• Nenhum resultado encontrado

Estimation des indices d’instabilit´e

118 CHAPITRE 3. L’OSCILLATEUR CUBIQUE COMPLEXE On en d´eduit finalement la relation suivante :

ψα(x, hn) =(−1)n1i

2√π h1/6n ψα1(x, hn)(1 +O(hn)), n→+∞. (3.3.54) De la mˆeme fa¸con, en comparant les comportements asymptotiques de ψα1 et ψα+ quand|x| →+∞le long de ˜ℓα+(hn), on trouve

ψα+(x, hn) = 1

2√πh1/6n ψα1(x, hn). (3.3.55) Ces relations vont nous permettre d’int´egrer le carr´e de la solutionψ1α(x, hn) le long de la courbe homotope `a R, constitu´ee de la r´eunion des trois lignes ℓ˜α(hn),ℓαf(hn) et ˜ℓα+(hn). On notera donc

Lα(hn) = ˜ℓα(hn)∪ℓαf(hn)∪ℓ˜α+(hn), (3.3.56) et par extensionLα(hn) d´esignera ´egalement un chemin r´egulier (voir le Lemme 3.3.5) d’imageLα(hn) .

Soitδ >0 la constante du Lemme 3.3.8, etη >0 tel queη <|x0+(0)−x0(0)|, et η suffisamment grand pour que ℓ0f,δ ⊂ D+(δ, η)∪ D(δ, η) . On choisit enfin η < |x0+(0)−x0(0)|/2 et δ ∈]0, δ[ . Il existe alors une partition de l’unit´e (χ, χ+) telle que, pour touth∈]0, h3] et toutx∈ Lα(h) ,χ(x) +χ+(x) = 1 , et telle queχ±(x) = 1 pourx∈ D±, η), et Suppχ± ⊂ D±(δ, η) .

On a alors, d’apr`es (3.3.54) et (3.3.55), pour toutx∈ Lα(hn) ,

ψα1(x, hn)2= 4πhn1/3α+(x, hn)2χ+(x)−ψα(x, hn)2χ(x))(1 +O(hn)), (3.3.57) quandn→+∞.

Ainsi, d’apr`es (3.3.48) et en v´erifiant grˆace `a l’expression (3.3.46) que cα:=cα++cα6= 0,

on obtient

Lemme 3.3.10 Pour toutα∈R, il existecα6= 0 tel que Z

Lα(hn)

ψα1(x, hn)2dx=cα(1 +o(1)), (3.3.58) quandn→+∞.

Nous allons maintenant rassembler les r´esultats de cette section pour d´emontrer le Th´eor`eme 3.1.1.

3.4. ESTIMATION DES INDICES D’INSTABILIT´E 119 (i) Πλ est de rang1 si et seulement si huλ, uλi 6= 0.

(ii) Dans ce cas, on a

κ(λ) :=kΠλk=kuλkkuλk

|huλ, uλi| . (3.4.1) On rappelle (voir la sous-section 3.3.1) que les fonctions propresuαnassoci´ees

`

a lan-`eme valeur propreλn(α)∈RdeAα s’´ecrivent

uαn(x) =ψα(h2/5n x, hn), (3.4.2) o`u

hnn(α)5/6, (3.4.3)

et o`uψα(·, hn)∈L2(R) est solution deAα(hnα(·, hn) = 0 . On normaliseuαn de sorte que

uαn(x) =ψα1(h2/5n x, hn), (3.4.4) o`u ψ1αest la solution introduite dans le Corollaire 3.3.2.

La proposition suivante permet d’affirmer que l’expression (3.4.1) est valable pour les grandes valeurs propres deAα, et donne le comportement asymptotique de son d´enominateur. On retrouve ainsi, pournsuffisamment grand, le r´esultat du Th´eor`eme 3.2.4, (iii).

Proposition 3.4.2 Soitα≥0. Il existe N ≥1 tel que, pour toutn ≥N, le projecteur spectralΠn(α)deAαassoci´e `aλn(α)est de rang1. De plus, il existe kα>0 tel que, pour tout n≥N, len-`eme indice d’instabilit´e s’´ecrit

κn(α) =kαα1(·, hn)kL2(R)(1 +o(1)), n→+∞. (3.4.5) Preuve : On remarque d’abord que AαΓ = ΓAα, o`u Γ :u(x)7→u(x). Par cons´equent, on a

(uαn)(x) =uαn(x),

avec les notations de la Proposition 3.4.1. D’apr`es (3.4.4), on a alors huαn,(uαn)i =

Z

R

ψα1(h2/5n x, hn)2dx

= hn2/5 Z

R

ψα1(x, hn)2dx . (3.4.6) Pour estimer l’int´egrale du membre de droite de (3.4.6), on va commencer par d´eformer le chemin d’int´egration pour atteindre les points tournantsxα±(h) de l’op´erateurAα(h), qui sont les points critiques de la phaseRx

xα+(h)

pVα(z, h)dz apparaissant dans les estimations WKB deψα1 (voir la sous-section 3.3.2). Soit R >0 etγh,Rα : [−R:R]→Cun chemin tel que

γαh,R([−R, R]) =Lα(h)∩ {|z| ≤R},

o`uLα(h) est d´efini par (3.3.56). D’apr`es le Lemme 3.3.5, quitte `a reparam´etrer γαh,R, on peut supposer qu’il s’agit d’un chemin de classe C1. On note θαh,R =

−argγh,Rα (R), etCh,α±R les arcs de cercles param´etr´es par Ch,+Rα : [0,1]∋t7→ Rei(t1)θαh,R, Ch,αR: [0,1]∋t7→ −Reitθαh,R.

120 CHAPITRE 3. L’OSCILLATEUR CUBIQUE COMPLEXE Si ˜γh,Rα d´esigne la r´eunion de ces trois chemins,

˜

γh,Rα =Ch,αR∨γh,Rα ∨ Ch,+Rα , alors par holomorphie de la fonctionψ1α(·, h)2, on a

Z

[R,R]

ψα1(x, h)2dx= Z

˜ γαh,R

ψα1(x, h)2dx .

Or, puisqueθh,Rα <3π/10 , l’´equivalent (3.3.11) entraˆıne, pour tout n≥1 , Z

Cαhn,±R

ψ1α(x, hn)2dx−→0, quandR→+∞.

On obtient donc Z

R

ψα1(x, hn)2dx= Z

Lα(hn)

ψ1α(x, hn)2dx , (3.4.7) et d’apr`es le Lemme 3.3.10 et (3.4.6), on a, pournassez grand,

huαn,(uαn)i=cαhn2/5 1 +o(1)

. (3.4.8)

Ainsi, pour n suffisamment grand,|huαn,(uαn)i| >0 , d’o`u le r´esultat souhait´e sur le rang de Πn(α) d’apr`es le point (i) de la Proposition 3.4.1.

(3.4.5) d´ecoule alors de (3.4.8), du Lemme 3.3.10 et du point (ii) de la Propo- sition 3.4.1, apr`es le changement de variablex7→h2/5n x. Il reste enfin `a d´eterminer un ´equivalent du num´erateur de (3.4.5), `a l’aide du d´eveloppement (3.3.12). Ce dernier ´etant uniforme par rapport `ax∈R, on peut passer `a l’int´egrale, ce qui donne en se limitant au premier ordre :

1α(·, hn)k2L2(R)= (1 +o(1)) Z

R

a(x)eϕα(x,hn)dx , (3.4.9) quandn→+∞, avec

a(x) = 1

V0(x)1/4 et ϕα(x, h) = 2 hRe

Z x xα+(h)

pVα(z, h)dz .

Proposition 3.4.3 Siα≥0, on a, quandn→+∞, kψα1(·, hn)k2L2(R)=

√2

2 Γ(1/4)h1/4n (1 +o(1)) exp C

hn

+ αr h1/5n

, (3.4.10) o`u

C= Z 1

0

p1−t3 dt >0 et r= 1 2

Z 1 0

√ t

1−t3 dt . Preuve :

Supposons d’abordα >0 . Nous allons appliquer une variante de la m´ethode de Laplace pour d´eterminer le comportement de l’int´egrale

Iα(h) = Z +

0

a(x)eϕα(x,h)dx ,

3.4. ESTIMATION DES INDICES D’INSTABILIT´E 121 quand h → 0. En suivant les notations du Th´eor`eme B.1.1, on a ϕα(x, h) =

1

hΨα(x, ε(h)) avecε(h) =h4/5 et Ψα(x, ε) = 2Re

Z x

˜ xα+(ε)

qV˜α(z, ε)dz ,

o`u on a not´e ˜xα+(ε) =xα+5/4) et ˜Vα(x, ε) =Vα(x, ε5/4) =ix3+iαεx−1 . La fonction Ψα est de classeC pour x∈Ret ε suffisamment petit. De plus, Ψα(·,0) admet un unique point critique enx= 0 . En effet,

xΨα(x,0) = 2Rep

ix3−1 = 0,

si et seulement si arg(ix3−1) =π, ou encore Im (ix3−1) = 0, d’o`u x= 0 . Il s’agit d’un minimum strict. En effet, on a

x2Ψα(0,0) = Re 3ix2

√ix3−1

x=0

= 0,

x3Ψα(0,0) = Re

6ix

√ix3−1+9 2

x4 (ix3−1)3/2

|x=0

= 0,

x4Ψα(0,0) = 6, d’o`u

Ψα(x,0) = Ψα(0,0) +x4

4 +O(x5). (3.4.11) Il reste `a d´eterminer les diff´erentes constantes apparaissant dans le Th´eor`eme B.1.1. On a ε(h)2 = h8/5 = o(h) , c’est-`a-dire N = 1 . D’autre part, (3.4.11) entraˆıneλ0= 4 .

Par ailleurs, on a

εΨα(x, ε) = 2Re −(˜xα+)(ε)

qV˜α(˜xα+(ε), ε) + Z x

˜ xα+(ε)

ε

qV˜α(z, ε)dz

!

= 2Re Z x

˜ xα+(ε)

ε

qV˜α(z, ε)dz ,

ce qui donne

εΨα(0,0) = Reiα Z 0

˜ x0+(0)

√ x

ix3−1 dx . (3.4.12) On v´erifie ´egalement que

xεΨα(0,0) = 0, et

x2εΨα(0,0) =α , d’o`uλ1= 2 d`es queα6= 0.

Le Th´eor`eme B.1.1 s’applique donc avecJ = ˜J ={0}, et (B.1.4) donne kψ1α(·, hn)k2L2(R)=

√2

2 Γ(1/4)h1/4n (1 +o(1)) exp

− 1

hnΨα(0,0)

,

122 CHAPITRE 3. L’OSCILLATEUR CUBIQUE COMPLEXE (ici,K =R+

0 ex4dx= 1/4Γ(1/4)). Pour obtenir le r´esultat souhait´e, il suffit donc de constater que

exp

−1

α(0, ε(h))

= exp C

h + αr h1/5

(1 +o(1)), (3.4.13) o`uC etrsont les constantes de l’´enonc´e. En effet,

Ψα(0, ε(h)) = Ψα(0,0) +h4/5εΨα(0,0) +O(h8/5), (3.4.14) or

Ψα(0,0) = 2Re Z 0

e−iπ/6

pix3−1dx=− Z 1

0

p1−t3 dx ,

et d’apr`es (3.4.12),

εΨα(0,0) =−α 2

Z 1 0

√ t

1−t3dt .

Dans le cas α = 0, on v´erifie de la mˆeme fa¸con que la m´ethode de Laplace s’applique (voir par exemple [57]) et aboutit au mˆeme r´esultat.

Pour conclure la preuve du Th´eor`eme 3.1.1, on utilise enfin la r`egle de Bohr- Sommerfeld (3.3.49), qui permet d’affirmer quehn est de l’ordre den1quand n → +∞. Cette loi de quantification permet d’exprimer hn en fonction de n sous forme d’un d´eveloppement asymptotique. Nous en calculons maintenant les premiers termes. En d´eveloppant le membre de gauche de (3.3.49) de la mˆeme fa¸con que pour Ψα(0, h4/5) dans la preuve de la Proposition 3.4.3 (voir (3.4.14)), on obtient

√3(C−αrh4/5n ) =π

n+1 2

hn+O(h8/5n ), o`uC etrsont les constantes de la Proposition 3.4.3. Ainsi,

hn=

√3C

π n+12− 39/10αrC4/5

π9/5 n+129/5 +O((n+ 1/2)13/5). (3.4.15) Le d´eveloppement (3.4.15) permet de reformuler le terme exponentiel de (3.4.10) en fonction den:

C hn

+ αr h1/5n

= π

√3(n+ 1/2) + 2αr π

√3C 1/5

(n+ 1/2)1/5+O((n+ 1/2)3/5). Or les constantesC etrs’expriment explicitement,

C= 2√

3/2

15Γ(2/3)Γ(5/6) et r=Γ(2/3)Γ(5/6) 2√π , ce qui donne

2r π

√3C 1/5

= (5/2)1/5π3/5Γ(2/3)6/5Γ(5/6)6/5.

En rassemblant (3.4.5) et (3.4.10), on obtient finalement le th´eor`eme suivant :

3.4. ESTIMATION DES INDICES D’INSTABILIT´E 123

Th´eor`eme 3.4.4 Pour tout α≥0, il existe une constanteKα>0 telle que κn(α) = Kα

n1/4(1 +o(1)) exp π

√3n+αcn1/5

, (3.4.16)

quandn→+∞, o`u

c= (5/2)1/5π3/5Γ(2/3)6/5Γ(5/6)6/5. Le Th´eor`eme 3.1.1 en d´ecoule imm´ediatement.

Chapitre 4

On the semiclassical

analysis of Schr¨ odinger operators with purely imaginary electric

potentials in a bounded domain

In this chapter, we describe the leftmost eigenvalue of the non-selfadjoint operatorAh=−h2∆ +iV(x) with Dirichlet boundary conditions on a smooth bounded domain Ω⊂Rn, ash→0 .V is assumed to be a Morse function with- out critical point at the boundary of Ω . More precisely, we compare inf Reσ(Ah) with the minimum of the spectrum’s real part for some model operator. In the case whereV has no critical point, the spectrum is determined by the boundary points where∇V is orthogonal, and the model operator involves a 1-dimensional complex Airy operator in R+. IfV is a Morse function with critical points in Ω , the behavior of the operator near the critical points prevails, and the model operator is a complex harmonic oscillator.

This question is related to the decay of associated semigroups. In particular, it allows to recover, in a simplified setting, some stability results of [7] in super- conductivity theory.

4.1 Introduction

Letn≥1,h0>0, and Ω⊂Rn be a smooth bounded domain. We consider, forh∈(0, h0), the operator

Ah=−h2∆ +iV(x), D(Ah) =H01(Ω;C)∩H2(Ω;C), (4.1.1) whereV ∈ C(Ω ;R) is a smooth potential.

Under these conditionsAhhas compact resolvent, hence discrete spectrum and 125

126 CHAPITRE 4. SEMICLASSICAL SCHR ¨ODINGER OPERATORS the purpose of this paper is to understand the behavior ash→0 of the smallest real part of λ(h), for λ(h)∈σ(Ah) . We are also looking for uniform resolvent estimates in any half-plane free of eigenvalues.

One of the main difficulties of this task is that, due to possible pseudospectral effects, a quasimode construction may not be sufficient to locate an eigenvalue.

The question considered here is related to stability problems for equations of the form



tψR−∆ψR+iRV(x/R)ψRRψR, (t, x)∈(0,+∞)×ΩR, ψR(t, x) = 0, (t, x)∈(0,+∞)×∂ΩR, ψR(0, x) =ψ0R(x), x∈ΩR,

(4.1.2)

where ΩR ={Rx: x∈Ω}, in the large domain limitR →+∞. This system can be interpreted as a linearization of the time-dependent Ginzburg-Landau system in superconductivity, without magnetic field and in a large smooth do- main. From this point of view, the following results should be compared with those of [7, 8, 9, 10, 11].

Similar questions have also been considered in [15] in a 1-dimensional setting to understand the controllability of some degenerate parabolic equations.

In addition to these applications, the results stated in this paper might have some independent, theoretical interest in the growing field of non-selfadjoint spectral theory.

We shall first focus on the case where the potential V has no critical point.

Here again, this assumption makes sense in the framework of superconductivity, see [7] and Section 4.9. More precisely, we will prove the following :

Theorem 4.1.1 Let n ≥1 and V ∈ C( ¯Ω;R) be such that, for every x∈Ω,¯

∇V(x)6= 0. Let

∂Ω={x∈∂Ω :∇V(x)×~n(x) = 0}, (4.1.3) where~n(x)denotes the outward normal on∂Ωatx.

(i) Assume that ∂Ω 6= ∅. Let µ1 < 0 be the rightmost zero of the Airy function Ai, and let

Jm= min

x∂Ω|∇V(x)|. (4.1.4) Then we have

lim

h0

1

h2/3inf Reσ(Ah)≥|µ1|

2 Jm2/3, (4.1.5) whereAh is the operator defined by (4.1.1) .

Moreover, for everyε >0, there existshε∈(0, h0)andCε>0 such that

∀h∈(0, hε), sup

γ≤ |µ1|J2/3 m /2, νR

k(Ah−(γ−ε)h2/3−iν)1k ≤ Cε

h2/3. (4.1.6)

(ii) Assume that∂Ω=∅, then

hlim0

1

h2/3inf Reσ(Ah) = +∞,

4.1. INTRODUCTION 127

and for allω∈R, there existshω>0andCω >0such that

∀h∈(0, hω), sup

γω, νR

k(Ah−γh2/3−iν)1k ≤ Cω

h2/3. (4.1.7) This result is essentially a reformulation of those stated in [7], but the proof presented here, based on locally approximating models, gives a good overview of the underlying phenomena involved and might be more convenient for possi- ble generalizations of this statement.

As we shall see in the proof of this first statement, we will not be able to prove that |µ21|Jm2/3is the exact limit forh2/3inf Reσ(Ah) ash→0 . This is because we will have to approximateAhin the neighborhood of∂Ωby operators whose resolvents are not compact forn≥2. However, this result can still be used to obtain some decay estimates for equations of the form (4.1.2), see Corollary 4.1.4 and Sections 4.8 and 4.9.

In dimension 1, obviously, this problem of non-compact resolvent will not ap- pear, hence we can state a more accurate result :

Theorem 4.1.2 Let h0 > 0, a, b ∈ R, a < b, and V ∈ C((a, b);R). For h∈(0, h0), let

Ah=−h2 d2

dx2 +iV(x), D(Ah) =H01(a, b)∩H2(a, b). Assume that, for everyx∈(a, b),V(x)6= 0. Then,

hlim0

1

h2/3inf Reσ(Ah) = |µ1|

2 J2/3, (4.1.8)

where J = min(|V(a)|,|V(b)|) and µ1 denotes the rightmost zero of the Airy function Ai.

The problem of optimality in (4.1.5), in the general, n-dimensional setting, is left for future considerations.

In the case where the potential V has critical points in Ω, the spectrum of Ah is expected to behave differently. The following statement shows that the quantity inf Reσ(Ah) is no longer determined by the behavior at the boundary, but by the shape of the potential near the critical points.

Theorem 4.1.3 LetV be a Morse function onΩ¯, without critical point in∂Ω and with at least one critical point inΩ. Letxc1, . . . , xcp,p∈N, denote those critical points, and fork= 1, . . . , p, let

κk = Xn j=1

q|λkj|, (4.1.9)

where{λkj}j=1,...,n=σ(HessV(xck)). Let

κ= min

k=1,...,pκk,

128 CHAPITRE 4. SEMICLASSICAL SCHR ¨ODINGER OPERATORS and assume that, ifκk=κ, then for any ℓ6=k,

V(xck)6=V(xc). (4.1.10) Then,

tlim0

1

hinf Reσ(Ah) = κ

2. (4.1.11)

Moreover, for every ε >0, there existshε∈(0, h0)andCε>0 such that

∀h∈(0, hε), sup

γκ/2, νR

k(Ah−(γ−ε)h−iν)1k ≤ Cε

h . (4.1.12) The assumption (4.1.10) is meant to avoid any resonance phenomenon between two wells. Note that, unlike in Theorem 4.1.1, here we give the exact limit for h1inf Reσ(Ah) .

As mentioned above, the previous theorems enable us to state some decay estimates for the semigroup associated withAh.

Corollary 4.1.4 For allε >0, there existshε∈(0, h0)andMε>0such that : (i) Under the assumptions of Theorem 4.1.1,

∀h∈(0, hε), ∀t >0, ketAhkL(L2(Ω))≤Mεexp(−(|µ1|Jm2/3/2−ε)h2/3t). (4.1.13) (ii) Under the assumptions of Theorem 4.1.3,

∀h∈(0, hε), ∀t >0, ketAhkL(L2(Ω))≤Mεexp(−(κ/2−ε)ht). (4.1.14) (iii) Under the assumptions of Theorem 4.1.2, the constant |µ1|Jm2/3/2is opti- mal in (4.1.13), as well as the exponent ofh. Similarly, under the assump- tions of Theorem 4.1.3, the constantκ/2 is optimal in (4.1.14), as well as the exponent ofh.

This corollary will follow easily from Theorems 4.1.1, 4.1.2 and 4.1.3, by using a refined, quantitative version of the Gearhardt-Pr¨uss Theorem, see [83].

Many interesting questions, which arise naturally in superconductivity the- ory, are left aside from this paper and should be investigated in future research.

First of all, as recalled in Section 4.9, the time-dependent Ginzburg-Landau equations involve a non-linear term of the form (1− |ψ|2)ψ, which shall not be considered in this work. The recent work of Y. Almog and B. Helffer [8] includes the analysis of this non-linearity in the presence of a magnetic field, but as far as we know, this non-linear problem has not been considered yet in the simpler case where the magnetic field is neglected.

Secondly, here we only consider the case of a smooth domain Ω. As explained in [7], most physically relevant domains would instead contain some singularities, such as corners with right-angles. However, since Y. Almog [7] has already con- sidered this feature under the assumption of a potential without critical point, and since the case of a Morse potential is outside the scope of superconductivity theory, this question shall not be considered here. Nevertheless, our guess is that

4.2. SIMPLIFIED MODELS 129