• Nenhum resultado encontrado

A patência do ducto arterioso fetal é dependente da presença de prostaglandinas circulantes, especialmente no terceiro trimestre de gestação. Substâncias com capacidade de interferir na rota metabólica das prostaglandinas, através da inibição da COX-2 ou do ácido aracdônico, podem apresentar efeito constritivo sobre o ducto arterioso.

São já bem conhecidos os efeitos da ingestão materna de indometacina e de outros anti-inflamatórios não-esteróides, e mesmo de corticóides, sobre o metabolismo das prostaglandinas na vida fetal e sua conseqüência deletéria mais importante, a constrição prematura intra-uterina do canal arterial. A constrição ductal intra-uterina pode ser grave, com comprometimento hemodinâmico e potencialmente pode provocar conseqüências nocivas no período fetal e neonatal, como a insuficiência cardíaca pré-natal e hipertensão pulmonar neonatal. A conscientização de que o ducto arterioso constrito no feto pode ser um importante fator de risco para hipertensão pulmonar persistente neonatal, situação clínica com considerável morbidade e até potencialmente letal. Tendo em vista que a asfixia perinatal é a primeira causa de morte em recém-nascidos no Rio Grande do Sul, e a hipertensão pulmonar neonatal é uma de suas manifestações mais importantes, justificam-se ações dirigidas à sua prevenção, e essas se iniciam durante o pré-natal. A hipertensão pulmonar neonatal “idiopática” é responsável pela terceira causa dessa doença em nosso meio, seguindo a aspiração meconial e a pneumonia. Nesse contexto tem-se

estimulado estudos sobre o diagnóstico, a patogênese, a evolução clínica e a conduta terapêutica dessa entidade patológica.

Um grande número de casos de constrição do ducto arterioso fetal não associado à exposição materna de drogas anti-inflamatórias conhecidas tem sido observado. Uma revisão de nossa casuística ao longo dos últimos 10 anos demonstrou que a maioria dos fetos com diagnóstico de constrição ductal não apresentava história de uso materno de indometacina ou de outros anti-inflamatórios conhecidos. Por outro lado, uma parcela significativa das gestantes relatava ter ingerido alimentos ricos em polifenóis.

Como demonstramos na base teórica desse projeto, uma revisão atualizada da literatura sobre as características químicas dessas substâncias, assim como da sua ação farmacológica, tanto em modelos animais como em humanos, mostra que esses alimentos contêm elementos químicos com anti-inflamatória através da supressão da biossíntese das prostaglandinas.

A hipótese conceitual desse projeto, já corroborada por estudos preliminares, é de que ocorre melhora ou reversão da constrição ductal fetal associada ao consumo habitual de bebidas e alimentos ricos em polifenóis ou flavonóides pelas gestantes no terceiro trimestre de gestação, com a suspensão desses alimentos.

Para testar essa hipótese, planejamos um modelo de seguimento clínico dos fetos com diagnóstico Doppler-ecocardiográfico de constrição ductal no terceiro trimestre de gestação, com relato materno de uso de polifenóis, sem evidência de uso concomitante de drogas anti-inflamatórias conhecidas, quantificado por um questionário de frequência alimentar, com orientação de completa suspensão das substâncias ricas em polifenóis em uso e reavaliação Doppler ecocardiográfica e nutricional após um período igual ou maior a 3 semanas.

5. OBJETIVOS

5.1. OBJETIVO GERAL

Avaliar o papel da intervenção nutricional, com suspensão da ingesta materna de alimentos ricos em polifenóis, sobre a constrição prematura do ducto arterioso fetal não relacionada ao consumo de anti-inflamatórios não esteróides.

5.2. OBJETIVO ESPECÍFICO

Testar a hipótese de que fetos com diagnóstico de constrição ductal, de gestantes com relato de ingestão de alimentos ricos em polifenóis e ausência de história de uso de anti-inflamatórios não esteróides no terceiro trimestre de gestação, apresentam reversão completa do efeito constritivo sobre o ducto arterioso fetal após uma a três semanas da orientação dietética de interrupção do uso dessas substâncias, mediante controle Doppler-ecocardiográfico e nutricional.

6. REFERÊNCIAS BIBLIOGRÁFICAS

1. Rudolph AM. Distribution and regulation of blood flow in the fetal and neonatal lamb. Circ Res 1985; 57(6):811-21.

2. Rudolph AM. Fetal and neonatal pulmonary circulation. Annu Rev Physiol 1979; 41:383-95.

3. Rudolph AM, Heymann MA. The circulation of the fetus in utero. Methods for studying distribution of blood flow, cardiac output and organ blood flow. Circ Res 1967; 21(2):163-84.

4. Rudolph AM. Congenital Heart Disease of the Heart. Chicago: Year Book Publishers 1974:1-48.

5. Edelstone DI, Rudolph AM, Heymann MA. Liver and ductus venosus blood flows in fetal lambs in utero. Circ Res 1978; 42(3):426-33.

6. Kiserud T, Eik-Nes SH, Blaas HG, Hellevik LR. Foramen ovale: an ultrasonographic study of its relation to the inferior vena cava, ductus venosus and hepatic veins. Ultrasound Obstet Gynecol 1992; 2(6):389-96.

7. Kiserud T, Eik-Nes SH, Blaas HG, Hellevik LR. Ultrasonographic velocimetry of the fetal ductus venosus. Lancet 1991; 338(8780):1412-4.

8. Rudolph AM. Hepatic and ductus venosus blood flows during fetal life. Hepatology 1983; 3(2):254-8.

9. Zielinsky P. Cardiologia Fetal - Ciência e Prática. Livraria e Editora Revinter Ltda 2006:13-20.

10. Fouron JC. The unrecognized physiological and clinical significance of the fetal aortic isthmus. Ultrasound Obstet Gynecol 2003; 22(5):441-7.

11. Fouron JC. [Blood flow through the fetal aortic isthmus: a new physiological concept with many clinical implications]. Med Sci (Paris) 2007; 23(11):950-6.

12. Kenny JF, Plappert T, Doubilet P, et al. Changes in intracardiac blood flow velocities and right and left ventricular stroke volumes with gestational age in the normal human fetus: a prospective Doppler echocardiographic study. Circulation 1986; 74(6):1208-16.

13. De Smedt MC, Visser GH, Meijboom EJ. Fetal cardiac output estimated by Doppler echocardiography during mid- and late gestation. Am J Cardiol 1987; 60(4):338-42.

14. Rudolph AM, Heymann MA. Circulatory changes during growth in the fetal lamb. Circ Res 1970; 26(3):289-99.

15. Rasanen J, Wood DC, Weiner S, Ludomirski A, Huhta JC. Role of the pulmonary circulation in the distribution of human fetal cardiac output during the second half of pregnancy. Circulation 1996; 94(5):1068-73.

16. Rasanen J, Huhta JC, Weiner S, Wood DC, Ludomirski A. Fetal branch pulmonary arterial vascular impedance during the second half of pregnancy. Am J Obstet Gynecol 1996; 174(5):1441-9.

17. Cassin S. Role of prostaglandins and thromboxanes in the control of the pulmonary circulation in the fetus and newborn. Semin Perinatol 1980; 4(2):101-7.

18. Rudolph AM, Heymann MA. Cardiac output in the fetal lamb: the effects of spontaneous and induced changes of heart rate on right and left ventricular output. Am J Obstet Gynecol 1976; 124(2):183-92.

19. Reed KL, Meijboom EJ, Sahn DJ, Scagnelli SA, Valdes-Cruz LM, Shenker L. Cardiac Doppler flow velocities in human fetuses. Circulation 1986; 73(1):41-6. 20. Gilbert RD. Effects of afterload and baroreceptors on cardiac function in fetal sheep. J Dev Physiol 1982; 4(5):299-309.

21. Kleinman CS, Copel JA. Fetal cardiovascular physiology and therapy. Fetal Diagn Ther 1992; 7(2):147-57.

22. Friedman WF. The intrinsic physiologic properties of the developing heart. Prog Cardiovasc Dis 1972; 15(1):87-111.

23. Romero T, Covell J, Friedman WF. A comparison of pressure-volume relations of the fetal, newborn, and adult heart. Am J Physiol 1972; 222(5):1285-90. 24. Brezinka C, Gittenberger-de Groot AC, Wladimiroff JW. The fetal ductus arteriosus, a review. Zentralbl Gynakol 1993; 115(10):423-32.

25. Bergwerff M, DeRuiter MC, Gittenberger-de Groot AC. Comparative anatomy and ontogeny of the ductus arteriosus, a vascular outsider. Anat Embryol (Berl) 1999; 200(6):559-71.

26. Wolinsky H, Glagov S. Nature of species differences in the medial distribution of aortic vasa vasorum in mammals. Circ Res 1967; 20(4):409-21.

27. Ho SY, Anderson RH. Anatomical closure of the ductus arteriosus: a study in 35 specimens. J Anat 1979; 128(Pt 4):829-36.

28. Clyman RI, Chen YQ, Chemtob S, et al. In utero remodeling of the fetal lamb ductus arteriosus: the role of antenatal indomethacin and avascular zone thickness on vasa vasorum proliferation, neointima formation, and cell death. Circulation 2001; 103(13):1806-12.

29. Allan LD, Chita SK, Al-Ghazali W, Crawford DC, Tynan M. Doppler echocardiographic evaluation of the normal human fetal heart. Br Heart J 1987; 57(6):528-33.

30. Silva DG, Ikeda M. Ultrastructural and acetylcholinesterase studies on the innervation of the ductus arteriosus, pulmonary trunk and aorta of the fetal lamb. J Ultrastruct Res 1971; 34(3):358-74.

31. Boreus LO, Malmfors T, McMurphy DM, Olson L. Demonstration of adrenergic receptor function and innervation in the ductus arteriosus of the human fetus. Acta Physiol Scand 1969; 77(3):316-21.

32. Walsh SZ, Meyer WW, Lind J. The human and neonatal circulation. Function and structure. Springfield, Charles C, Thomas Publishers 1974.

33. Longo LD, DD R. Fetal and newborn cardiovascular physiology. New York, Garland STPM Press 1978.

34. Huhta JC, Moise KJ, Fisher DJ, Sharif DS, Wasserstrum N, Martin C. Detection and quantitation of constriction of the fetal ductus arteriosus by Doppler echocardiography. Circulation 1987; 75(2):406-12.

35. Tada T, Wakabayashi T, Nakao Y, et al. Human ductus arteriosus. A histological study on the relation between ductal maturation and gestational age. Acta Pathol Jpn 1985; 35(1):23-34.

36. Slomp J, van Munsteren JC, Poelmann RE, de Reeder EG, Bogers AJ, Gittenberger-de Groot AC. Formation of intimal cushions in the ductus arteriosus as a model for vascular intimal thickening. An immunohistochemical study of changes in extracellular matrix components. Atherosclerosis 1992; 93(1-2):25-39.

37. de Reeder EG, Gittenberger-de Groot AC, van Munsteren JC, Poelmann RE, Patterson DF, Keirse MJ. Distribution of prostacyclin synthase, 6-keto-prostaglandin F1 alpha, and 15-hydroxy-prostaglandin dehydrogenase in the normal and persistent ductus arteriosus of the dog. Am J Pathol 1989; 135(5):881-7.

38. Slomp J, Gittenberger-de Groot AC, Glukhova MA, et al. Differentiation, dedifferentiation, and apoptosis of smooth muscle cells during the development of the human ductus arteriosus. Arterioscler Thromb Vasc Biol 1997; 17(5):1003-9.

39. Allen WW, Power GG, Longo LD. Fetal O2 changes in response to hypoxic stress: a mathematical model. J Appl Physiol 1977; 42(2):179-90.

40. Dawes GS. Fetal and neonatal physiology: A comparative study of changes at birth. Chicago: Year book medical publishers 1968:90-101, 60-87.

41. Heymann MA, Rudolph AM. Control of the ductus arteriosus. Physiol Rev 1975; 55(1):62-78.

42. Clyman RI, Chan CY, Mauray F, et al. Permanent anatomic closure of the ductus arteriosus in newborn baboons: the roles of postnatal constriction, hypoxia, and gestation. Pediatr Res 1999; 45(1):19-29.

43. Tynan M. The ductus arteriosus and its closure. N Engl J Med 1993; 329(21):1570-2.

44. Rudolph AM. The ductus arteriosus and persistent patency of the ductus arteriosus. In: Rudolph AM (ed) Congenital Disease of the Heart, 2nd edn

Futura, Armonk, NY 2001:155–96.

45. Bouayad A, Kajino H, Waleh N, et al. Characterization of PGE2 receptors in fetal and newborn lamb ductus arteriosus. Am J Physiol Heart Circ Physiol 2001; 280(5):H2342-9.

46. Heymann MA, Rudolph AM. Effects of acetylsalicylic acid on the ductus arteriosus and circulation in fetal lambs in utero. Circ Res 1976; 38(5):418-22.

47. Coceani F, Kelsey L, Seidlitz E. Evidence for an effector role of endothelin in closure of the ductus arteriosus at birth. Can J Physiol Pharmacol 1992; 70(7):1061-4. 48. Coceani F, Olley PM. The control of cardiovascular shunts in the fetal and perinatal period. Can J Physiol Pharmacol 1988; 66(8):1129-34.

49. Takizawa T, Kihara T, Kamata A, Yamamoto M, Arishima K. Role of nitric oxide in regulating the ductus arteriosus caliber in fetal rats. J Vet Med Sci 2000; 62(7):707-10.

50. Nakanishi T, Gu H, Hagiwara N, Momma K. Mechanisms of oxygen-induced contraction of ductus arteriosus isolated from the fetal rabbit. Circ Res 1993; 72(6):1218-28.

51. Coceani F, Olley PM. The response of the ductus arteriosus to prostaglandins. Can J Physiol Pharmacol 1973; 51(3):220-5.

52. Coceani F, Liu YA, Seidlitz E, et al. Deletion of the endothelin-A-receptor suppresses oxygen-induced constriction but not postnatal closure of the ductus arteriosus. J Cardiovasc Pharmacol 2000; 36(5 Suppl 1):S75-7.

53. Takizawa T, Horikoshi E, Shen MH, et al. Effects of TAK-044, a nonselective endothelin receptor antagonist, on the spontaneous and indomethacin- or methylene blue-induced constriction of the ductus arteriosus in rats. J Vet Med Sci 2000; 62(5):505-9.

54. McMurphy DM, Boreus LO. Studies on the pharmacology of the perfused human fetal ductus arteriosus. Am J Obstet Gynecol 1971; 109(6):937-42.

55. Aronson S, Gennser G, Owman C, Sjoberg NO. Innervation and contractile response of the human ductus arteriosus. Eur J Pharmacol 1970; 11(2):178-86.

56. McMurphy DM, Heymann MA, Rudolph AM, Melmon KL. Developmental changes in constriction of the ductus arteriosus: responses to oxygen and vasoactive agents in the isolated ductus arteriosus of the fetal lamb. Pediatr Res 1972; 6(4):231-8. 57. Bateson EA, Schulz R, Olley PM. Response of fetal rabbit ductus arteriosus to bradykinin: role of nitric oxide, prostaglandins, and bradykinin receptors. Pediatr Res 1999; 45(4 Pt 1):568-74.

58. Kajino H, Chen YQ, Chemtob S, Waleh N, Koch CJ, Clyman RI. Tissue hypoxia inhibits prostaglandin and nitric oxide production and prevents ductus arteriosus reopening. Am J Physiol Regul Integr Comp Physiol 2000; 279(1):R278-86. 59. Cherry PD, Furchgott RF, Zawadzki JV, Jothianandan D. Role of endothelial cells in relaxation of isolated arteries by bradykinin. Proc Natl Acad Sci U S A 1982; 79(6):2106-10.

60. Sung CP, Arleth AJ, Shikano K, Berkowitz BA. Characterization and function of bradykinin receptors in vascular endothelial cells. J Pharmacol Exp Ther 1988; 247(1):8-13.

61. Olley PM, Coceani F. Prostaglandins and the ductus arteriosus. Annu Rev Med 1981; 32:375-85.

62. Clyman RI, Mauray F, Heymann MA, Roman C. Effect of gestational age on pulmonary metabolism of prostaglandin E1 & E2. Prostaglandins 1981; 21(3):505-13. 63. Clyman RI. Ductus arteriosus: current theories of prenatal and postnatal regulation. Semin Perinatol 1987; 11(1):64-71.

64. Slater TF, McDonald-Gibson RG. Introduction to eicosanoids. In: Benedeto C, McDonald-Gibson RG, Nigan S Oxford, IRL 1987:1-4.

65. Ramwell PW, Foegh M, Loeb R, Leovey EM. Synthesis and metabolism of prostaglandins, prostacyclin, and thromboxanes: the arachidonic acid cascade. Semin Perinatol 1980; 4(1):3-13.

66. DeWitt DL, Smith WL. Primary structure of prostaglandin G/H synthase from sheep vesicular gland determined from the complementary DNA sequence. Proc Natl Acad Sci U S A 1988; 85(5):1412-6.

67. Takami T, Momma K, Imamura S. Increased constriction of the ductus arteriosus by dexamethasone, indomethacin, and rofecoxib in fetal rats. Circ J 2005; 69(3):354-8.

68. Clyman RI, Mauray F, Roman C, Rudolph AM. PGE2 is a more potent vasodilator of the lamb ductus arteriosus than is either PGI2 or 6 keto PGF1alpha. Prostaglandins 1978; 16(2):259-64.

69. Clyman RI, Mauray F, Roman C, Rudolph AM, Heymann MA. Circulating prostaglandin E2 concentrations and patent ductus arteriosus in fetal and neonatal lambs. J Pediatr 1980; 97(3):455-61.

70. Thibeault DW, Emmanouilides GC, Dodge ME, Lachman RS. Early functional closure of the ductus arteriosus associated with decreased severity of respiratory distress syndrome in preterm infants. Am J Dis Child 1977; 131(7):741-5. 71. King DT, Emmanouilides GC, Andrews JC, Hirose FM. Morphologic evidence of accelerated closure of the ductus arteriosus in preterm infants. Pediatrics 1980; 65(5):872-80.

72. Mescher EJ, Platzker AC, Ballard PL, Kitterman JA, Clements JA, Tooley WH. Ontogeny of tracheal fluid, pulmonary surfactant, and plasma corticoids in the fetal lamb. J Appl Physiol 1975; 39(6):1017-21.

73. Coceani F, Olley PM, Lock JE. Prostaglandins, ductus arteriosus, pulmonary circulation: current concepts and clinical potential. Eur J Clin Pharmacol 1980; 18(1):75-81.

74. Clyman RI. Ontogeny of the ductus arteriosus response to prostaglandins and inhibitors of their synthesis. Semin Perinatol 1980; 4(2):115-24.

75. Clyman RI, Heymann MA, Rudolph AM. Ductus arteriosus responses to prostaglandin E1 at high and low oxygen concentrations. Prostaglandins 1977; 13(2):219-23.

76. Friedman WF, Molony DA, Kirkpatrick SE. Prostaglandins: physiological and clinical correlations. Adv Pediatr 1978; 25:151-204.

77. Keller RL, Tacy TA, Fields S, Ofenstein JP, Aranda JV, Clyman RI. Combined treatment with a nonselective nitric oxide synthase inhibitor (l-NMMA) and indomethacin increases ductus constriction in extremely premature newborns. Pediatr Res 2005; 58(6):1216-21.

78. Momma K, Toyono M. The role of nitric oxide in dilating the fetal ductus arteriosus in rats. Pediatr Res 1999; 46(3):311-5.

79. Clyman RI, Waleh N, Black SM, Riemer RK, Mauray F, Chen YQ. Regulation of ductus arteriosus patency by nitric oxide in fetal lambs: the role of gestation, oxygen tension, and vasa vasorum. Pediatr Res 1998; 43(5):633-44.

80. Yallampalli C, Byam-Smith M, Nelson SO, Garfield RE. Steroid hormones modulate the production of nitric oxide and cGMP in the rat uterus. Endocrinology 1994; 134(4):1971-4.

81. Momma K, Toyono M, Miyagawa-Tomita S. Accelerated maturation of fetal ductus arteriosus by maternally administered vitamin A in rats. Pediatr Res 1998; 43(5):629-32.

82. Wu GR, Jing S, Momma K, Nakanishi T. The effect of vitamin A on contraction of the ductus arteriosus in fetal rat. Pediatr Res 2001; 49(6):747-54.

83. Mably JD, Liew CC. Factors involved in cardiogenesis and the regulation of cardiac-specific gene expression. Circ Res 1996; 79(1):4-13.

84. Momma K, Toyoshima K, Imamura S, Nakanishi T. In vivo dilation of fetal and neonatal ductus arteriosus by inhibition of phosphodiesterase-5 in rats. Pediatr Res 2005; 58(1):42-5.

85. Levin M, Goldbarg S, Lindqvist A, et al. ATP depletion and cell death in the neonatal lamb ductus arteriosus. Pediatr Res 2005; 57(6):801-5.

86. Alvarez L, Aranega A, Saucedo R, Lopez F, Aranega AE, Muros MA. Morphometric data on the arterial duct in the human fetal heart. Int J Cardiol 1991; 31(3):337-44.

87. Tulzer G, Gudmundsson S, Sharkey AM, Wood DC, Cohen AW, Huhta JC. Doppler echocardiography of fetal ductus arteriosus constriction versus increased right ventricular output. J Am Coll Cardiol 1991; 18(2):532-6.

88. Harada K, Rice MJ, McDonald RW, et al. Doppler echocardiographic evaluation of ventricular diastolic filling in fetuses with ductal constriction. Am J Cardiol 1997; 79(4):442-6.

89. Eronen M. The hemodynamic effects of antenatal indomethacin and a beta- sympathomimetic agent on the fetus and the newborn: a randomized study. Pediatr Res 1993; 33(6):615-9.

90. van der Mooren K, Barendregt LG, Wladimiroff JW. Flow velocity wave forms in the human fetal ductus arteriosus during the normal second half of pregnancy. Pediatr Res 1991; 30(5):487-90.

91. Rein AJ, Beeri E. Flow parameters of the normal arterial duct in the fetus. Isr J Med Sci 1997; 33(10):649-53.

92. Mielke G, Benda N. Blood flow velocity waveforms of the fetal pulmonary artery and the ductus arteriosus: reference ranges from 13 weeks to term. Ultrasound Obstet Gynecol 2000; 15(3):213-8.

93. Kramer WB, Saade GR, Belfort M, Dorman K, Mayes M, Moise KJ, Jr. A randomized double-blind study comparing the fetal effects of sulindac to terbutaline during the management of preterm labor. Am J Obstet Gynecol 1999; 180(2 Pt 1):396-401.

94. Eronen M, Pesonen E, Kurki T, Ylikorkala O, Hallman M. The effects of indomethacin and a beta-sympathomimetic agent on the fetal ductus arteriosus during treatment of premature labor: a randomized double-blind study. Am J Obstet Gynecol 1991; 164(1 Pt 1):141-6.

95. Respondek ML, Kammermeier M, Ludomirsky A, Weil SR, Huhta JC. The prevalence and clinical significance of fetal tricuspid valve regurgitation with normal heart anatomy. Am J Obstet Gynecol 1994; 171(5):1265-70.

96. Harada K, Rice MJ, Shiota T, McDonald RW, Reller MD, Sahn DJ. Two- dimensional echocardiographic evaluation of ventricular systolic function in human fetuses with ductal constriction. Ultrasound Obstet Gynecol 1997; 10(4):247-53. 97. Rasanen J, Kirkinen P, Jouppila P. Right ventricular dysfunction in human fetal compromise. Am J Obstet Gynecol 1989; 161(1):136-40.

98. Tulzer G, Gudmundsson S, Rotondo KM, Wood DC, Yoon GY, Huhta JC. Acute fetal ductal occlusion in lambs. Am J Obstet Gynecol 1991; 165(3):775-8. 99. Moise KJ, Jr., Huhta JC, Sharif DS, et al. Indomethacin in the treatment of premature labor. Effects on the fetal ductus arteriosus. N Engl J Med 1988; 319(6):327-31.

100. Respondek M, Weil SR, Huhta JC. Fetal echocardiography during indomethacin treatment. Ultrasound Obstet Gynecol 1995; 5(2):86-9.

101. Zenker M, Klinge J, Kruger C, Singer H, Scharf J. Severe pulmonary hypertension in a neonate caused by premature closure of the ductus arteriosus following maternal treatment with diclofenac: a case report. J Perinat Med 1998; 26(3):231-4.

102. Chacon Aguilar R, Menendez Hernando C, Chimenti Camacho P, Franco Sanchez ML, Sanchez Luna M. [Persistent pulmonary hypertension of the newborn following ingestion of nonsteroidal anti-inflammatory drugs during pregnancy]. An Pediatr (Barc) 2008; 68(4):357-60.

103. Zielinsky P. Abordagem diagnóstica e terapêutica pré-natal das anormalidades cardíacas fetais. Revista Brasileira de Ecocardiografia 1992; 17:10-25.

104. Moise KJ, Jr. Indomethacin therapy in the treatment of symptomatic polyhydramnios. Clin Obstet Gynecol 1991; 34(2):310-8.

105. Vermillion ST, Scardo JA, Lashus AG, Wiles HB. The effect of indomethacin tocolysis on fetal ductus arteriosus constriction with advancing gestational age. Am J Obstet Gynecol 1997; 177(2):256-9; discussion 9-61.

106. Kumar R, Sharma YP, Gupta I. Tricuspid regurgitation in a pair of twins at birth secondary to antenatal indomethacin. Indian Pediatr 2001; 38(10):1185-9.

107. Hallak M, Reiter AA, Ayres NA, Moise KJ, Jr. Indomethacin for preterm labor: fetal toxicity in a dizygotic twin gestation. Obstet Gynecol 1991; 78(5 Pt 2):911-3. 108. Hofstadler G, Tulzer G, Altmann R, Schmitt K, Danford D, Huhta JC. Spontaneous closure of the human fetal ductus arteriosus--A cause of fetal congestive heart failure. Am J Obstet Gynecol 1996; 174(3):879-83.

109. Norton ME. Teratogen update: fetal effects of indomethacin administration during pregnancy. Teratology 1997; 56(4):282-92.

110. Sharpe GL, Larsson KS, Thalme B. Studies on closure of the ductus arteriosus. XII. In utero effect of indomethacin and sodium salicylate in rats and rabbits. Prostaglandins 1975; 9(4):585-96.

111. Momma K, Hagiwara H, Konishi T. Constriction of fetal ductus arteriosus by non-steroidal anti-inflammatory drugs:study of additional 34 drugs. Prostaglandins 1984; 28(4):527-36.

112. Zuckerman H, Reiss U, Rubinstein I. Inhibition of human premature labor by indomethacin. Obstet Gynecol 1974; 44(6):787-92.

113. Yesair DW, Callahan M, Remington L, Kensler CJ. Role of the entero-hepatic cycle of indomethacin on its metabolism, distribution in tissues and its excretion by rats, dogs and monkeys. Biochem Pharmacol 1970; 19(5):1579-90.

114. Macones GA, Marder SJ, Clothier B, Stamilio DM. The controversy surrounding indomethacin for tocolysis. Am J Obstet Gynecol 2001; 184(3):264-72. 115. Van den Veyver IB, Moise KJ, Jr., Ou CN, Carpenter RJ, Jr. The effect of gestational age and fetal indomethacin levels on the incidence of constriction of the fetal ductus arteriosus. Obstet Gynecol 1993; 82(4 Pt 1):500-3.

116. Niebyl JR. Preterm parturition. Prostaglandin synthetase inhibitors. Semin Perinatol 1981; 5(3):274-87.

117. Rasanen J, Jouppila P. Fetal cardiac function and ductus arteriosus during

Documentos relacionados