0.33␮g/g-dw)ofthe leaves.So,teabagscontainingabout5gofdrygraviolaleaveswill notsolubilizemuchmoreannonacinthanteabagscontaining2.5g ofleaves.Thus,wholegraviolaleavescontainsignificantamounts oftheneurotoxinsannonacinandsquamocin, aswellas pheno-liccompounds.Moreover,thepotentialneurotoxicitiesofwhole leavesindietarysupplementscouldbemuchhigherthanthatofa teathatismadefromthem.

(5)

100

Total Ion chromatogram

%

0

4.00 6.00

1 - Annonacin standard

[M+H]+ 597.47

8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00

100

%

0

4.00 6.00 8.00 10.00 12.00 1

2

2 1

14.00 16.00 18.00 20.00 22.00 24.00

100

Extracted Ion chromatogram

2 - Squamocin standard

[M+H]+ 623.48

Extracted Ion chromatogram

[M+H]+ 623.48 [M+H]+ 597.47 %

0

4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00

100

%

0

4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00

100

%

0

4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 Time

A

B

C

D

E

Fig.5.UPLC–QTOF–MSchromatogramofthehot,pressurizedmethanolicextract(100◦C,10MPa)oflyophilizedgraviolaleavestotalionchromatogramofthesample

(A);annonacinstandard–200ng/ml(Rt=14.1min)(B);allpeaksofions[M+H]+=597.47extractedionchromatogramofthesample(C);squamocinstandard200ng/ml

(Rt=15.6min)(D);allpeaksofions[M+H]+=623.48extractedofthesample(E).

TheNMRspectraweredominatedbypeaksduetofattyacid gly-cosides,whichmayhaveanticancerandotherhealthbenefits(Kim etal.,1998;Akihisaetal.,2007;Smith,2014).Theyarealso surfac-tants,sotheywillprobablyincreasethesolubilitiesofacetogenins inhotwater.TheNMRspectraalsocontainedchemicalshiftsdue totheunsaturated␥-lactonetoxicophorethatisinannonacinand squamocin(Machadoetal.,2015).Theyarealsosurfactants,sothey willprobablyincreasethesolubilitiesofacetogeninsinhotwater. Finally,thetotalphenolicsinthehot,pressurizedmethanolicand ethanolicextractswere83and64mfGAE/g,respectively.

Moreover,methanolat100◦Cand10MPa(100atm)pressure solubilized33% ofthelyophilizedgraviolaleaves. Ethanol solu-bilized41%ofthelyophilizedleaves.Theconcentrationsoftotal phenoliccompoundswere83and64mgGAE/gforthe methano-licandethanolicextracts,respectively.Moreover,thetoxicophore (unsaturated␥-lactone)thatispresentinneurotoxicacetogenins wasfoundinthelipophilicportionoftheseextracts.The concen-trationsoftheneurotoxinsannonacin(1)andsquamocin(2)were foundbyUPLC–TOF–MStobe305.6±28.3and17.4±0.89mg/g, respectivelyinthedriedleaves.Pressurizedmethanolsolubilized

more annonacin than ethanol, while pressurized ethanol solu-bilized more squamocin than methanol. On the other hand, a hot, aqueous infusion (tea)made from 2.5g of dried leaves in 237ml(onecup)ofwatersolubilizedonly0.213%(0.65±0.07␮ g/g-dw) of the annonacin and too little of the squamocin to be detected.

(6)

ThisworkshouldnotbetakenasreflectingFDApolicyor regu-lations.

Authors’contributions

IVMM,PRVR,FLS,KMC,GJZ,ESBandRESconceivedanddesigned theexperiments.IVMM,PRVR,FLS,KMC,GJZandESBdidtheLC-MS andtotalphenolicsanalysesaswellasdatainterpretation.RLdid theNMRanalyses.IVMM,KMRandKTdidthepressurizedliquid extractions.RESwrotethearticle.Everyoneread thearticleand suggestedsomechanges.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.bjp.2015.12.001.

References

Adewole,S.O.,Ajewole,J.A.O.,2009.ProtectiveeffectsofAnnonamuricataLinn. (Annonaceae)leafaqueousextractonserumlipidprofilesandoxidativestress inhepatocytesofstreptozotocin-treateddiabeticrats.Afr.J.Compl.Alt.Med.6, 30–41.

Akihisa,T.,Matsumoto,K.,Tokuda,H.,Yasukawa,K.,Seine,K.,Nakamoto,K., Kun-inaga,H.,Suzuki,T.,Kimura,Y.,2007.Anti-inflammatoryandpotentialcancer chemopreventiveconstituentsofthefruitsofMorindacitrifolia(Noni).J.Nat. Prod.70,754–757.

Badrie,N.,Schauss,A.G.,2009.Soursop(AnnonamuricataL.):composition, nutri-tionalvalue,medicinaluses,andtoxicology.In:Watson,R.R.,Preddy,V.R.(Eds.), BioactiveFoodsinPromotingHealth.FruitsandVegetables.AcademicPress, Oxford,pp.621–643.

Caparros-Lefebvre,D.,Elbaz,A.,1999.Possiblerelationofatypicalparkinsonism intheFrenchWestIndieswithconsumptionoftropicalplants:acase–control study.Lancet354,281–285.

Champy,P.,Melot,A.,Guerineau,V.,Gleye,C.,Fall,D.,Höglinger,G.U.,Ruberg,M., Lannuzel,A.,Laprevote,O.,Laurens,A.,Hocquemiller,R.,2005.Quantificationof acetogeninsinAnnonamuricatalinkedtoatypicalparkinsonisminGuadeloupe. MovementDisorders20,1629–1633.

Florence, N.T., Benoit,M.Z., Jonas, K., Alexandra,T., Desire, D.D.P., Pierre,K., Theophile,D., 2014. Antidiabeticand antioxidanteffects ofAnnona muri-cata(Annonaceae),aqueousextractonstreptozotocin-induceddiabeticrats.J. Ethnopharmacol.151,784–790.

Foong,C.P.,Hamid,R.A.,2012.Evaluationofanti-inflammatoryactivitiesofethanolic extractofAnnonamuricataleaves.Rev.Bras.Farmacogn.22,1301–1307.

Gajalakshmi,S.,Vijayalakshmi,S.,Devi,R.V.,2012.Phytochemicaland pharmaco-logicalpropertiesofAnnonamuricata:areview.Intl.J.Pharm.Pharmaceut.Sci. 4,3–6.

Hamizah,S.,Roslida,A.H.,Fezah,O.,Tan,K.L.,Tor,Y.S.,Tan,C.I.,2012. Chemo-preventivepotentialofAnnonaMuricataLleavesonchemically-inducedskin papillomagenesisinmice.AsianPacificJ.CancerPrevention13,2533–2539.

Hansra,D.M.,Silva,O.,Mehta,A.,Ahn,E.,2014.Patientwithmetastaticbreastcancer achievesstablediseasefor5yearsongraviolaandXelodaafterprogressingon multiplelinesoftherapy.Adv.BreastCancerRes.3,84–87.

Höllerhage,M.,Matusch,A.,Champy,P., Lombes,A.,Ruberg,M.,Oertel,W.H., Höglinger,G.U.,2009.NaturallipophilicinhibitorsofmitochondrialcomplexI arecandidatetoxinsforsporadicneurodegenerativetaupathologies.Exp. Neu-rol.220,133–142.

Kim,H.-K.,2010.Identificationofnovelfattyacidglucosidesfromthetropicalfruit

MorindacitrifoliaL.Phytochem.Lett.3,238–241.

Kim,G.-S.,Alali,F.,Rogers,L.L.,Wu,F.-E.,Sastrodihardjo,S.,McLaughlin,J.L.,1998.

MuricoreacinandmurihexocinC,mono-tetrahydrofuranacetogeninsfromthe leavesofAnnonamuricata.Phytochemistry49,565–571.

Luo,R.,Maia,J.G.,deMoraes,M.R.,Godoy,H.T.,Sabaa-Srur,A.U.O.,Tran,K.,Richards, K.M.,Monroe,D.M.,Vocque,R.H.,Smith,R.E.,2013.NMRanalysisofpotentially neurotoxicannonaceousfruits.Nat.Prod.J.3,230–241.

Lannuzel,A.,Michel,P.P.,2009.AtypicalparkinsonismintheFrenchWestIndies: theplanttoxinannonacinasapotentialetiologicalfactor.In:Tseng,K.-Y.(Ed.), Cortico-SubcorticalDynamicsinParkinson’sDisease.HumanaPress,NewYork, pp.283–290.

Levine,R.A.,Richards,K.M.,Tran,K.,Luo,R.,Thomas,A.L.,Smith,R.E.,2015. Determi-nationofneurotoxicacetogeninsinpawpaw(Asiminatriloba)fruitbyLC-HRMS. J.Agric.FoodChem.63,1053–1056.

Machado,A.R.T.,Lage,G.A.,Medeiros,F.S.,Filho,J.D.S.,Pimenta,L.P.S.,2015.Total ␣,␤-unsaturated-␥-lactoneacetogeninsinAnnonamuricatabyprotonNMR spectroscopy.Appl.Mag.Res.46,153–160.

Port’s,P.S.,Chisté,R.C.,Godoy,H.T.,Prado,M.A.,2013.Thephenoliccompounds andtheantioxidantpotentialofinfusionofherbsfromtheBrazilianAmazonian region.FoodRes.Intl.53,875–883.

Potts,L.F.,Luzzio,F.A.,Smith,S.C.,Hetman,M.,Champy,P.,Litvan,I.,2012.Annonacin inAsiminatrilobafruit:Implicationforneurotoxicity.NeuroToxicol.33,53–58.

Singleton,V.L.,Orthofer,R.,Lamuela-Raventos,R.M.,1999.Analysisoftotalphenols andothersoxidationsubstratesandantioxidantsbyFolin–Ciocauteaureagent. MethodsEnzymol.299,152.

Smith, R.E.,2014. Medicinal Chemistry – Fusion of Traditional and Western Medicine,SecondEdition.BenthamScience,Sharjah,U.A.E,pp.316–326.

Smith,R.E.,Tran,K.,Richards,K.M.,2014.BioactiveAnnonaceousAcetogenins, Chap-ter4,inStudiesinNaturalProductsChemistry,vol.41.Elsevier,NewYork,pp. 93–117.

Sun,S.,Liu,J.,Kadouh,H.,Sun,X.,Zhou,K.,2014.Threenewanti-proliferative Annonaceousacetogeninswithmono-tetrahydrofuranringfromgraviolafruit (Annonamuricata).Bioorg.Med.ChemLett.24,2773–2776.

Imagem

Fig. 1. 1 H-NMR spectrum of methanolic extract (100 ◦ C, 100 MPascal) of lyophilized graviola leaves, in CD 3 OD
Fig. 4. 13 C{ 1 H}-NMR of the portion of the methanolic extract (100 ◦ C, 10 MPa) of oven dried graviola leaves that partitioned into CHCl 3 , redissolved in CDCl 3 .
Fig. 5. UPLC–QTOF–MS chromatogram of the hot, pressurized methanolic extract (100 ◦ C, 10 MPa) of lyophilized graviola leaves – total ion chromatogram of the sample (A); annonacin standard – 200 ng/ml (Rt = 14.1 min) (B); all peaks of ions [M+H] + = 597.47

Referências

Documentos relacionados

Todos os pacientes, no momento da coleta de sangue para a realização de testes moleculares, fizeram a sorologia convencional para doença de Chagas com o

O grau de concordância entre os avaliadores em relação à necessidade ou não de encaminhamento de pacientes para uma unidade neurocirúrgica, segun­ do a estatística Kappa de

Neste objetivo são feitos anúncios que geram interesses nas pessoas para que pensem na sua empresa e busquem mais informações sobre ela, tanto na loja online quanto na física.?.

No que concerne ao curso frequentado (carga horária, preparação para a integração no mercado de trabalho / ingresso na universidade, oportunidades de emprego

As shown in Figure 2, the ethanol concentration, ethanol productivity, ethanol yield and fermentation efficiency were increased significantly with the increase

há dificuldades no enfrentamento da pobreza por parte das políticas sociais, uma vez que suas trajetórias de desenvolvimento se deram a partir do aprofundamento do

2 O 2 ; the second group was formed by the acerola pulp with high TPC, total phenolic compounds, (658.40 mg GAE/100 g pulp) and AA , ascorbic acid, (506.27 mg/100 g pulp)

volume são de acessos são incentivados, seja por meio de produção de conteúdo para as redes sociais, que se divide entre orgânico e pago, anúncios pagos em