• Nenhum resultado encontrado

Semi classical analysis of the complex Airy operator (γ = 1)174

5.3 Nonobservability on a vertical strip

5.3.3 Semi classical analysis of the complex Airy operator (γ = 1)174

The goal of this subsection is the proof of Theorem 5.3.1.

We introduce two model-operators, that have well known spectral and pseu- dospectral behavior. Let A(R,+) and A(−∞,R) be the Dirichlet realizations of the operator−dyd22+iyon the intervals (−R,+∞) and (−∞, R) respectively.

We are going to approximate the resolvent ofA(R,R)by the one of A(R,+)

orA(−∞,R)depending on where we are, respectively close to−Ror close to +R.

Let us remark that, if

TR:u(x)7→u(x+R) and UR:u(x)7→u(R−x) (5.3.7) then

TR1(A(R,+)−λ)TR=A(0,+)−(λ+iR), (5.3.8) UR1(A(−∞,R)−λ)UR=A(0,+)−(λ−iR), (5.3.9) thus

inf Reσ

A(R,)

= inf Reσ

A(−∞,R)

=|µ1|

2 , (5.3.10)

because inf Reσ

A(0,+)

=|µ1|/2, see [7].

Step 1 : We prove lim

R+

inf Reσ

A(R,R)

>|µ1|

2 (5.3.11)

and (5.3.2).

Letε >0. We searchRε>0 such that

∀R≥Rε, σ

A(R,R)

∩(]− ∞,|µ1|/2−ε] +iR) =∅. (5.3.12)

5.3. NONOBSERVABILITY ON A VERTICAL STRIP 175

We recall that, by [75], there existsCε>0 such that sup

γ≤ |µ1|/2ε, νR

A(0,+)−(γ+iν)1

L(L2(0,+)) 6Cε, (5.3.13) sup

γ≤ |µ1|/2ε, νR

A(0,+)−(γ+iν)1

L(L2(0,+)) 6Cε. (5.3.14) Let

λ=γ+iν , γ≤ |µ1|/2−ε], ν∈R, (5.3.15) andh+, h∈ C(R; [0,1]) be such that

Supp (h)⊂(−∞,1/2), h≡1 on (−∞,−1/2], Supp (h+)⊂(−1/2,+∞), h+≡1 on [1/2,+∞),

h2+h2+≡1 on (−∞,+∞). ForR >0, we define

η±R(x) =h±x R

1(R,R)(x) (5.3.16)

and

RR(λ) =ηR

A(R,+)−λ1

ηRR+

A(−∞,R)−λ1

η+R. (5.3.17) RR(λ) will be used as an approximation of the resolvent ofA(R,R). We have

A(R,R)−λ

RR(λ) =I + [A(R,R), ηR]

A(R,+)−λ1

ηR + [A(R,R), η+R]

A(−∞,R)−λ1

η+R(5.3.18) as an equality between operators onL2(−R, R).

We estimate the second term on the right hand side. In what follows, the esti- mates are uniform with respect toν= Imλ. We have

[A(R,R), ηR]

A(R,+)−λ1

ηR=

−(ηR)′′−2(ηR) d

dy A(R,+)−λ1

ηR, (5.3.19) Usingk(ηR)kL(R,R)=O(R1) andk(ηR)′′kL(R,R)=O(R2), we get, by (5.3.8) and (5.3.13),

R)′′

A(R,+)−λ1

ηR

L(L2(R,R)) =O 1

R2

. (5.3.20)

Moreover, for everyv∈L2(−R,+∞),

dyd

A(R,+)−λ1

v L2(

R,+)

A(R,+)−λ1

1/2

+√γ

A(R,+)−λ1

kvkL2(R,+). (5.3.21)

176 CHAPITRE 5. PARABOLIC OPERATORS WITH A GCC Indeed, letw:= (A(R,+)−λ)1v, i.e.

−w′′(y) +iyw(y)−λw(y) =v(y), y∈(−R,+∞), w(−R) =w(+∞) = 0.

We have

kwk2L2(R,+) =−Re

+R

R

w(y)w′′(y)dy

!

= Re

+R

R

w[iyw+λw+v]

!

+R

R |w|2+ Re

+R

R

wv

!

6γkwk2L2(R,+)+kwkL2(R,+)kvkL2(R,+). By taking the square root of this inequality, we get

kwkL2(R,+)6√γkwkL2(R,+)+kwk1/2L2(R,+)kvk1/2L2(R,+), which proves (5.3.21). By applying (5.3.21) tov=ηRu,u∈L2(R), we get

R) d

dy

A(R,+)−λ1

ηR

L(L2(R,R))=O 1

R

, (5.3.22)

which gives, with (5.3.19) and (5.3.20),

[A(R,R), ηR]

A(R,+)−λ1

ηR

L(L2(R,R)) =O 1

R

. (5.3.23) In the same way, we verify that

[A(R,R), ηR+]

A(−∞,R)−λ1

ηR+

L(L2(R,R))=O 1

R

. (5.3.24) Equality (5.3.18) can be written

(A(R,R)−λ)RR(λ) =I+ER(λ),

withkER(λ)kL(L2(R,R)) =O(R1), uniformly with respect toλ∈]−∞,|µ1|/2− ε] +iR. We deduce the existence of Rε > 0 such that, for every R ≥ Rε, (A(R,R)−λ) is invertible, with inverse

A(R,R)−λ1

=RR(λ)

I+ER(λ)1

.

We have proved (5.3.12). Moreover, according to the definition (5.3.17) ofRR(λ), (5.3.8), (5.3.9), (5.3.13) and (5.3.14) yield the estimate (5.3.2).

Step 2 : We prove that

Rlim+

inf Reσ

A(R,R)

6 |µ1|

2 . (5.3.25)

5.3. NONOBSERVABILITY ON A VERTICAL STRIP 177 First, we reduce the study to the complex Airy operator A(0,R) on the in- terval (0, R) . Indeed, applying the translationTR:u(x)7→u(x+R), we get

TR1(A(R,R)−λ)TR=A(0,2R)−(λ+iR),

thus Reσ(A(R,R)) = Reσ(A(0,2R)) . Therefore, in order to prove (5.3.25), we are going to prove that

Rlim+ inf Reσ A(0,R)

6 |µ1|

2 . (5.3.26)

Letθ12∈ C(R; [0,1]) be such that

Supp (θ1)⊂(−∞,2/3), θ1≡1 on (−∞,1/2), Supp (θ2)⊂(1/2,+∞), θ2≡1 on (2/3,+∞),

θ1222≡1 onR. Forj= 1,2 andR >0 , we define

χjR(x) =θj

x R

1(0,R)(x). (5.3.27)

We want to prove that 1(0,R)

A(0,R)+ 11

1(0,R)R−→

+

A(0,+)+ 11

inL(L2(R+)). (5.3.28) Let us remark that

σ

1(0,R)

A(0,R)+ 11

1(0,R)

A(0,R)+ 11

with non vanishing eigenvalues that have the same multiplicity for both opera- tors.

Step 2.a : We prove that 1(0,R)

A(0,R)+ 11

1(0,R)−χ1R

A(0,+)+ 11

χ1RR−→

+0 in L(L2(R+)). For this, we use the following approximations of the resolvent of (A(0,R)+ 1),

R1R

A(0,+)+ 11

χ1R2R

A(0,R)+ 11

χ2R. Then, we have

(A(0,R)+ 1) ˜RR=I + [A(0,R)+ 1, χ1R]

A(0,+)+ 11

χ1R + [A(0,R)+ 1, χ2R]

A(0,2R)+ 11

χ2R, thus, by composing on the left by1(0,R)

A(0,R)+ 11

1(0,R), we get 1(0,R)

A(0,R)+ 11

1(0,R)−χ1R

A(0,+)+ 11

χ1R2R

A(0,R)+ 11

χ2R

−1(0,R)

A(0,R)+ 11

1(0,R)[A(0,R)+ 1, χ1R]

A(0,+)+ 11

χ1R

−1(0,R)

A(0,R)+ 11

1(0,R)[A(0,R)+ 1, χ2R]

A(0,R)+ 11

χ2R. (5.3.29)

178 CHAPITRE 5. PARABOLIC OPERATORS WITH A GCC Now, we control the different terms on the right hand side. The terms involving commutators can be estimated as in Step 1, thanks to (5.3.2), and we get

1(0,R)

A(0,R)+11

1(0,R)[A(0,R)+1, χ1R]

A(0,+)+11

χ1R

L(L2(R+))=O 1

R

, (5.3.30)

1(0,R)

A(0,R)+11

1(0,R)[A(0,R)+1, χ2R]

A(0,R)+11

χ2R|L(L2(R+))=O 1

R

. (5.3.31) Moreover, foru∈L2((0, R),C), we have

Im

(A(0,R)+ 1)u , u

=hyu , ui (5.3.32) whereh., .idenotes theL2((0, R),C)-hermitian product.

This relation, applied to u=χ2R

A(0,R)+ 11

χ2Rf,f ∈L2(0,+∞), which is supported in (R/2, R), gives

Im

(A(0,R)+ 1)u , u> R 2kuk2. Moreover,

(A(0,R)+ 1)u= (χ2R)2f+ [A(0,R)+ 1, χ2R]

A(0,R)+ 11

χ2Rf . Thus, estimating the commutator as in Step 1, we get

Im

(A(0,R)+ 1)u, u6C

1 + 1 R

kfkkuk. Therefore,

R

2kuk26C

1 + 1 R

kfkkuk. We have proved that

χ2R

A(0,R)+ 11

χ2R

L(L2(0,+)) =O 1

R

. (5.3.33)

By (5.3.29), (5.3.30), (5.3.31) and (5.3.33), we have

1(0,R)

A(0,R)+ 11

1(0,R)−χ1R

A(0,+)+ 11

χ1R

L(L2(0,+))=O 1

R (5.3.34) which ends Step 2.a.

Step 2.b : We verify that χ1R

A(0,+)+ 11

χ1R −→

R+

A(0,+)+ 11

inL(L2(0,+∞)), (5.3.35) which ends the proof of (5.3.28).

To simplify notation, let us introduce

A+=A(0,+)+ 1.

5.3. NONOBSERVABILITY ON A VERTICAL STRIP 179 First, we write

χ1RA+1χ1RA+= (χ1R)2−χ1RA+1[A+, χ1R],

then, composing on the right byA+1 and using that (χ1R)2= 1−(χ2R)2, A+1−χ1RA+1χ1R= (χ2R)2A+11RA+1[A+, χ1R]A+1. (5.3.36) The term involving a commutator can be estimated as in Step 1,

χ1RA+1[A+, χ1R]A+1

L(L2(R+))=O 1

R

. (5.3.37)

Forf ∈L2(0,+∞), we have R

2k(χ2R)2A+1fk2 6ky1/22R)2A+1fk2 (because Supp (χ2R)⊂(R/2, R))

= ImhA+2R)2A+1f ,(χ2R)2A+1fi 6kA+2R)2A+1fkk(χ2R)2A+1fk 6

k(χ2R)2fk+k[A+,(χ2R)2]A+1fk

k(χ2R)2A+1fk, whereh., .idenotes theL2((0,+∞),C)-hermitian product andk.kis the associ- ated norm. Estimating the term with a commutator as in Step 1, we get

Rk(χ2R)2A+1fkL2(0,+)6C

1 + 1 R

kfkL2(0,+). Thus (χ2R)2A+1

L(L2(0,+)) =O 1

R

. (5.3.38)

Finally, (5.3.36), (5.3.37) and (5.3.38) imply (5.3.35).

Step 2.c : Conclusion.

Step 2.a and Step 2.b prove (5.3.28). The eigenvalues ofA+1are isolated, thus we can apply [96, Section IV, §3.5]. For any subsequence Rj → +∞ and any eigenvalueλ∈σ(A+1)\ {0}, there exists a sequence (λj) such that, for everyj large enough

λj ∈σ

1(0,Rj)

A(0,Rj)+ 11

1(0,Rj)

\ {0}=σ

A(0,Rj)+ 11

\ {0} andλj→λwhenj→+∞.

In particular, with λ = 1/(˜λ+ 1), where ˜λ = eiπ/31| ∈ σ(A(0,+)) is the eigenvalue ofA(0,+) with smallest real part (see [7]), we get a sequence ˜λj = 1/λj−1∈σ(A(0,Rj)) such that Re ˜λj →Re ˜λ=|µ1|/2, from which we deduce (5.3.25).

5.3.4 Semi classical analysis of the Davies operator ( γ = 2)

The goal of this section is the proof of Theorem 5.3.2, which is similar to the one of Theorem 5.3.1.

180 CHAPITRE 5. PARABOLIC OPERATORS WITH A GCC Step 1 : Let ε >0. We search Rε>0 such that

∀R≥Rε, σ H(R,R)

(−∞,√

2/2−ε) +iR

=∅ (5.3.39)

and we prove (5.3.4).

Letα∈(0,1/3) andζR1, ζR2, ζR3 ∈ C(R; [0,1]) be such that

SuppζR1 ⊂(−∞,−R+Rα), ζR1 ≡1 on (−∞,−R+Rα/2), SuppζR2 ⊂(−R+Rα/2, R−Rα/2), ζR2 ≡1 on (−R+Rα, R−Rα),

SuppζR3 ⊂(R−Rα,+∞), ζR3 ≡1 on (R−Rα/2,+∞), (ζR1)2+ (ζR2)2+ (ζR3)2≡1 onR,

k(ζRj)kL(R)= O

R+(Rα), k(ζRj)′′kL(R)= O

R+(R), (5.3.40) Close toy=−R, we have

y2=−2R(y+R) +R2+o(|y+R|).

Thus, we are going to approximate H(R,R), close toy =−R, by the complex Airy type operator on (−R,+∞)

AR :=− d2

dy2−2iR(y+R) +iR2.

In the same way, we will approximateH(R,R) close toy= +Rby the complex Airy type operator on (−∞,+R)

A+R:=− d2

dy2 −2iR(R−y) +iR2.

Then, we remark that, ifTR andUR are defined by (5.3.7), then we have AR=TR2RTR1+iR2 and A+R=UR2RUR1+iR2,

where ˜AR is the Dirichlet realization of the complex Airy operator−dyd22+iRy on (0,+∞).

Following [75], we deduce that inf Reσ A+R

= inf Reσ AR

= (2R)2/31|

2 , (5.3.41)

and, for everyε >0, there existsCε>0 such that sup

γ[0, R2/3|µ1|/2ε], νR

A±R−(γ+iν)16 Cε

R2/3. (5.3.42) We call H0 the complex harmonic oscillator −dyd22 +iy2 onR, that will serve to approximate H(R,R) on the support of ζR2. We recall that inf Reσ(H0) = cosπ/4 =√

2/2 (see [41]) and sup

γ2/2ε, νR

H0−(γ+iν)16Cε, (5.3.43)

5.3. NONOBSERVABILITY ON A VERTICAL STRIP 181 for someCε >0, see for instance [116].

Now, we takeλ=γ+iν∈(0,√

2/2−ε) +iRand we set QR(λ) =ζR1

AR−λ1

ζR1R2

H0−λ1

ζR2R3

A+R−λ1

ζR3. (5.3.44) Then, we have

(H(R,R)−λ)QR(λ) =I+ [H(R,R), ζR1]

AR−λ1

ζR1 +[H(R,R), ζR2]

H0−λ1

ζR2 + [H(R,R), ζR3]

A+R−λ1

ζR3R1(H(R,R)− AR)

AR−λ1

ζR1R3(H(R,R)− A+R)

A+R−λ1

ζR3, as equality between operators onL2(−R, R) . The terms involving commutators can be estimated as in Step 1 of the previous section, by using (5.3.40), (5.3.42), (5.3.43) and we get

[H(R,R), ζR1]

AR−λ1

ζR1

L(L2(R,R))+[H(R,R), ζR2]

H0−λ1

ζR2

L(L2(R,R))

+[H(R,R), ζR3]

A+R−λ1

ζR3

L(L2(R,R))=O(Rα). Moreover, we have, by definition ofAR,

(H(R,R)− AR)u(y) =i(y+R)2u(y),

and on the support ofζR1, we havey+R≤Rα. Therefore, by (5.3.42)

ζR1(H(R,R)− AR)

AR−λ1

ζR1

L(L2(R,R)) ≤ R

AR−λ1

L(L2(R,+))

≤ CεR2(α1/3). In the same way, we verify

ζR3(H(R,R)− A+R)

A+R−λ1

ζR3

L(L2(R,R)) ≤CεR2(α1/3). Thus, we have proved that

(H(R,R)−λ)QR(λ) =I+ ˜ER(λ),

with kE˜R(λ)k → 0 as R → +∞, uniformly with respect to λ in the interval (0,√

2/2−ε) +iR. Thus, there exists Rε > 0 such that, for every R ≥ Rε, (H(R,R)−λ) is invertible, with

H(R,R)−λ1

=QR(λ)

I+ ˜ER(λ)1

. (5.3.45)

This proves the existence ofRǫ >0 such that (5.3.39) holds. The resolvent es- timate (5.3.4) follows from (5.3.42), (5.3.43) and (5.3.44).

182 CHAPITRE 5. PARABOLIC OPERATORS WITH A GCC Step 2 : We prove

Rlim+inf Reσ H(R,R)6

√2

2 . (5.3.46)

Letϕ1R, ϕ2R∈C(R,[0,1]) be such that

Supp (ϕ1R)⊂(−∞,−R/2)∪(R/2,+∞), ϕ1R≡1 on (−∞,−2R/3)∪(2R/3,+∞), Supp (ϕ2R)⊂(−2R/3,2R/3), ϕ2R≡1 on (−R/2, R/2),

1R)2+ (ϕ2R)2≡1 on R, k(ϕjR)kL(R)=O R1

, k(ϕjR)′′kL(R)=O R2 . We recall thatH0denotes the operator−dxd22 +ix2 defined onR, and we set

R2R

H0+ 11

ϕ2R1R

H(R,R)+ 11

ϕ1R. Thus, we have

H(R,R)+ 1Q˜R=I+PR, where

PR= [H(R,R), ϕ2R]

H0+ 11

ϕ2R+ [H(R,R), ϕ1R]

H(R,R)+ 11

ϕ1R, and

kPRkL(L2(R,R))=O(R1). (5.3.47) By composing on the left with (H(R,R)+ 1)1, we get

H(R,R)+11

−ϕ2R

H0+11

ϕ2R1R

H(R,R)+11

ϕ1R

H(R,R)+11

PR. (5.3.48) By going back over the proof of (5.3.33) and replacing (5.3.32) by

Im

H(R,R)u, u

=hx2u, ui, (5.3.49) we get

ϕ1R

H(R,R)+ 11

ϕ1R

L(L2(R,R))=O 1

R

.

By (5.3.48), the previous relation, together with (5.3.47) and (5.3.4) imply

H(R,R)+ 11

−ϕ2R

H0+ 11

ϕ2R

L(L2(R,R))=O 1

R

. (5.3.50) Then, we prove that the operator ϕ2R(H0+ 1)1ϕ2R converges to (H0+ 1)1 in L(L2(R)), when R → +∞, with the same arguments as in Step 2.b of the previous section. Thus, (5.3.46) is proved, with the same arguments as in Step 2.c of the previous section, and this ends the proof of Theorem 5.3.2.