• Nenhum resultado encontrado

4.6 Tratamento

4.6.7 Fitoterapia

O resveratrol é um tipo de fenol natural encontrado na casca de uvas, mirtilos, framboesas, amoras e amendoins, e pode ter algumas propriedades preventivas na obesidade e na DFGNA.

(30) Este composto pode proteger contra o stress do RE e a esteatose hepática induzida pela dieta. (202)

Os flavonóides são compostos polifenólicos que fornecem a maioria do sabor e da cor às frutas e vegetais (66) e que têm efeitos hepatoprotetores devido ao seu efeito antioxidante e anti-inflamatório. (66,203)

As vitaminas também podem ser consideradas antioxidantes dietéticos, pois reduzem o stress celular prevenindo a progressão da DFGNA. (66) A vitamina C tem propriedades antioxidantes e anti-inflamatórias demonstrou diminuir os níveis de ROS e aumentar os níveis de enzimas antioxidantes. (204)

A vitamina D tem propriedades anti-inflamatórias e anti fibróticas, e a sua suplementação tem demonstrado melhorar a histologia da DFGNA. (205,206)

5 Conclusões

A DFGNA é a doença hepática mais comum em todo o mundo e é definida como a presença de esteatose em 5% ou mais dos hepatócitos, na ausência de causas secundárias como medicamentos, infeções virais ou consumo excessivo de álcool. Abrange um amplo espetro de condições que variam na gravidade da lesão, desde a ES ou FGNA, EHNA, fibrose e cirrose, podendo eventualmente evoluir para CHC.

A sua prevalência aumentou nos últimos anos, a par com a tendência de aumento da obesidade e doenças metabólicas. Globalmente, a prevalência de DFGNA é estimada em 25% da população adulta do mundo e está a tornar-se rapidamente na principal causa de doença hepática terminal e transplante de fígado. Os doentes com DFGNA apresentam taxas de mortalidade geral aumentadas comparativamente à população em geral, sendo a causa mais comum as DCVs.

É uma doença complexa e progressiva, com uma grande variação inter-doente, sendo que vários fatores contribuem para o desenvolvimento da DFGNA ou da EHNA incluindo fatores genéticos, ambientais e metabólicos. A presença da SM é o fator de risco mais forte para o desenvolvimento de DFGNA e EHNA. Os doentes obesos, com pré-diabetes, DMT2, hipertensão, hipertrigliceridemia ou SM têm maior risco de EHNA e de outras consequências.

É importante esclarecer os fatores genéticos que resultam em diferentes subtipos de DFGNA e que podem levar a uma melhor previsão da progressão da doença e a tratamentos mais eficazes com base em fatores individualizados da doença.

Tanto o FGNA como a EHNA são assintomáticos até a doença avançada sendo difícil o diagnóstico precoce, além disso, o diagnóstico de EHNA requer biópsia hepática, um processo invasivo e com riscos inerentes.

Esta monografia tinha como objetivo principal fazer uma revisão da literatura acerca da abordagem terapêutica no fígado gordo não alcoólico. As primeiras indicações terapêuticas são as alterações de estilo de vida, como modificações na dieta e a prática de exercício para a perda de peso e gestão das comorbilidades. As restantes opções não farmacológicas são a CB, aconselhada em indivíduos obesos com EHNA e o transplante hepático, em fases mais avançadas da doença. Estas indicações permitem reduzir a doença e a sua mortalidade, mas são difíceis de manter, por diversas razões, havendo necessidade da utilização de medidas farmacológicas.

Apesar dos grandes progressos nos últimos anos, existem ainda grandes desafios, pois nenhum fármaco foi aprovado com indicação para esta doença. Diversos fármacos apresentaram resultados promissores e outros encontram-se em fases mais avançadas de ensaios clínicos, com bons resultados, mas ainda assim nenhum demonstrou ser suficientemente benéfico para poder ser considerado a terapêutica específica para a DFGNA. Assim, o tratamento foca-se na gestão das comorbilidades, com o objetivo de reduzir a RI e melhorar a função hepática. Visto a DFGNA ser uma doença multifatorial, um tratamento com diferentes alvos parece ser apropriado, combinando vários fármacos para uma melhor ação. A terapêutica ideal pode evoluir para uma terapia personalizada, quando se entender os mecanismos fisiopatológicos em cada doente, adequando o fármaco a cada doente.

Além disso, há a necessidade de encontrar métodos de diagnóstico não invasivos, para uma melhor e mais precoce identificação do risco e avaliação da progressão da doença. É, também, necessário continuar o estudo acerca da fisiopatologia da DFGNA, que parece ser diferente entre cada doente.

Em 2020, foi proposta a alteração da designação de DFGNA para Doença de Fígado Gordo Associada a Disfunção Metabólica. Este é um termo mais apropriado para descrever as doenças hepáticas associadas ao metabolismo, pois salienta o papel importante da disfunção metabólica no desenvolvimento da doença. Foram, também, definidos novos critérios de diagnóstico que não requerem a exclusão de outras etiologias, como o consumo excessivo de álcool, infeções virais ou medicamentos, necessitando apenas da presença de esteatose hepática e da existência de pelo menos uma de três condições metabólicas (obesidade, DMT2 ou evidência de desregulação metabólica). Estes novos critérios permitem identificar mais doentes em risco e simplificam o diagnóstico.

Em suma, é imprescindível a continuação da investigação nesta área, para garantir resposta aos problemas atuais.

Referências Bibliográficas

1. Eslam M, Valenti L, Romeo S. Genetics and epigenetics of NAFLD and NASH: Clinical impact. Journal of Hepatology. 2018;68(2):268–79. Available from:

10.1016/j.jhep.2017.09.003

2. Oseini AM, Sanyal AJ. Therapies in non-alcoholic steatohepatitis (NASH). Liver International. 2017;37:97–103. Available from: 10.1111/liv.13302

3. Petta S, Gastaldelli A, Rebelos E, Bugianesi E, Messa P, Miele L, et al. Pathophysiology of Non Alcoholic Fatty Liver Disease. International Journal of Molecular Sciences.

2016;17(12). Available from: 10.3390/ijms17122082

4. Anstee QM, Reeves HL, Kotsiliti E, Govaere O, Heikenwalder M. From NASH to HCC:

current concepts and future challenges. Nature Reviews Gastroenterology & Hepatology.

2019;16(7):411–28. Available from: 10.1038/s41575-019-0145-7

5. Loomba R, Sanyal AJ. The global NAFLD epidemic. Nature Reviews Gastroenterology

& Hepatology. 2013;10(11):686–90. Available from: 10.1038/nrgastro.2013.171

6. Piazzolla VA, Mangia A. Noninvasive Diagnosis of NAFLD and NASH. Cells.

2020;9(4). Available from: 10.3390/cells9041005

7. Carr RM, Oranu A, Khungar V. Nonalcoholic Fatty Liver Disease: Pathophysiology and management. Gastroenterology Clinics of North America. 2016;45(4):639–52.

Available from: 10.1016/j.gtc.2016.07.003

8. Polyzos SA, Kountouras J, Mantzoros CS. Obesity and nonalcoholic fatty liver disease:

From pathophysiology to therapeutics. Metabolism. 2019;92:82–97. Available from:

10.1016/j.metabol.2018.11.014

9. Moore MP, Cunningham RP, Dashek RJ, Mucinski JM, Rector RS. A Fad too Far?

Dietary Strategies for the Prevention and Treatment of NAFLD. Obesity.

2020;28(10):1843–52. Available from: 10.1002/oby.22964

10. Sanyal AJ, Brunt EM, Kleiner DE, Kowdley K v., Chalasani N, Lavine JE, et al.

Endpoints and clinical trial design for nonalcoholic steatohepatitis. Hepatology.

2011;54(1):344–53. Available from: 10.1002/hep.24376

11. Cobbina E, Akhlaghi F. Non-alcoholic fatty liver disease (NAFLD) – pathogenesis,

Metabolism Reviews. 2017;49(2):197–211. Available from:

10.1080/03602532.2017.1293683

12. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67(1):328–57.

Available from: 10.1002/hep.29367

13. European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO).

EASL–EASD–EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. Journal of Hepatology. 2016;64(6):1388–402. Available from:

10.1016/j.jhep.2015.11.004.

14. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: Practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 2012;55(6):2005–23.

Available from: 10.1002/hep.25762

15. Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nature Reviews Gastroenterology & Hepatology. 2018;15(1):11–20. Available from:

10.1038/nrgastro.2017.109

16. Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nature Medicine. 2018;24(7):908–22. Available from: 10.1038/s41591-018-0104-9

17. Sheka AC, Adeyi O, Thompson J, Hameed B, Crawford PA, Ikramuddin S.

Nonalcoholic Steatohepatitis. JAMA. 2020;323(12):1175–83. Available from:

10.1001/jama.2020.2298

18. Stefan N, Häring H-U, Cusi K. Non-alcoholic fatty liver disease: causes, diagnosis, cardiometabolic consequences, and treatment strategies. The Lancet Diabetes &

Endocrinology. 2019;7(4):313–24. Available from: 10.1016/S2213-8587(18)30154-2

19. Younes R, Bugianesi E. A spotlight on pathogenesis, interactions and novel therapeutic options in NAFLD. Nature Reviews Gastroenterology & Hepatology. 2019;16(2):80–2.

Available from: 10.1038/s41575-018-0094-6

20. Kleiner DE, Makhlouf HR. Histology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis in Adults and Children. Clinics in Liver Disease. 2016 May;20(2):293–312. Available from: 10.1016/j.cld.2015.10.011

21. Angulo P. Long-term mortality in nonalcoholic fatty liver disease: Is liver histology of any prognostic significance? Hepatology. 2010 Feb;51(2):373–5. Available from:

10.1002/hep.23521

22. Ekstedt M, Franzén LE, Mathiesen UL, Thorelius L, Holmqvist M, Bodemar G, et al.

Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology.

2006;44(4):865–73. Available from: 10.1002/hep.21327

23. Adams LA, Lymp JF, st. Sauver J, Sanderson SO, Lindor KD, Feldstein A, et al. The Natural History of Nonalcoholic Fatty Liver Disease: A Population-Based Cohort Study.

Gastroenterology. 2005;129(1):113–21. Available from: 10.1053/j.gastro.2005.04.014

24. Corte C della, Ferrari F, Villani A, Nobili V. Epidemiology and Natural History of Nafld/Epidemiologija I Prirodna Istorija Nealkoholne Masne Jetre. Journal of Medical Biochemistry. 2014;34(1):13–7. Available from: 10.2478/jomb-2014-0049

25. Rinella ME. Nonalcoholic Fatty Liver Disease. JAMA. 2015;313(22):2263–73.

Available from: 10.1001/jama.2015.5370

26. Sumida Y, Yoneda M. Current and future pharmacological therapies for NAFLD/NASH.

Journal of Gastroenterology. 2018;53(3):362–76. Available from: 10.1007/s00535-017-1415-1

27. Singh S, Osna NA, Kharbanda KK. Treatment options for alcoholic and non-alcoholic fatty liver disease: A review. World Journal of Gastroenterology. 2017;23(36):6549–70.

Available from: 10.3748/wjg.v23.i36.6549

28. Ma C, Avenell A, Bolland M, Hudson J, Stewart F, Robertson C, et al. Effects of weight loss interventions for adults who are obese on mortality, cardiovascular disease, and cancer: systematic review and meta-analysis. BMJ. 2017; Available from:

10.1136/bmj.j4849

29. Byrne CD, Targher G. NAFLD: A multisystem disease. Journal of Hepatology.

2015;62(1):47–64. Available from: 10.1016/j.jhep.2014.12.012

30. Mundi MS, Velapati S, Patel J, Kellogg TA, Abu Dayyeh BK, Hurt RT. Evolution of NAFLD and Its Management. Nutrition in Clinical Practice. 2020;35(1):72–84.

Available from: 10.1002/ncp.10449

31. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84. Available from:

10.1002/hep.28431

32. Brunt EM, Wong VW-S, Nobili V, Day CP, Sookoian S, Maher JJ, et al. Nonalcoholic fatty liver disease. Nature Reviews Disease Primers. 2015;1(1). Available from:

10.1038/nrdp.2015.80

33. Pan J-J. Gender and racial differences in nonalcoholic fatty liver disease. World Journal of Hepatology. 2014;6(5):274–83. Available from: 10.4254/wjh.v6.i5.274

34. Macaluso FS. Primary biliary cirrhosis and hereditary hemorrhagic telangiectasia: When two rare diseases coexist. World Journal of Hepatology. 2013;5(5):288–91. Available from: 10.4254/wjh.v5.i5.288

35. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84. Available from:

10.1002/hep.28431

36. Younossi ZM. Non-alcoholic fatty liver disease – A global public health perspective.

Journal of Hepatology. 2019;70(3):531–44. Available from: 10.1016/j.jhep.2018.10.033

37. Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, Cohen JC, et al.

Prevalence of hepatic steatosis in an urban population in the United States: Impact of ethnicity. Hepatology. 2004;40(6):1387–95. Available from: 10.1002/hep.20466

38. Younossi Z, Tacke F, Arrese M, Chander Sharma B, Mostafa I, Bugianesi E, et al. Global Perspectives on Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis.

Hepatology. 2019;69(6):2672–82. Available from: 10.1002/hep.30251

39. Jirapinyo P, Thompson CC. Treatment of NASH with Gastric Bypass. Current Gastroenterology Reports. 2018;20(10). Available from: 10.1007/s11894-018-0653-6

40. Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants. The Lancet. 2011;377(9765):557–67. Available from: 10.1016/S0140-6736(10)62037-5

41. Polyzos SA, Mantzoros CS. Nonalcoholic fatty future disease. Metabolism.

2016;65(8):1007–16. Available from: 10.1016/j.metabol.2015.12.009

42. Targher G, Bertolini L, Padovani R, Rodella S, Tessari R, Zenari L, et al. Prevalence of Nonalcoholic Fatty Liver Disease and Its Association With Cardiovascular Disease Among Type 2 Diabetic Patients. Diabetes Care. 2007;30(5):1212–8. Available from:

10.2337/dc06-2247

43. Soresi M, Noto D, Cefalù AB, Martini S, Vigna GB, Fonda M, et al. Nonalcoholic fatty liver and metabolic syndrome in Italy: results from a multicentric study of the Italian Arteriosclerosis society. Acta Diabetologica. 2013;50(2):241–9. Available from:10.1007/s00592-012-0406-1

44. MATTEONI C, YOUNOSSI Z, GRAMLICH T, BOPARAI N, LIU Y, MCCULLOUGH A. Nonalcoholic fatty liver disease: A spectrum of clinical and pathological severity. Gastroenterology. 1999;116(6):1413–9. Available from:

10.1016/S0016-5085(99)70506-8

45. Younossi Z, Henry L. Contribution of Alcoholic and Nonalcoholic Fatty Liver Disease to the Burden of Liver-Related Morbidity and Mortality. Gastroenterology.

2016;150(8):1778–85. Available from: 10.1053/j.gastro.2016.03.005

46. Caligiuri A, Gentilini A, Marra F. Molecular Pathogenesis of NASH. International Journal of Molecular Sciences. 2016;17(9):undefined. Available from:

10.3390/ijms17091575

47. Manne V, Handa P, Kowdley K v. Pathophysiology of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis. Clinics in Liver Disease. 2018;22(1):23–37.

Available from: 10.1016/j.cld.2017.08.007

48. Pirazzi C, Adiels M, Burza MA, Mancina RM, Levin M, Ståhlman M, et al. Patatin-like phospholipase domain-containing 3 (PNPLA3) I148M (rs738409) affects hepatic VLDL

secretion in humans and in vitro. Journal of Hepatology. 2012;57(6):1276–82. Available from: 10.1016/j.jhep.2012.07.030

49. Speliotes EK, Butler JL, Palmer CD, Voight BF, Hirschhorn JN. PNPLA3 variants specifically confer increased risk for histologic nonalcoholic fatty liver disease but not metabolic disease. Hepatology. 2010;52(3):904–12. Available from: 10.1002/hep.23768 50. Smagris E, BasuRay S, Li J, Huang Y, Lai K v., Gromada J, et al. Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatology.

2015;61(1):108–18. Available from: 10.1002/hep.27242

51. Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nature Genetics. 2008;40(12):1461–5. Available from: 10.1038/ng.257

52. Mahdessian H, Taxiarchis A, Popov S, Silveira A, Franco-Cereceda A, Hamsten A, et al. TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content. Proceedings of the National Academy of Sciences.

2014;111(24):8913–8. Available from: 10.1073/pnas.1323785111

53. Liu Y-L, Reeves HL, Burt AD, Tiniakos D, McPherson S, Leathart JBS, et al. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nature Communications. 2014;5(1). Available from:

10.1038/ncomms5309

54. Kozlitina J, Smagris E, Stender S, Nordestgaard BG, Zhou HH, Tybjærg-Hansen A, et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nature Genetics. 2014;46(4):352–6. Available from:

10.1038/ng.2901

55. Seko Y, Yamaguchi K, Itoh Y. The genetic backgrounds in nonalcoholic fatty liver disease. Clinical Journal of Gastroenterology. 2018;11(2):97–102. Available from:

10.1007/s12328-018-0841-9

56. Beer NL, Tribble ND, McCulloch LJ, Roos C, Johnson PRV, Orho-Melander M, et al.

The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Human Molecular Genetics. 2009;18(21):4081–8. Available from: 10.1093/hmg/ddp357

57. Santoro N, Zhang CK, Zhao H, Pakstis AJ, Kim G, Kursawe R, et al. Variant in the glucokinase regulatory protein (GCKR) gene is associated with fatty liver in obese children and adolescents. Hepatology. 2012;55(3):781–9. Available from:

10.1002/hep.24806

58. Neuschwander-Tetri BA. Therapeutic Landscape for NAFLD in 2020.

Gastroenterology. 2020;158(7):1984–98. Available from: 10.1053/j.gastro.2020.01.051

59. Dongiovanni P, Valenti L, Rametta R, Daly AK, Nobili V, Mozzi E, et al. Genetic variants regulating insulin receptor signalling are associated with the severity of liver damage in patients with non-alcoholic fatty liver disease. Gut. 2010;59(2):267–73.

Available from: 10.1136/gut.2009.190801

60. Sun C, Fan J-G, Qiao L. Potential Epigenetic Mechanism in Non-Alcoholic Fatty Liver Disease. International Journal of Molecular Sciences. 2015;16(12):5161–79. Available from: 10.3390/ijms16035161

61. Wang L, Zhang H, Zhou J, Liu Y, Yang Y, Chen X, et al. Betaine attenuates hepatic steatosis by reducing methylation of the MTTP promoter and elevating genomic methylation in mice fed a high-fat diet. The Journal of Nutritional Biochemistry.

2014;25(3):329–36. Available from: 10.1016/j.jnutbio.2013.11.007

62. Iacobazzi V, Castegna A, Infantino V, Andria G. Mitochondrial DNA methylation as a next-generation biomarker and diagnostic tool. Molecular Genetics and Metabolism.

2013;110(1–2):25–34. Available from: 10.1016/j.ymgme.2013.07.012

63. Lee J, Kim Y, Friso S, Choi S-W. Epigenetics in non-alcoholic fatty liver disease.

Molecular Aspects of Medicine. 2017;54:78–88. Available from:

10.1016/j.mam.2016.11.008

64. Ferreira DMS, Simão AL, Rodrigues CMP, Castro RE. Revisiting the metabolic syndrome and paving the way for microRNAs in non-alcoholic fatty liver disease. FEBS Journal. 2014;281(11):2503–24. Available from: 10.1111/febs.12806

65. Cheung O, Puri P, Eicken C, Contos MJ, Mirshahi F, Maher JW, et al. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology.

2008;48(6):1810–20. Available from: 10.1002/hep.22569

66. Anania C, Perla FM, Olivero F, Pacifico L, Chiesa C. Mediterranean diet and nonalcoholic fatty liver disease. World Journal of Gastroenterology. 2018;24(19):2083–

94. Available from: 10.3748/wjg.v24.i19.2083

67. Clemente MG, Mandato C, Poeta M, Vajro P. Pediatric non-alcoholic fatty liver disease:

Recent solutions, unresolved issues, and future research directions. World Journal of Gastroenterology. 2016;22(36):8078–93. Available from: 10.3748/wjg.v22.i36.8078

68. Lambert JE, Ramos–Roman MA, Browning JD, Parks EJ. Increased De Novo Lipogenesis Is a Distinct Characteristic of Individuals With Nonalcoholic Fatty Liver Disease. Gastroenterology. 2014;146(3):726–35. Available from:

10.1053/j.gastro.2013.11.049

69. Asrih M, Jornayvaz FR. Diets and nonalcoholic fatty liver disease: The good and the bad. Clinical Nutrition. 2014;33(2):186–90. Available from: 10.1016/j.clnu.2013.11.003 70. Fabbrini E, Mohammed BS, Magkos F, Korenblat KM, Patterson BW, Klein S.

Alterations in Adipose Tissue and Hepatic Lipid Kinetics in Obese Men and Women With Nonalcoholic Fatty Liver Disease. Gastroenterology. 2008;134(2):424–31.

Available from: 10.1053/j.gastro.2007.11.038

71. Suganami T, Nishida J, Ogawa Y. A Paracrine Loop Between Adipocytes and Macrophages Aggravates Inflammatory Changes. Arteriosclerosis, Thrombosis, and Vascular Biology. 2005;25(10):2062–8. Available from:

10.1161/01.ATV.0000183883.72263.13

72. Shi H, Kokoeva M v., Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid–induced insulin resistance. Journal of Clinical Investigation.

2006;116(11):3015–25. Available from: 10.1172/JCI28898

73. Sanders FWB, Griffin JL. De novo lipogenesis in the liver in health and disease: more than just a shunting yard for glucose. Biological Reviews. 2016;91(2):452–68. Available from: 10.1111/brv.12178

74. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. Journal of Clinical Investigation. 2005;115(5):1343–51. Available from:

10.1172/JCI23621

75. Marra F, Lotersztajn S. Pathophysiology of NASH: Perspectives for a Targeted Treatment. Current Pharmaceutical Design. 2013;19(29):5250–69. Available from:

10.2174/13816128113199990344

76. Koo S-H. Nonalcoholic fatty liver disease: molecular mechanisms for the hepatic steatosis. Clinical and Molecular Hepatology. 2013;19(3):210–5. Available from:

10.3350/cmh.2013.19.3.210

77. Skurk T, Alberti-Huber C, Herder C, Hauner H. Relationship between Adipocyte Size and Adipokine Expression and Secretion. The Journal of Clinical Endocrinology &

Metabolism. 2007;92(3):1023–33. Available from: 10.1210/jc.2006-1055

78. Rotter V, Nagaev I, Smith U. Interleukin-6 (IL-6) Induces Insulin Resistance in 3T3-L1 Adipocytes and Is, Like IL-8 and Tumor Necrosis Factor-α, Overexpressed in Human Fat Cells from Insulin-resistant Subjects. Journal of Biological Chemistry.

2003;278(46):45777–84. Available from: 10.1074/jbc.M301977200

79. Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nature Medicine. 2001;7(8):947–53. Available from: 10.1038/90992

80. Angulo P. NAFLD, Obesity, and Bariatric Surgery. Gastroenterology.

2006;130(6):1848–52. Available from: 10.1053/j.gastro.2006.03.041

81. Kershaw EE, Flier JS. Adipose Tissue as an Endocrine Organ. The Journal of Clinical Endocrinology & Metabolism. 2004;89(6):2548–56. Available from: 10.1210/jc.2004-0395

82. Jung U, Choi M-S. Obesity and Its Metabolic Complications: The Role of Adipokines and the Relationship between Obesity, Inflammation, Insulin Resistance, Dyslipidemia and Nonalcoholic Fatty Liver Disease. International Journal of Molecular Sciences.

2014;15(4):6184–223. Available from: 10.3390/ijms15046184

83. Lord GM, Matarese G, Howard JK, Baker RJ, Bloom SR, Lechler RI. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression.

Nature. 1998;394(6696):897–901. Available from: 10.1038/29795

84. Cao Q, Mak KM, Ren C, Lieber CS. Leptin Stimulates Tissue Inhibitor of Metalloproteinase-1 in Human Hepatic Stellate Cells. Journal of Biological Chemistry.

2004;279(6):4292–304. Available from: 10.1074/jbc.M308351200

85. Reccia I, Kumar J, Akladios C, Virdis F, Pai M, Habib N, et al. Non-alcoholic fatty liver disease: A sign of systemic disease. Metabolism. 2017;72:94–108. Available from:

10.1016/j.metabol.2017.04.011

86. Cui Y, Wang Q, Chang R, Zhou X, Xu C. Intestinal Barrier Function–Non-alcoholic Fatty Liver Disease Interactions and Possible Role of Gut Microbiota. Journal of Agricultural and Food Chemistry. 2019;67(10):2754–62. Available from:

10.1021/acs.jafc.9b00080

87. Safari Z, Gérard P. The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Cellular and Molecular Life Sciences. 2019;76(8):1541–58.

Available from: 10.1007/s00018-019-03011-w

88. Lee Y, Hirose H, Ohneda M, Johnson JH, McGarry JD, Unger RH. Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships. Proceedings of the National Academy of Sciences.

1994;91(23):10878–82. Available from: 10.1073/pnas.91.23.10878

89. Neuschwander-Tetri BA. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: The central role of nontriglyceride fatty acid metabolites. Hepatology.

2010;52(2):774–88. Available from: 10.1002/hep.23719

90. Puri P, Mirshahi F, Cheung O, Natarajan R, Maher JW, Kellum JM, et al. Activation and Dysregulation of the Unfolded Protein Response in Nonalcoholic Fatty Liver Disease.

Gastroenterology. 2008;134(2):568–76. Available from: 10.1053/j.gastro.2007.10.039

91. Schwabe RF, Uchinami H, Qian T, Bennett BL, Lemasters JJ, Brenner DA. Differential requirement for c‐Jun NH2 ‐terminal kinase in TNF‐α‐and Fas‐mediated apoptosis in hepatocytes. The FASEB Journal. 2004;18(6):720–2. Available from: 10.1096/fj.03-0771fje

92. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. Journal of Clinical Investigation. 2007;117(1):175–84.

Available from: 10.1172/JCI29881

93. Miura K, Kodama Y, Inokuchi S, Schnabl B, Aoyama T, Ohnishi H, et al. Toll-Like Receptor 9 Promotes Steatohepatitis by Induction of Interleukin-1β in Mice.

Gastroenterology. 2010;139(1):323–34. Available from: 10.1053/j.gastro.2010.03.052

94. Stienstra R, Saudale F, Duval C, Keshtkar S, Groener JEM, van Rooijen N, et al. Kupffer cells promote hepatic steatosis via interleukin-1β-dependent suppression of peroxisome proliferator-activated receptor α activity. Hepatology. 2010;51(2):511–22. Available

94. Stienstra R, Saudale F, Duval C, Keshtkar S, Groener JEM, van Rooijen N, et al. Kupffer cells promote hepatic steatosis via interleukin-1β-dependent suppression of peroxisome proliferator-activated receptor α activity. Hepatology. 2010;51(2):511–22. Available

Documentos relacionados