• Nenhum resultado encontrado

4 RESULTADOS E DISCUSSÕES

5.2. Propostas para futuros trabalhos

• Analisar escoamentos multifásicos para diferentes faixas de pressão e temperatura, associados à realidade de campo.

• Desenvolver equações de fator de atrito com princípios da “conservação de energia” e comparar com os modelos propostos de viscosidade aparente e de fator de atrito da mistura.

• Analisar e sugerir o ponto de transição de fases para os comportamentos observados.

• Analisar o fenômeno de redução de atrito para os parâmetros acima.

• Verificar a aplicabilidade da correlação proposta neste estudo para outros padrões de escoamentos e inclinações de tubulações, com vistas ao uso em modelos de mistura como o de fluxo de deslizamento.

Referências

1. ARIRACHAKARAN, S.; OGLESBY K. D.; MALINOWSKY, M. S. and BRILL, J. P. (1989),. An Analysis of Oil/Water Phenomena in Horizontal Pipes. SPE 18836, pp.155-167.

2. ARIRACHAKARAN, S. (1983), An Experimental Study of Two-Phase Oil-Water Flow in Horizontal Pipes. University of Tulsa.

3. BARNEA, E. and MIZRAHI, J. (1973), A Generalized Approach to the Fluid Dynamics of Particulate Systems. Part 1. The Chemical Engineering Journal, Vol. 5, pp. 171-189.

4. BARNEA, E. and MIZRAHI, J. (1975), A Generalised Approach to the Fluid Dynamics of Particulate Systems. Part 2. The Canadian Journal of Chemical Engineering, Vol. 53, pp. 461-468

5. BARNEA, E. and MIZRAHI, J. (1976), On the “Effective” Viscosity of Liquid-Liquid Dispersions. Ind. Eng. Chem., Fundam., Vol. 15, N° 2, pp. 120-125.

6. BRINKMAN, H. C. (1952), The Viscosity of Concentrated Suspensions and Solutions. Journal of Chemical Physics, Vol. 20, No. 4, pp. 571

7. BROUGHTON, G. and SQUIRES, L. (1938). The Viscosity of Oil–Water Emulsions. Journal of Physical Chemistry, Vol. 42, pp. 253-263.

8. BULGARELLI, N.A.V. (2018). Experimental study of electrical submersible pump (ESP) operating with water/oil emulsion. Dissertation. University of Campinas, Brazil.

9. CASTRO, M.S. (2013). Fenômeno de transição espacial do escoamento óleo pesado e água no padrão estratificado. Escola de Engenharia de São Carlos, da Universidade de São Paulo.

10. CHONG, J.S., CHRISTIANSEN, E.B., e BAER, A.D. (1971), Rheology of Concentrated Suspensions. Journal of Applied Polymer Science, Vol. 15, pp. 2007.

11. EILERS, Von H. (1941), Die Viskisitat von Emulsionene Hochviscoser stoffe als Funktion der Konzentration. Kolloid-Z, Vol. 97, pp. 271.

12. EINSTEIN, A. (1906), A New Determination of the Molecular Dimensions (Eine neue Bestimmung der Molekül-dimensionen). Annalen der Physik, Vol. 19, No. 2, pp. 289- 306.

13. EYRING, H., HENDERSON, D., STOVER, B. J., and EYRING, E. M.(1964), Statistical mechanics and dynamics.

14. FOX, ROBERT W., MCDONALD, ALAN T., PRITCHARD, PHILIP J.(2006), Introdução à Mecânica dos Fluidos, sexta edição, “apêndice F”.

15. FURUSE, H., 1972, “Viscosity of concentrated solution”. Jpn J Appl Phys, 11(10): 15371541

16. GUET, S., RODRIGUEZ O. M. H., OLIEMANS R. V. A. AND BRAUNER N. “An inverse dispersed multiphase flow model for liquid production rate determination”. International Journal Of Multiphase Flow, [s.l.], v. 32, n. 5, p.553-567, maio 2006. Elsevier BV.http://dx.doi.org/10.1016/j.ijmultiphaseflow.2006.01.008

17. GUTH und SIMHA (1936), The viscosity of suspensions and solutions. III. The viscosity of sphere suspensions (Untersuchungen über die Viskosität von Suspensionen und Lösungen: 3. Über die Viskosität von Kugelsuspensionen). Kolloid- Zeitschrift, Vol. 74, pp. 266-275.

18. HADAMARD, J. S. (1911), Compt. Rend. Acad. Sci.

19. IBARRA, R., ZADRAZIL, I., MARKIDES, C.N., and MATAR, O.K. (2015). Towards a universal dimensionless map of flow regime transition in horizontal liquid- liquid flows.

20. JOHNSEN, Einar Eng and RONNINGSEN, Hans Petter (2003), Viscosity of “live” water-in-crude-oil emulsion: experimental work and validation of correlations.

21. KARWOWSKI, Marília Silva Malvezzi (2012), Estudo da estabilidade, comportamento reológico e dos compostos fenólicos de frutas da mata atlântica.

22. KRIEGER, Irvin M. and DOUGHERTY, Thomas J. (1959), A Mechanism for Non- Newtonianian Flow in Suspensions of Rigid Spheres.

23. LEVINTON, Abraham and LEIGHTON, Alan (1936), Viscosity Relationships in Emulsions Containing Milk Fat. Journal of Physical Chemistry, Vol. 40, No. 1, pp.71

24. MARON, Samuel H. and PIERCE, Percy E. (1956). Application of Ree-Eyring Generalized flow Theory to Suspensions of Spherical Particles. Journal of Colloid Science. Vol. 11, pp. 80-95.

25. MOONEY, M. 1951). The Viscosity of a Concentrated Suspension of Spherical Particles. Journal of Colloid Science, Vol. 6, pp. 162-170.

26. MUELLER, S., LLEWELLIN, E.W. and MADER, H.M. (2011), The effect of particle shape on suspension viscosity and implications for magmatic flow.

27. MUKHOPADHYAY, H. (1977), An Experimental Study of Two-Phase Oil-Water Flow in Pipes. The University of Tulsa, OK, USA.

28. OGLESBY, K. D. (1979), An Experimental Study of the Effects of Oil Viscosity, Mixture Velocity and Water Fraction on Horizontal Oil-Water Flow. The University of Tulsa, OK, USA.

29. PAL, Rajinder (1998). A Novel Method to Correlate Emulsion Viscosity Data. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 137, pp. 275-286.

30. PAL, Rajinder and RHODES, Edward (1989), Viscosity/Concentration Relationships for Emulsions. Journal of Rheology, Vol. 33, No. 7, pp. 1021-1045.

31. RICHARDSON, E. G. (1933). U¨ ber die Viskosita¨t Emulsionen. Kolloid-Z. Vol. 65, pp. 32.

32. RODRIGUEZ, I. H. (2014), Estudo experimental e modelagem do escoamento de emulsão inversa em tubulações. Escola de Engenharia de São Carlos, da Universidade de São Paulo.

33. RODRIGUEZ, I. H. (2009), Estudo do fenômeno de redução de atrito em escoamento disperso óleo-água em tubulação horizontal. Escola de Engenharia de São Carlos, da Universidade de São Paulo.

34. ROSCOE, R. (1952), The Viscosity of Suspensions of Rigid Spheres. British Journal of Applied Physics, Vol. 3, No.8, pp. 267-269.

35. RUSCHE, H. and ISSA, R (2000). The Effect of Voidage on the Drag Force on Particles, Droplets and Bubbles in Dispersed Two-Phase Flow. Japanese European Two-Phase Flow Meeting. Tsukuba, Japan.

36. RYBCZYNSKI, W. (1911), Bull. Acad. Science Cracovie, Ser.

37. SUGUIMOTO, F.K. (2016), Análise experimental do escoamento líquido-líquido. Universidade Estadual de Campinas.

38. TAYLOR, G. I. (1932). The Viscosity of a Fluid Containing Small Drops of another Fluid. Proceedings of the Royal Society of London, A, Vol. 138, pp. 41-48.

39. THOMAS, D. G. (1965). Transport Characteristics of Suspension: VIII. A note on the Viscosity of Newtonian Suspensions of Uniform Spherical Particles. Journal of Colloid Science, Vol. 20, pp. 267-277.

40. TRALLERO, J. L. (1995). Oil Water Flow Patterns in Horizontal Pipes. PhD Dissertation. The University of Tulsa.

41. TRALLERO, J. L., SARICA, C., & BRILL, J. P. (1997, August 1). A Study of Oil- Water Flow Patterns in Horizontal Pipes. Society of Petroleum Engineers. doi:10.2118/36609-PA

42. VAND, V. (1948). Viscosity of Solutions and Suspensions: I. Theory. Journal of Physical Chemistry, Vol. 52, pp. 277-299

43. VAND, V. (1948). Viscosity of Solutions and Suspensions: II. Experimental Determination of the Viscosity-Concentration Function of Spherical Suspensions. Theory. Journal of Physical Chemistry,pp. 300-314

44. VIELMA, J.C. (2006). Rheological behavior of oil-water dispersion flow in horizontal pipes. Dissertation. University of Tulsa, OK, USA.

45. VIELMA, M., ATMACAS.,SARICA, C.,and ZHANG, H. Q. (2007). Characterization of Oil/Water Flows in Horizontal Pipes. University of Tulsa, OK, USA.

46. VONA, A., ROMANO, C., DINGWELL, D.B., GIORDANO, D. (2011), The rheology of crystal-bearing basaltic magmas from Stromboli and Etna