• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número2

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número2"

Copied!
9
0
0

Texto

(1)

w ww.e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Engineering

spray-dried

rosemary

extracts

with

improved

physicomechanical

properties:

a

design

of

experiments

issue

Luiza

T.

Chaul

a

,

Edemilson

C.

Conceic¸

ão

a

,

Maria

Tereza

F.

Bara

a

,

José

R.

Paula

a

,

Renê

O.

Couto

b,∗

aFaculdadedeFarmácia,UniversidadeFederaldeGoiás,Goiânia,GO,Brazil

bDepartamentodeCiênciasFarmacêuticas,CentrodeCiênciasdaSaúde,UniversidadeEstadualdeLondrina,Londrina,PR,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received11August2016 Accepted5October2016 Availableonline1December2016

Keywords:

Designofexperiments Phytomedicine Soliddosageform Powdertechnology

Rosmarinusofficinalis

Spraydrying

a

b

s

t

r

a

c

t

A33Box–BehnkendesignandResponseSurfaceMethodologywereperformedtoevaluatetheinfluence

ofextractfeedrate,dryingairinlettemperatureandspraynozzleairflowrateontheprocessyield, sta-bilityparameters(moisturecontentandwateractivity)andonseveralphysicomechanicalproperties ofspray-driedrosemaryextracts.Powderyieldrangedfrom17.1to74.96%.Thespray-driedrosemary extractsshowedmoisturecontentandwateractivitybelow5%and0.5%,respectively,whichindicate theirchemicalandmicrobiologicalstabilities.Evenwithoutusingdryingaids,somesetsof experimen-talconditionsrendereddriedproductswithsuitableflowabilityandcompressibilitycharacteristicsfor directpreparationofsoliddosageforms.AnalysisofvarianceandResponseSurfaceMethodologyproved thatstudiedfactorssignificantlyaffectedmostofthespray-driedrosemaryextractqualityindicatorsat differentlevels.Themainprocessingparameteraffectingthespray-driedrosemaryextract characteris-ticswasinlettemperature.Thebestcombinationofparametersusedtoobtainareasonableyieldofstable dryrosemaryextractswithadequatetechnologicalpropertiesforpharmaceuticalpurposeinvolvesan extractfeedrateof2ml/min,80◦Cinlettemperatureand40l/minSA.Thedesignofexperimentsapproach

isaninterestingstrategyforengineeringspray-driedrosemaryextractswithimprovedcharacteristics forpharmaceuticalindustrialpurpose.

©2016SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Rosemary(Rosmarinusofficinalis L.,Lamiaceae), nativetothe Mediterranean,isahouseholdspecieusedworldwideasafood preservativeandfood-flavoringagent.Overthelastdecades,the valuablemedicinalpropertiesofthisherbhavebeeninthe spot-lightofthescientificcommunity.Anevidence-based systematic reviewofrosemary’stherapeuticusehasbeenpublished(Ulbricht etal.,2010).Recently,preclinicalsurveyshavecontributedto evi-dence that rosemary hasremarkable anti-inflammatory (Rocha etal.,2015),anti-proliferative(Cattaneoetal.,2015),and

antibi-otic(Barretoetal.,2014)activities,aswellasantidepressant-like,

anxiolytic,andantinociceptiveeffects(Abdelhalimetal.,2015). Moreover,a clinical trialin humans reported the beneficial effectsofrosemaryfortreatmentofopiumwithdrawalsyndrome duringaddictiontreatmentprograms(Solhietal.,2013).Thisbroad rangeofrelevanttherapeuticpropertiesislikelyattributedtothe antioxidantactivityof this herb, whichis a powerful sourceof

Correspondingauthor.

E-mail:rocouto@uel.br(R.O.Couto).

antioxidantcompoundse.g.,rosmarinicandcarnosicacids, cam-phor,and1,8-cineol(Barretoet al.,2014;Cattaneoetal.,2015;

Lemosetal.,2015;Rochaetal.,2015;Lietal.,2016).

To become suitable for further therapeutic applications, herbalrawmaterial typicallyundergoesseveralpharmaceutical processingtechnologiese.g.,theextractionofbioactivecompounds anddryingofplantextracts.Inthelatter,thedryertypeandsetof operatingconditionsusedinthedryingprocessofaliquid feed extractplayimportantrolesindeterminingthepropertiesof co-processedproducts(Oliveiraetal.,2006;Souzaetal.,2008).As spraydryingpresentsseveraladvantagesoverotherdrying tech-niquessuchconventionalairdrying,freeze-dryingandspoutedbed drying,itisthemostcommonlyemployedinthepharmaceutical, foodandflavorindustry(Pateletal.,2014).

Inbrief,spraydryingisathree-stepunitoperation(i.e., atomiza-tion,dehydration,andpowdercollection)inwhichdryparticulate productsarerecoveredfromaliquidsolutionordispersion (sus-pensionoremulsion)bysprayingtheliquidintoastreamofdrying gasunderdeterminedsetof conditions(Oliveiraand Petrovick, 2010).Due to its remarkableoperational flexibility,spray dry-ingoffersaveryaccuratecontroloverpowderparticleproperties such as physicochemical stability, solubility, morphology and

http://dx.doi.org/10.1016/j.bjp.2016.10.006

(2)

flowability(AmeriandMaa,2006;Vehring,2008;Cortés-Rojasand

Oliveira,2012).

Theequipment’soperatingvariableshavebeenwidelystudied duringthespraydryingofphytopharmaceuticals.Suchvariables includesolutionordispersionfeedrate,dryingairinlet tempera-ture,dryingairoutlettemperature,spraynozzleairflowrate,spray nozzlediameter,spraynozzletype, dryingairflow rate, aspira-tion rate,drying air inlet humidity,drying air outlethumidity, compressedair flow,compressedair pressure,etc.(Oliveiraand

Petrovick,2010).

Currently,ourresearchgrouphasstruggledgreatlytodevelop rosemary’s phytopharmaceuticals intermediate products with greateraggregatevaluebyspraydrying(Coutoetal.,2012a).The operatingvariablessetupdemonstratedaneffectonthe chemi-calprofileandinvitroantioxidantactivityofspray-driedrosemary extracts (SDRE). From a phytopharmaceutical technology point ofview,besidesthephysicochemicalqualitycontroland biolog-icalactivityassessments,determiningtheeffectsofspraydrying processvariablesinthedryingperformanceand physicomechan-icalpropertiesoftheproducts,isastartingpointforthefulland accuratevalidationandscale-upofrosemary’spowdertechnology process.

Improvingbothchemicalandmicrobiologicalstabilities,aswell as theirflowabilityand compressibility during the preformula-tionstudies,mayturntheSDREintomoreinvitingintermediate productsfordeveloping soliddosageforms (SDF),which repre-sentthemajorityofmedicinesmarketedworldwide.Multifactorial chemometrictoolssuchasthedesignofexperimentsapproachand ResponseSurfaceMethodology(RSM)maybeusefulstrategiesin thispursuit(Materoetal.,2013).

Inthispaper,wereporttheeffectofextractfeedrate(EF), dry-ingairinlettemperature(IT)andspraynozzleairflowrate(SA)in severalphysicomechanicalpropertiesofSDRE.A33Box–Behnken design andRSMwere performed.Thecorrelations betweenthe processadequacyindicatorswerealsoassessed.Byusinga deter-minedsetofexperimentalconditions,weengineeredproductswith improvedlevelsofstability,flowabilityandcompressibility,which mayenablethedirectmanufactureoftabletsand/orcapsulesfilling.

Materialsandmethods

Herbaldrug

Samplesof rosemaryleaves(Rosmarinus officinalisL., Lami-aceae)werecollectedfrom specimenslocated inthe medicinal plantsgardenoftheHospitaldeMedicinaAlternativadaSecretaria EstadualdaSaúdedoEstadodeGoiás(863m,16◦4350.3′′South, 49◦1432.9′′West/Goiânia,GO,Brazil).Onceidentified,avoucher specimenwaspreparedanddepositedintheUniversidadeFederal deGoiás(UFG)HerbariumundertheregistrationidentificationUFG –43206.Theleavesweredriedatroomtemperature(25±2◦C)and groundinaTE-625knifemill(TecnalLtda,Piracicaba,SP,Brazil). Ameanpowdersizeof437.94±7.00␮mwasachieved.Powdered material(herbaldrug)wasstoredshelteredfromlightandmoisture forsubsequentuseintheextractionprocedure.

Feedextract

Thehydroalcoholic feed extract wasobtainedat room tem-perature bypercolation oftheherbaldrug,using assolventan ethanol:watersolution(80:20,v/v)aspreviouslyreported(Couto

etal.,2012a).Theextractwasstoredinclosedflasksprotectedfrom

lightatatemperaturebetween−2and8◦Cpriortocharacterization andfurtheruseinthedryingexperiments.Extractdensityand alco-holiccontentweredeterminedaccordingtothemethodsdescribed

Table1

Codedfactorsandtheirlevelsinthe33Box–Behnkenfactorialdesignmatrices.

Run EF(ml/min) IT(◦C) SA(l/min)

1 −1(2) −1(80) 0(40)

2 +1(6) −1 (80) 0(40)

3 −1(2) +1(140) 0(40)

4 +1(6) +1(140) 0(40)

5 −1(2) 0(110) −1(30)

6 +1(6) 0(110) −1(30)

7 −1(2) 0(110) +1(50)

8 +1(6) 0(110) +1(50)

9 0(4) −1 (80) −1 (30)

10 0(4) +1(140) −1(30)

11 0(4) −1(80) +1(50)

12 0(4) +1(140) +1(50)

13 0(4) 0(110) 0(40)

14 0(4) 0(110) 0(40)

15 0(4) 0(110) 0(40)

−1,0and+1:low,averageandhighcodedvalues,respectively,inthefactorialdesign

matrices.

EF,extractfeedrate;IT,dryingairinlettemperature;SA,spraynozzleairflowrate.

intheBrazilianPharmacopoeia5thedition(FarmacopeiaBrasileira,

2010).Solidcontent(CS,w.b.)ofa1gsamplewasmeasuredwith agravimetricmethodinanMB35halogenlampanalyzer(Ohaus Inc.,PineBrook,NJ,USA).Theextractviscositywasmeasuredat roomtemperatureusing a DV–III+viscometer(Brookfield Engi-neeringLaboratories,Inc.,Middleboro,MA,USA).Allexperiments wereperformedintriplicate.

Designofexperiments

The spray drying experiments followed a 33 Box–Behnken designwiththreefactorsinthree levelsandthreecentralpoint replicatesaspresentedinTable1,whichshowsthedesign matri-ceswiththecodedandnon-codedvaluesofeachfactorstudied.The criticalprocessparametersinvestigated(factors)were:(i)extract feedrate(EF,ml/min);(ii)dryingairinlettemperature(IT,◦C)and (iii)sprayingairflowrate(SA,l/min).Theirselectionwasbasedon ourpreviousexperiences.

Thedryingprocesseswereperformedatroomtemperaturein alaboratory-scalespraydryermodelMSD1.0(LabmaqdoBrasil Ltda.,RibeirãoPreto,SP,Brazil)withconcurrentflowregime.The liquidextractfeedsystemwascomposedofaperistalticpumpand apneumatic(twofluid)spraynozzlewithaninletorificediameter of1.2mm.Thecylindricaldryingchamberwasmadeof borosili-categlass,160mmindiameterand645mminheight.Thedrying airwassuppliedbyablower(nominalflowrateof1m3/min)and electricallyheated.Thetemperaturewasmaintainedbyadigital PIDcontroller.

Thefollowingsetofconditionsremainedfixedforall experi-ments:nozzleairpressureof0.4MPa;massofextractportionfeed (WE)of300gandaspirationairflowof100%.Beforetheextractwas fedintothechamber,thedrierwasstartedwithdistilledwater inordertoreachthermalequilibrium.Then,iftheinletand out-lettemperatureswereconstant,thefeedextractwassprayedinto thechamber.Dryingairoutlettemperatures(OT,◦C)ineachrun wererecordedinordertobetterunderstandtherelationsbetween factorsstudiedandpowderproperties.

TheSDREwereseparatedfromairbyastainlesssteelcyclone andcollectedinaglassflask.TheSDREwereweighed,storedin closedflasksprotectedfromlightandkeptinadesiccatoratroom temperatureforfurthercharacterization.

CharacterizationoftheSDRE

(3)

ofpowder(drybasis)collectedintheflask(W)totheWEandits solidcontent(CS,%w.b.)byEq.(1).

PY= W

WE×CS

×100%, (1)

Themoisturecontentof powder(MC,%w.b.) wasmeasured froma0.5gofsampleemployinganMB35halogenlampanalyzer (OhausInc.,PineBrook,NJ,USA).Wateractivity(WA)was mea-suredusingaTesto650thermohygrometer(TestoAG,Lenzkirch, Germany)andahermeticchamber.

Bulk(b,g/cm3)andtapped (t, g/cm3)densities, Hausner’s ratio(HR)andCarr’sorCompressibilityIndex(CI,%)were deter-mined according to the methods described in the American Pharmacopoeia30thedition(USP,2007).Theproductbwas deter-minedbypouring5gofdrypowderintoa25mlgraduatedcylinder andmeasuringitsvolume.Thetwasdeterminedbycontrolled tappingofthecylinderusingasieveshaker(BertelLtda,Caieiras, SP,Brazil)untilaconstantvolumewasachieved.Hence,HRandCI werecalculatedaccordingtotheirdefinitions:

HR(−)= t b

(2)

CI(%)= t−b t

×100 (3)

Anglesofrepose(,◦)weredeterminedaccordingtothemethod describedelsewhere(Araújoetal.,2010).Themeanpowder par-ticlediameter(D50,␮m)wasmeasuredfromthecumulativesize distribution,bysieving20gofpowderwithTylerseriessieves(710, 355,300,250,180,106and53␮m)andanelectro-magnetic sieve-shaker(BertelLtda,Caieiras,SP,Brazil)for20min(Brazil,2010).

RSM

InTable1,thefactorslevelswerecodedtoallowtheAnalysisof

Variance(ANOVA)byRSMfollowingthecodingrulegivenbyEq.

(4):

Coded.value=(uncode.value−0.5×(high.value+low.value)) 0.5×(high.value−low.value)

(4)

ANOVA/RSMontheexperimentaldatawasperformedusingthe Statistica7software(StatsoftInc.,Tulsa,OK,USA).Onlythefactors withp≤0.05wereconsideredsignificant.Theresponsefunction appliedwasaquadraticpolynomialequation,givenbyEq.(5):

Y=ˇ0+ˇ1X1+ˇ2X2+ˇ3X3+ˇ11X12+ˇ22X22+ˇ33X32

+ˇ12X1X2+ˇ13X1X3+ˇ23X2X3 (5)

InEq.(5),Yisthepredictedresponse(dependentvariable);ˇ0 isthemodelconstant;X1,X2andX3areindependentvariables;ˇ1, ˇ2andˇ3arelinearcoefficients;ˇ12,ˇ13andˇ23arecrossproduct coefficients;andˇ11,ˇ22andˇ33arethequadraticcoefficients.

Scanningelectronicmicroscopy(SEM)

Themorphologyofthespray-driedpowderthatpresentedthe mostimprovedsetofphysicomechanical properties was evalu-ated using a scanning electron microscope (JEOL,JSM – 6610) equippedwithenergydispersiveX-rayspectroscopy(Thermo Sci-entificNSSSpectral Imagging).BeforeSEManalysis,thesample wasmountedonametalstubwithdouble-sidedadhesivetapeand recoveredwithagoldlayerof200 ˚Athicknessundervacuumusing ametallisator(DentonVacuum,DeskV).Photomicrographswith

magnificationsof5500×,15,000×and25,000×wererecordedat 5kV.

Resultsanddiscussion

Characterizationofthefeedextract

Theconcentratedhydroalcoholicextractpresentedasolid con-tentof9.7±0.1(%w.b.),densityof0.964±0.002g/cm3,viscosityof 5.2±0.1mPasandalcoholiccontentof38.2±0.5(%v/v).Generally, inaspraydryingprocessthecharacteristicsofthedriedparticles dependonthecharacteristicsoftheatomizeddroplets.Theyare closelyrelatedtothePY,astothepackagingandflowing charac-teristicsofthedriedpowders.Ithasbeenreportedthatthesolid content,density,viscosityandsurfacetensionofthefeed mate-rialinfluencethedropletsizeandshapeandconsequentlythesize, shapeandthedensityofthedryparticles(Goulaetal.,2004;Goula

andAdamopoulos,2004;Huntington,2004).Accordingly,suchfeed

extractcharacteristicsmusttobeconsideredduringthespray dry-ingexperimentaldesignsince theymaydrivethechoiceofthe dryer’soperationalparameterlevelsinordertoobtainproducts withimprovedphysicomechanical,physicochemicaland pharma-cologicalproperties.

Criticalprocessparametersaffectthephysicomechanical propertiesoftheSDRE

Thespraydryingprocessadequacywasestimatedintermsof severalphysicomechanicalcharacteristicsof thedried products. Productrecovery(yield)mayindicatethesuccessand affordabil-ityoftheprocess.Powdermoisturecontentprovidesinformation asregardstothesolventremovalefficiencyandmayinfluencethe cohesivenessandsizedistributionofthedriedparticles.WA corre-lateswiththeproduct’schemical andmicrobiologicalstabilities andconsequentlyitsshelf life.TheHR, CI,angleof repose,and meanpowderparticlesdiameterwereusedtoindirectlyestimate thecompressibilityandflowability(cohesiveness)characteristics ofthedriedpowders.

Evaluating allthese particulate materialproperties is a pre-requisitefor the rationale of developing intermediate products for furtherSDF manufacturingby applying specificunit opera-tionse.g.,mixing,granulation(powderagglomeration),tableting, coatingandcapsulefilling(Materoetal.,2013).Additional infor-mationconcerningthedryingbehaviorasaresultofthebinomial feedmaterial/drier’ssetupwassuppliedbytheOT.Theresultsof completeproductcharacterizationaredisplayedinTable2,which showsthattheSDREhaddiversecharacteristicswhendifferentsets ofconditionswereappliedinthedryingprocess.

ANOVAand correlationanalyseswereperformedby RSMin ordertoaccurately determinetheeffects of thecriticalprocess parametersstudiedinthedriedproductproperties.Thetableswith completeANOVAsforeachpowderpropertyareoverlooked,buta summaryofthemaineffects(boldvalues)andtheirsignificance arelistedinTable3.Table3alsodisplayscommentsonthetypes oftheeffectsasrepresentedbypositive(directlyproportional)and negative(inverselyproportional)signs.

(4)

Table2

Resultsofspray-driedproductscharacteristics.

Run OT(◦C) PY(%w/w) MC(%w/w) WA(

−) HR(−) CI(%) (◦) D

50(␮m)

1 50 52.81 2.85 0.22 1.08 8.16 25 387.07

2 45 63.58 2.74 0.23 1.32 24.53 42.33 330.62

3 90 17.1 1.26 0.24 1.38 27.5 45 157.63

4 79 33.92 1.17 0.26 1.35 26.09 43.87 262.1

5 77 64.98 2.19 0.23 1.27 21.05 39.33 300.65

6 62 74.96 2.61 0.21 1.42 29.54 47 342.43

7 70 26.28 1.38 0.26 1.14 12.5 28.67 163.81

8 60 59.86 2.21 0.22 1.33 25 42.67 348.03

9 49 69.33 3.46 0.23 1.37 26.83 44.03 354.62

10 87 37.32 1.91 0.23 1.17 14.63 33.67 335.23

11 50 51.92 2.51 0.24 1.18 15.09 35 262.7

12 80 21.67 1.49 0.24 1.23 18.6 38.32 133.82

13 64.3 62.63 2.18 0.22 1.28 22.22 39.93 277.79

14 65 63.54 2.11 0.24 1.29 22.92 40.72 240.8

15 66.7 57.53 2.11 0.22 1.29 22.45 40.17 235.61

OT,dryingairoutlettemperature;PY,processyield;MC,moisturecontent;WA,wateractivity;HR,HausnerRatio;CI,Carr’sIndex;,angleofrepose;D50,meanpowder

particlessize.

Table3

SummaryofRSManalysis.

Factor OT(◦

C) PY(%w/w) MC(%w/w) CI(%) (◦

) D50(␮m)

Intercept 65.33c 61.23c 2.13c 22.5c 40.27c 251.4c

EF −5.13c +8.89b 0.13 +4.49a +4.73a 34.25

EF2 0.71 3.96 0.19 1.14 0.22 25.05

IT +17.75c −15.95c −0.72c 1.53 1.81 −55.78a

IT2 0.04 −15.42b 0.06 2.1 1.44 7.91

SA −1.88a −10.86c −0.32a 2.61 2.42 −53.07a

SA2 1.21 0.75 0.15 1.65 1.08 12.28

EF×IT −1.5 1.51 0.01 −4.45 −4.62 40.23

EF×SA 1.25 5.9 0.1 1.00 1.58 35.61

IT×SA 2.0 0.44 0.13 3.93 3.42 −27.37

R2 0.99 0.98 0.95 0.78 0.77 0.87

Boldvaluesrepresenttheeffectsofthefittedpolynomialequationsthatprovedtobesignificantatp<0.05. ap<0.01.

bp<0.001.

c Positive(+)andnegativesigns()indicatedirectlyandinverselyproportionaleffect,respectively;EF,extractfeedrate(ml/min);IT,dryingairinlettemperature(C);SA, spraynozzleairflowrate(l/min);OT,dryingairoutlettemperature;PY,processyield;MC,moisturecontent;CI,Carr’sIndex;,angleofrepose;D50,meanpowderparticles size;R2,determinationcoefficientforthefittedpredictionmodels.

cannotbesetwithatemperatureregulator.Hence,itresultsfroma combinationofthein-processparametersi.e.,feedextract proper-ties,pumpsetting,IT,atomizerpressure,spraynozzleinletorifice diameter,compressedairflowrateintheatomizer,aswellasthe flowrateofdryingair.ANOVA/RSMprovedthatEF,ITandSAall affectedOTwithpvaluesof0.0007,0.000002and0.041, respec-tively(Table3).IncreasedITresultedinincreasedOTbecauseof increasedsupplyofheatenergy(Table3,Fig.1aand c).Onthe otherhand,increasedEFandSAresultedindecreasedOTdueto increasedsolventevaporationrate(Table3,Fig.1a–c).Thefitted predictionmodel,withR2=0.99,isgivenby:

OT(◦C)

=65.33−5.13

EF−4

2

+17.75

IT−110

30

−1.88

SA−40

10

(6)

ThePYvaluesrangedfrom17.1to74.96%.Evenwithoutusing anydryingaidonlytwo(15.4%)ofthethirteendifferent experi-mentalconditionsstudiedleadtopowderrecoverieslowerthan 20%.PowderrecoverydependedontheEFparameteratp=0.003

(Table3).ItcanbeobservedintheresponsesurfaceshowninFig.2a

andbthatincreasingEFhadapositivelinearinfluenceonPY,which meansthatthehighertheEF,thehigherthePY.BothITandits squaredterm(IT2)exertednegativenonlineareffectsonpowder recovery(Table3,Fig.2aandc),withpvaluesof0.0002and0.0014, respectively.Conversely,SAexertedanegativelineareffectonPY

withp=0.0012(Table3,Fig.2bandc).Thefittedpredictionmodel, withR2=0.98,isgivenby:

PY(%)=61.23+8.89

EF−4 2

−15.95

IT−110

30

−15.42

IT2−110 30

−10.86

SA−40

10

(7)

Increasingthefeedrateofthesprayingmaterialanddecreasing bothITandSApresumablyleadtoanincreaseinthedropletsize andviscosityand,subsequently,particlesizeanddensity.Inturn, thelossoffineandlightparticlesintheexhaustedairthatpasses throughthe cyclonedecreases,which raisesthepowder recov-eryalongthedryingprocess.Thesepromisingproductrecoveries achievedmayalsobeattributedtolowadherenceofthepowders onthedryingchamberandcyclonewalls.Avalidexplanationto this isthat theresultantdryingtemperaturestayed lowerthan theextract’sglasstransitiontemperatureinmostsetsofoperating conditions.

Duetotheinherentcomplexityofamultifactorialunit oper-ation such as thespray drying process, there is a broad range ofin-processvariables thatareassumedtoaffectthePYduring thedevelopmentofpharmaceuticalproducts.Besidestheeffects ofcriticalprocessingparameteradjustments(JangamandThorat,

2010; León-Martínezet al.,2010; Coutoetal., 2013), thereare

(5)

100

90

80

70

60

50

100

90

80

70

60

50

30 40 50 140

110

80

2 6

80

110

140

4

2

4

6

EF (ml/min) EF (ml/min)

IT (ºC) SA (

I/min)

IT(ºC) SA (I/min)

O T (ºC)

O T (ºC)

100

90

80

70

60

50

90

40

50 O

T (ºC)

a

b

C

Fig.1.Surfaceplotofdryingairoutlettemperatureasafunctionof:(A)extractfeedrateanddryingairinlettemperature;(B)extractfeedrateandspraynozzleairflowrate; (C)dryingairinlettemperatureandspraynozzleairflowrate.

chamberandcycloneoflab-scalespraydryers (Ameriand Maa,

2006).

Thetype,amountandincorporationtimeofdryingaids(Couto

etal.,2012b,2011),andeventheenvironmentalfactors(Ciesielski

andZbicinski,2010)havealsobeenprovedtoexertakeyrolein

thePY.Despitetheeffortsinevaluatingtheimpactofthese param-etersinspraydryingperformance,theliteraturedoesnotpresent aconsensusregardingtheacceptablerangeofpowderrecoveryfor bothbench-topandindustrialspraydryingprocesssofar.

Inourspraydryingruns,theMCrangedfrom1.17%to3.46% (w/w),andforallSDREtheWAvalueswerebelow0.3(Table2). ResidualmoistureandWAvaluesbelow5%(w/w)and0.5, respec-tively,meetthepharmaceuticalrequirementsfordrymaterialsat particulatelevel(USP,2007).Therefore,itispossibletoassertthat alltheproductsshowninTable2presentedsatisfactorylevelsof MCandWA.

AccordingtoANOVA/RSM,noneofthestudiedfactors signifi-cantlyaffectedWA.However,bothITandSAhadlinearnegative influenceonMCwithpvalues of0.0005and 0.02, respectively

(Table3).Inotherwords,anincreaseinbothITandSAresulted

inreducedvaluesofmoisturecontent.Thesurfaceresponseofthe MCasafunctionofITandSAisshowninFig.3.Thefittedprediction model,withR2=0.95,isgivenby:

MC(%)=2.13−0.72

IT−110 30

−0.32

SA−40

10

(8)

Inaspraydryingsystem,removalofmoisturefromthesprayed particles depends upon the temperature of the drying air. The greaterthedrying airtemperature,thegreaterthetemperature

differencebetweentheparticleandthedryingair,themore effi-cientistheheattransferphenomenaand,therefore,thegreaterthe evaporationrate.Synergistically,anincreaseindryingairflowrate helpsinremovalofmoistureatahigherrate.Thishappenssince foragivenamountoffeedextract,atanygiventime,increasingthe SAgeneratessmalleratomizeddropletsintothechamber.Hence, thecontactsurfacebetweentheparticleandtheairwouldrise,a largeramountofhotairwouldbeavailableandlessenergywould berequiredformoistureremoval.

Althoughseemingtobeverycloseinname,residualmoisture andWAaredistinctphysicalparametersthat,butnot necessar-ily,oftencorrelatewitheachother.Whereasthemoisturecontent representsthewholewatercompositionin adriedsystem,WA isameasurementoftheavailabilityoffreewaterthatis respon-siblefor anychemical (hydrationinteractions)and biochemical (enzymatic)reaction,andalsomicrobiologicalgrowth(Queketal., 2007).Hence,thelowertheWA,thelowerthechemicalpotentialof waterandthedrivingforceininteractionsinvolvingwater,which notnecessarilydirectlydependsonthemoisturecontentinthe product.

(6)

80

70 60

50

40

30

20

10 0 80

80

70 60

50

40

30

20

10 0 50

40

30 11

0

14

0 2

4

2

4

6

EF (ml/min) EF (ml/min) 6

IT (ºC) SA (I/min)

SA (I/mi

n)

PY (%

W/W)

80

70

60

50

40

30

20

10 0 90

40

50 140

110

80

IT (ºC)

PY (%

W/W)

PY (%

W/W)

b

c

a

Fig.2. Surfaceplotofprocessyieldasafunctionof:(A)extractfeedrateanddryingairinlettemperature;(B)extractfeedrateandspraynozzleairflowrate;(C)dryingair inlettemperatureandspraynozzleairflowrate.

3.6

3.0

2.4

1.8

1.2

30

40

50 140

110

80

IT(ºC) SA (I/

min) MC (%

W/W)

Fig.3.Surfaceplotofmoisturecontentasafunctionofdryingairinlettemperature andspraynozzleairflowrate.

450

375

300

225

150

90

40

50 80

110

140

IT (ºC)

SA (I/min) D

50 ( µm)

(7)

Fig.5. Micrographsofspray-driedrosemaryextractrecordedat5kVwithmagnificationof:(A)5500×,(B)15,000×and(C)25,000×.

bemaintainedinthedriedpowderandconsideredduringthemass lossdetermination.

TheHRvariedbetween1.08and1.42.SinceHRlowerthan1.25 indicatesnon-cohesiveand low internal friction powders(USP, 2007),satisfactoryrheologicalpropertieswhereachievedinfive (38.5%)ofthethirteendifferentexperimentalruns.Noneofthe studiedfactorssignificantlyaffectedtheHRatp<0.05.TheCI var-iedfrom8.16%to29.54%.Forthisqualityindicator,theliterature proposesthefollowingclassificationofflowingproperties: excel-lent(CI<10%),good(11%<CI<15%),fair(16%<CI<20%),passable (21%<CI<25%),poor(26%<CI<31%),verypoor(32%<CI<37%)and very,verypoor(CI>38%)(USP,2007).

Therefore,asobservedfor theHRparameter,fiveconditions studied produced powders with suitable flowability (CI<20%). ANOVAshowedthatonlytheEFinfluencedtheCI,withapvalue of0.047.IncreasingtheEFlinearlyincreasedtheCI.Thismaybe attributedtoanincreaseinMCinthepowderswhenusingupper levelsofEF.Raisingtheresidualmoisturemayincreasethe cohe-siveforcesbetweentheparticlesduetohydrogenand/orVander Waal’sinteractionsandhenceimpairsthepowderflowability.The fittedpredictionmodel,withR2=0.78,isgivenby:

CI(%)=22.5+4.49

EF−4 2

(9)

Theanglesofreposerangedfrom25.0◦upto47.0.Anglesof reposeintherangeof25◦ to40indicatethatthecohesiveness ofthepowderproductiswithinthesatisfactorylimitaccordingto thepharmaceuticalneeds(USP,2007).Thelessstablethepacked system,thebettertheflowandsmallerthevalue.Moreover, valuesvaryingwithin41◦and45arepassableforaparticulatebed, butaddingalubricantisrequiredtoimproveitsflowability(USP 30thEd.,2007).Thereforeit,ispossibletoassertthatseven(53.9%) ofourdifferentexperimentalrunsprovidedintermediateproducts withvaluableflowability(25◦<<40),in whichtwoareinthe rangeattributedtoexcellent(25◦<<30),two othersaregood (31◦<<35)andthreeindicatefairlygood(36<<40)flowing properties.AsfortheCI,theangleofreposedependsonlyonthe

EFwithapvalueof0.041,inawaythatincreasingEFincreasedthe

(Table3).AdirectcorrelationbetweenCIandcanbeseenand

resultscanbeexplainedalongthesamelineasthatoftheCI.The fittedpredictionmodel,withR2=0.77,isgivenby:

(◦)

=40.27+4.73

EF−4

2

(10)

Non-cohesivefree-flowingpowdersarerequiredforSDF man-ufacturing. Together with exerting a key role in the efficiency ofmanuallyorindustriallyfilling ofcapsules,theyare determi-nantforasuccessful“diefilling”(fillingthematrixcompression) andcompressionstagesalongtheindustrialproductionoftablets. Accuratelyaccomplishingtheseunitoperationsarecompulsoryto assurethecontentuniformityanddosageofthedrugcontained ineachformulation.Furthermore,itcaninfluencethefinal hard-nessoftablets,whichmayaffectthephysicalstabilityofitsdosage formduringfurthercoating,packing,transport,storageand hand-lingbytheuser,aswellasintheavailabilityofthedrugtobefurther absorbedandreachitsactionsite.

Itisnoteworthythatevenwithoutusinganydryingaidmost ofourSDREpresentedbetterflowabilityandcompressibilitythan thoseobtainedusingcolloidalsilicondioxide(Tixosil333®)and maltodextrinDE14asdryingcarrier(40:20proportioninrelation tothetotalsolidscontent)inthestudyofsprayandspoutedbed dryingofrosemaryextract(Souzaetal.,2008).

The mean particle diameter (D50) ranged from 133.82 to 387.07␮m.Inadditiontoitsmoisturecontentanddensity,thesize distributionandshapedisplayaremarkableeffectonthe compres-sionandflowofapharmaceuticalpowder,becauseitinfluences theparticlepackinggeometryandtheparticle-to-particle interac-tionlevels(cohesion).Typically,thesmallerandmoresphericalare theparticles,thegreaterwillbethestabilityofthepackedsystem, whichdecreasetheparticlesbedcompressibilityandflowability.

(8)

Table4

Correlationmatrixbetweenthequalityindicatorsofthespray-driedproducts.a

Qualityindicator OT(◦C) PY(%w/w) MC(%w/w) WA(

−) HR(−) CI(%) (◦) D

50(␮m)

OT(◦C) 1

−0.45 −0.68 0.13 0.04 0.01 0.01 −0.31

PY(%) −0.45 1 +0.65 −0.45 0.09 0.09 0.08 +0.52

MC(%) −0.68 +0.65 1 −0.39 0.002 0.001 0.001 +0.58

WA(−) 0.13 −0.45 −0.39 1 −0.04 −0.03 −0.03 −0.38

HR(−) 0.04 0.09 0.002 −0.04 1 +0.99 +0.96 0.01

CI(%) 0.01 0.09 0.001 −0.03 +0.99 1 +0.97 0.001

(◦) 0.01 0.08 0.001

−0.03 +0.96 +0.97 1 −0.001

D50(␮m) −0.31 +0.52 +0.58 −0.38 0.01 0.001 −0.001 1

aValuesarethedeterminationcoefficients(R2)fromthecorrelationanalysis;positive(+)andnegativesigns()indicatedirectlyandinverselyproportionaleffect,

respectively;boldvaluesrepresentthemorerelevantcorrelation;OT,dryingairoutlettemperature;PY,processyield;MC,moisturecontent;WA,wateractivity;HR,

HausnerRatio;CI,Carr’sIndex;,angleofrepose;D50,meanpowderparticlessize.

dissolutionrateand,indirectlywiththebioavailability(becauseit

alsodependsondrugpermeability)andclinicalefficacyofadrug

fromapharmaceuticaldosageform.Accordingly,duringthe

ratio-naledevelopmentofSDF,controllingtheparticlesizedistributionis

requiredforreachingequilibriumbetweentheir

physicomechan-icalandbiopharmaceuticalpropertiesinordertoguaranteethe

qualityandefficacyofthemedicine.

ThesurfaceresponseplotofD50asafunctionofITandSAis

pre-sentedinFig.4.Thesurfaceshowsthatthemeanpowderdiameter

increasedwithdecreasingbothITandSA,whichisaresultofthe increaseinthesizeofdropletssprayedintothedryingchamber.The effectofITandSAonthemeanparticlediameterwasconfirmedby ANOVA(Table3),whichdemonstratedpvaluesof0.02and0.024, respectivelyforthesein-processparameters.Thefittedprediction model,withR2=0.87,isgivenby:

D50(␮m)=251.4−55.78

IT110

30

−53.07

SA−40

10

(11)

The results arising from this investigation demonstrate the remarkableimpactoftheprocessparametersonthedrying perfor-manceduringtherosemaryhydroalcoholicextractspraydrying. Thehighdeterminationcoefficientsobservedinthefittedmodels confirmtheirabilitytodescribetheexperimentalresultsand pre-dictresponses(Table3).FromtheresultsdisplayedinTable3,it canbeseenthatITisthemainfactoraffectingthequality indica-torsoftheSDRE,becausetheeffectvalues(coefficients)forthis independentvariablearegreaterthantheothersthathaveshown tobesignificant.

Ourfindingsemphasizethatthecomprehensionandaccurate selectionof thedryingparameterlevels arethekeyto guaran-teesatisfactorylevelsofprocessingperformancewhiledeveloping SDRE. Under theranges studied,the experimentalrun number

1(Tables 1and2),withalowEF(2ml/min),lowIT(80◦C)and

intermediate SA(40l/min), provided spray-driedpowders with improvedpropertiesfordirectpreparationoftabletsandcapsules filling.

Theseresults,togetherwiththefactthattheprocesscanbe adjustedtoattainoptimizedperformance,suggestthatthespray drying techniquemaybeattractive andsuitable for developing novel intermediate phytopharmaceutical products of rosemary aimingatthemanufactureofSDF.Tothecompletedevelopment andvalidationofapilotspraydryingprocessitwouldbe neces-sarytoextendthevalidityoftheseresultsbyfurtherperforming complementarypreformulationstudies.Ourfurtherinvestigations willbetargetedtoevaluateotherprocessingparameterse.g.,spray nozzleinletorificediameter,nozzleairpressureanddryingairflow rate,andtheirinteractionswiththepropertiesofdryextractsofR. officinalis.

Howdotheprocessadequacyindicatorscorrelatewitheach other?

Tosimplifyinterpretationoftherelationshipsbetweenthe pro-cessqualityindicators,acorrelationsmatrixwaspreparedandis presentedin Table4.Thedeterminationcoefficients(R2)values thatweobtainedforthemorerelevantinteractionsarehighlighted (bold).

In summary,theOT hadanappreciablenegative correlation withthe residualmoisturecontent (R2=0.68). Thismeansthat increasingtheOTproportionallydecreasestheMC inthe pow-ders.Inturn,theMCpositivelycorrelatedwithboththeprocess yield(R2=0.65)andmeanparticlessize(R2=0.58)i.e.,anincrease inMCleadstoanincreasein PYandD50.Areasonable interac-tionwasevidencedwithintheseparameters,whichalsopositively correlatedwitheachother(R2=0.52).

Themajorinterdependencies(0.96≤R20.99)wereobserved betweentheHR,CI andtheangle ofrepose. Thesecorrelations wereexpected,becausetheHR,CIandwereallrelatedtopowder mechanics.Noneoftheothermatrixtermssignificantlycorrelated witheachother.Overall,thesecorrelationslendfurthersupportfor thevalidityofthecommentsaddressedforthetrendspresentedin theprevioussection,andreinforcethehypothesisthatthevariables ofthespraydryingprocess mustbeanalyzed altogetherduring thepreformulationstudiesforengineeringproductswithimproved properties.

Morphologicalaspectsofthemostpromisingproduct

TheSEM imagesoftheSDREproduced byexperimentalrun number1,areshown inFig.5a–c,withamagnificationlevelof 5500×,15,000×and25,000×,respectively.BySEMtheSDRE parti-clesweremostlyobservedasspherical(Fig.5aandb)andshoweda smoothsurface,butsomedepressionsandcrackswerealsopresent (Fig.5c).Thesecharacteristicsmeetthoseobservedforspray-dried particlesofotherindustrialcropssuchassoybean(Georgettietal.,

2008),ac¸aí(Tononetal.,2008),chicory(Tonelietal.,2010),Bindens

pilosa(Cortés-RojasandOliveira,2012),clove(Cortés-Rojasetal., 2014)andAchilleamillefolium(Vladicetal.,2016).Asthemajority ofthefeedmaterialshavesingulardryingbehavior,determining theeffectofprocessvariablesuponparticlemorphologyingeneral termshasbeenreportedtobeadifficulttask.Thisissuehasbeen extensivelyrevisedelsewhere(Walton,2000).

Conclusion

(9)

theprocessqualityindicatorsistheIT.Thebestsetofconditions toachieveagreaterrecoveryofdrypowderofR.officinalisextract withlowlevelsofmoisturecontentandWA,aswellassuitable flowabilityandcompressibility,requiresalowRF(2ml/min),low IT(80◦C)andintermediateSA(40l/min).

Authors’contributions

LTC(PhDstudent)contributedinobtainingtheherbaldrug, run-ningthelaboratorywork,analysisofthedataanddraftedthepaper. JRPcontributedinplantidentification,herbariumconfectionand tocriticalreadingofthemanuscript.MTFBcontributedtocritical readingofthemanuscript.ECCandROCdesignedthestudy, super-visedthelaboratorywork,analyzedthedataandcontributedto criticalreadingofthemanuscript.Alltheauthorshavereadthe finalmanuscriptandapprovedthesubmission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

The authors gratefully acknowledge financial support from CNPqandgrants fromCAPES;HospitaldeMedicinaAlternativa (SecretariaEstadualdaSaúde,Goiânia,GO,Brazil)for supplying herbalmaterial;andtheMulti-userLaboratoryofHighResolution MicroscopyfromInstituteofPhysics–FederalUniversityofthe GoiásStateforthefacilitiesusedintheSEManalysis.Wethank JohnCarpenter(RibeirãoPreto,SP,Brazil)fortheEnglishlanguage revision.

References

Abdelhalim, A., Karim, N., Chebib, M., Aburjai, T., Khan, I., Johnston, G.A.R., Hanrahan, J.R., 2015. Antidepressant,anxiolytic and antinociceptive activ-ities ofconstituents from Rosmarinus officinalis. J. Pharm. Pharm. Sci. 18, 448–459.

Ameri,M.,Maa,Y.F.,2006.Spraydryingofbiopharmaceuticals:stabilityandprocess considerations.Dry.Technol.24,763–768.

Araújo,R.R.,Teixeira,C.C.C.,Freitas,L.A.P.,2010.Thepreparationofternarysolid dispersionsofanherbaldrugviaspraydryingofliquidfeed.Dry.Technol.28, 412–421.

Barreto,H.M.,Filho,E.C.S.,Lima,E.D.O.,Coutinho,H.D.M.,Morais-Braga,M.F.B., Tavares,C.C.A.,Tintino,S.R.,Rego,J.V.,Abreu,A.P.L.,Gomes,C.,Oliveira,R.W.G., Citó,A.M.G.L.,Lopes,J.A.D.,2014.Chemicalcompositionandpossibleuseas adju-vantoftheantibiotictherapyoftheessentialoilofRosmarinusofficinalisL.Ind. CropsProd.59,290–294.

Cattaneo,L.,Cicconi,R.,Mignogna,G.,Giorgi,A.,Mattei,M.,Graziani,G.,Ferracane, R.,Grosso,A.,Aducci,P.,Schininà,M.E.,Marra,M.,2015.Anti-proliferativeeffect

ofRosmarinusofficinalisL.extractonhumanmelanomaA375cells.PLOSONE

10,http://dx.doi.org/10.1371/journal.pone.0132439.

Ciesielski,K.,Zbicinski,I.,2010.Evaluationofenvironmentalimpactofthe spray-dryingprocess.Dry.Technol.28,1091–1096.

Cortés-Rojas,D.F.,Oliveira,W.P.,2012.Physicochemicalpropertiesof phytopharma-ceuticalpreparationsasaffectedbydryingmethodsandcarriers.Dry.Technol. 30,921–934.

Cortés-Rojas,D.F.,Souza,C.R.F.,Oliveira,W.P.,2014.Encapsulationofeugenolrich cloveextractinsolidlipidcarriers.J.FoodEng.127,34–42.

Couto,R.O.,Araújo,R.R.,Tacon,L.A.,Conceic¸ão,E.C.,Bara,M.T.F.,Paula,J.R.,Freitas, L.A.P.,2011.Developmentofaphytopharmaceuticalintermediateproductvia spraydrying.Dry.Technol.29,709–718.

Couto,R.O.,Conceic¸ão,E.C.,Chaul,L.T.,Oliveira,E.M.S.,Martins,F.S.,Bara,M.T.F., Rezende,K.R.,Alves,S.F.,Paula,J.R.,2012a.Spray-driedrosemaryextracts: physicochemicalandantioxidantproperties.FoodChem.131,99–105. Couto,R.O.,Martins,F.S.,Chaul,L.T.,Conceic¸ão,E.C.,Freitas,L.A.P.,Bara,M.T.F.,

Paula,J.R.,2013.SpraydryingofEugeniadysentericaextract:effectsofin-process parametersonproductquality.Rev.Bras.Farmacogn.23,115–123.

Couto, R.O., Oliveira, E.M.S., Martins, F.S., Freitas, O.,Bara, M.T.F., Paula, J.R., Conceic¸ão,E.C.,2012b.ProcessingofApeibatibourbouAubl.extractviaspray drying.Lat.Am.J.Pharm.31,104–111.

FarmacopeiaBrasileira,2010.AgênciaNacionaldeVigilânciaSanitária,Ministério daSaúde,5thed.DF,Brasília.

Georgetti,S.R.,Casagrande,R.,Souza,C.R.F.,Oliveira,W.P.,Fonseca,M.J.V.,2008. Spraydryingofthesoybeanextract:effectsonchemicalpropertiesand antiox-idantactivity.LWT–FoodSci.Technol.41,1521–1527.

Goula,A.M.,Adamopoulos,K.G.,2004.Spraydryingoftomatopulp:effectoffeed concentration.Dry.Technol.22,2309–2330.

Goula,A.M.,Adamopoulos,K.G.,Kazakis,N.A.,2004.Influenceofspraydrying con-ditionsontomatopowderproperties.Dry.Technol.22,1129–1151.

Huntington,D.H.,2004.Theinfluenceofthespraydryingprocessonproduct prop-erties.Dry.Technol.22,1261–1287.

Jangam,S.V.,Thorat,B.N.,2010.Optimizationofspraydryingofgingerextract.Dry. Technol.28,1426–1434.

Lemos,M.F.,Lemos,M.F.,Pacheco,H.P.,Endringer,D.C.,Scherer,R.,2015.Seasonality modifiesrosemary’scompositionandbiologicalactivity.Ind.CropsProd.70, 41–47.

León-Martínez,F.M.,Méndez-Lagunas,L.L.,Rodríguez-Ramírez,J.,2010.Spray dry-ingofnopalmucilage(Opuntiaficus-indica):effectsonpowderpropertiesand characterization.Carbohydr.Polym.81,864–870.

Li,G.,Cervelli,C.,Ruffoni,B.,Shachter,A.,Dudai,N.,2016.Volatilediversityinwild populationsofrosemary(RosmarinusofficinalisL.)fromtheTyrrhenianSea vicin-itycultivatedunderhomogeneousenvironmentalconditions.Ind.CropsProd. 84,381–390.

Matero,S.,vanDenBerg,F.,Poutiainen,S.,Rantanen,J.,Pajander,J.,2013.Towards betterprocessunderstanding:chemometricsandmultivariatemeasurements inmanufacturingofsoliddosage.J.Pharm.Sci.102,1385–1403.

Oliveira,O.W.,Petrovick,P.R.,2010.Secagemporaspersão(spraydrying)deextratos vegetais:baseseaplicac¸ões.Rev.Bras.Farmacogn.20,641–650.

Oliveira,W.P.,Bott,R.F.,Souza,C.R.F.,2006.Manufactureofstandardizeddried extractsfrommedicinalBrazilianplants.Dry.Technol.24,523–533. Patel,B.B.,Patel,J.K.,Chakraborty,S.,2014.Reviewofpatentsandapplicationof

spraydryinginpharmaceutical,foodandflavorindustry.RecentPat.DrugDeliv. Formul.8,63–78.

Quek,S.Y.,Chok,N.K.,Swedlund,P.,2007.Thephysicochemicalpropertiesof spray-driedwatermelonpowders.Chem.Eng.Process.ProcessIntensif.46,386–392. Rocha,J.,Eduardo-Figueira,M.,Barateiro,A.,Fernandes,A.,Brites,D.,Bronze,R., Duarte,C.M.M.,Serra,A.T.,Pinto,R.,Freitas,M.,Eduarda,F.,Silva-Lima,B., Mota-Filipe,H.,Sepodes,B.,2015.Anti-inflammatoryeffectofrosmarinicacidandan extractofRosmarinusofficinalisinratmodelsoflocalandsystemicinflammation. BasicClin.Pharmacol.Toxicol.116,398–413.

Solhi,H.,Salehi,B.,Alimoradian,A.,Pazouki,S.,Taghizadeh,M.,Saleh,A.M., Kazemi-far,A.M.,2013.BeneficialeffectsofRosmarinusofficinalisfortreatmentofopium withdrawalsyndromeduringaddictiontreatmentprograms:aclinicaltrial. Addict.Heal.5,90–94.

Souza,C.R.F.,Schiavetto,I.A.,Thomazini,F.C.F.,Oliveira,W.P.,2008.Processingof RosmarinusofficinalisLinneextractonsprayandspoutedbeddryers.Braz.J. Chem.Eng.25,59–69.

Toneli,J.,Park,K.,Negreiros,A.,Murr,F.,2010.Spray-dryingprocessoptimization ofchicoryrootinulin.Dry.Technol.28,369–379.

Tonon,R.,Brabet,C.,Hubinger,M.,2008.Influenceofprocessconditionsonthe physicochemicalpropertiesofac¸ai(EuterpeoleraceaeMart.)powderproduced byspraydrying.J.FoodEng.88,411–418.

Ulbricht,C.,Abrams,T.R.,Brigham,A.,Ceurvels,J.,Clubb,J.,Curtiss,W.,DeFranco Kirkwood,C.,Giese,N.,Hoehn,K.,Iovin,R.,Isaac,R.,Rusie,E.,Serrano,J.M.G., Varghese,M.,Weissner,W.,Windsor,R.C.,2010.Anevidence-basedsystematic reviewofRosemary(Rosmarinusofficinalis)bythenaturalstandardresearch collaboration.J.Diet.Suppl.7,351–413.

Vehring,R.,2008.Pharmaceuticalparticleengineeringviaspraydrying.Pharm.Res. 25,999–1022.

Vladic,J.,Ambrus,R.,Szabó-révész,P.,Vasic,A.,Cvejin,A.,Pavlic,B.,Vidovic,S.,2016. Recyclingoffilterteaindustryby-products:productionofA.millefoliumpowder usingspraydryingtechnique.Ind.CropsProd.80,197–206.

Imagem

Fig. 1. Surface plot of drying air outlet temperature as a function of: (A) extract feed rate and drying air inlet temperature; (B) extract feed rate and spray nozzle airflow rate;
Fig. 2. Surface plot of process yield as a function of: (A) extract feed rate and drying air inlet temperature; (B) extract feed rate and spray nozzle airflow rate; (C) drying air inlet temperature and spray nozzle airflow rate.
Fig. 5. Micrographs of spray-dried rosemary extract recorded at 5 kV with magnification of: (A) 5500×, (B) 15,000× and (C) 25,000×.

Referências

Documentos relacionados

Furthermore, the antioxidant and antidiabetic potentials of the isolated com- pounds were estimated using DPPH and ␣ -amylase inhibitory tests,

This work describes the isolation, by high-speed counter-current chromatography, of the diterpenes manool, jhanol and steviol and the benzaldehyde p -oxy-2-ethylhexyl benzaldehyde

In this work, several phenolic compounds including eleven phenolic acids, two fatty acids, two chromones and fourteen flavones were rapidly identified in the methanolic extracts

Therefore, in the current study, we developed a rapid and sensitive UHPLC- PDA-QTOF-MS method based on exact mass neutral loss scan to simultaneously analyze known and

This work demonstrates that benzophenanthridine alkaloids dihydrochelerythrine and N -methylcanadine, along with other phytochemicals, are responsible for the antibacterial activity

In the results, it can be seen that the group of cells treated with the EAAC extract, in concentrations ranging from 0.1 to 1000 mg/ml, showed neuroprotective effect against

helioscopia apolar extracts demonstrated a cytotoxic effects (using MTT reduction assay) against five different human cancer cell lines. (SMMC-7721; BEL-7402; HepG2; SGC-7901;

Phenylbutazone, previously used in other models, was a suitable reference drug to inhibit inflammation caused by CFA injection in rat hind paw; no weight-loss was observed as