• Nenhum resultado encontrado

Sulfonation and anticoagulant activity of fungal exocellular β-(1→6)-d-glucan (lasiodiplodan)

N/A
N/A
Protected

Academic year: 2017

Share "Sulfonation and anticoagulant activity of fungal exocellular β-(1→6)-d-glucan (lasiodiplodan)"

Copied!
7
0
0

Texto

(1)

92 (2013) 1908–1914

ContentslistsavailableatSciVerseScienceDirect

Carbohydrate

Polymers

j o ur na l h o me p ag e : w w w . e l s e v i e r . c o m / l o c a t e / c a r b p o l

Sulfonation

and

anticoagulant

activity

of

fungal

exocellular

-(1

6)-

d

-glucan

(lasiodiplodan)

Ana

Flora

D.

Vasconcelos

a

,

Robert

F.H.

Dekker

b

,

Aneli

M.

Barbosa

b

,

Elaine

R.

Carbonero

c

,

Joana

L.M.

Silveira

c

,

Bianca

Glauser

d

,

Mariana

Pereira

d

,

Maria

de

Lourdes

Corradi

da

Silva

a,∗

aDeptodeFísica,QuímicaeBiologia,UniversidadeEstadualPaulistaUNESP,CEP19060-900,PresidentePrudente,SãoPaulo,Brazil bBiorefiningResearchInstitute,LakeheadUniversity,ThunderBay,Ontario,CanadaP7B5E1

cDeptodeBioquímicaeBiologiaMolecular,UniversidadeFederaldoParaná,CEP81531-980,Curitiba,Paraná,Brazil

dLaboratóriodeTecidoConjuntivo,HospitalUniversitárioClementinoFragaFilhoUniversidadeFederaldoRiodeJaneiro,CEP21941-590,RiodeJaneiro,RJ,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received11June2012

Receivedinrevisedform31August2012 Accepted11October2012

Available online 14 November 2012

Keywords: ␤-(1→6)-d-Glucan Lasiodiplodiatheobromae Lasiodiplodan Sulfonation Anticoagulantactivity

a

b

s

t

r

a

c

t

An exocellular␤-(1→6)-d-glucan(lasiodiplodan) producedbya strainof Lasiodiplodiatheobromae

(MMLR)grownonsucrosewasderivatizedbysulfonationtopromoteanticoagulantactivity.The struc-turalfeaturesofthesulfonated␤-(1→6)-d-glucanwereinvestigatedbyUV–vis,FT-IRand13CNMR

spectroscopy,andtheanticoagulantactivitywasinvestigatedbytheclassicalcoagulationassaysAPTT, PTandTTusingheparinasstandard.Thecontentofsulfuranddegreeofsubstitutionofthesulfonated glucanwas11.73%and0.95,respectively.UVspectroscopyshowedabandat261nmduetothe unsat-uratedbondformedinthesulfonationreaction.ResultsofFT-IRand13CNMRindicatedthatsulfonyl groupswereinsertedonthepolysaccharide.Thesulfonated␤-(1→6)-d-glucanpresentedanticoagulant

activityasdemonstratedbytheincreaseindosedependenceofAPTTandTT,andtheseactionsmost likelyoccurredbecauseoftheinsertedsulfonategroupsonthepolysaccharide.Thelasiodiplodandidnot inhibitthecoagulationtests.

© 2012 Elsevier Ltd.

1. Introduction

␤-Glucansarefoundmainlyinthecellwallofyeastsand fil-amentousfungi,asminorityconstituentsinthecytosol,andcan alsobesecretedasexo-biopolymerstotheenvironment(Williams, 1997).Theyhaveemergedasanimportantclassofbioactive prod-uctswithbiologicalresponsemodifying(BRM)activities(Bohn& BeMiller,1995).Besidesimmunoprotectiveactivity, exopolysac-charidesofthe␤-glucantypehavebeenexaminedinrelationto theantithrombotic,antioxidant,antiviral,anti-inflammatory, anti-coagulantactions,andantiproliferativeactivityonbreastcancer cells (Brandi etal., 2011;Cunha et al., 2012;Kato et al.,2010; Martinichen-Herrero,Carbonero,Gorin,&Iacomini,2005;Wang etal.,2010).

Thebiologicalactivitiescanbepresentedbythemoleculesin natura,orthroughchemicalmodification.Thechemical derivati-zationofglycansoffersanopportunitytoenhancetheiraction,

and even develop activity in non-bioactive molecules, which

can be used as newpharmacological agents (Mantovani et al.,

2008; Vetvicka, Vetvickova, Frank, & Yvin,2008).Furthermore,

∗Correspondingauthor.Tel.:+551832295743;fax:+551832215682. E-mailaddress:corradi@fct.unesp.br(M.d.L.CorradidaSilva).

the inclusion of sulfonate groups onglycans enablesthe

gen-eration of water-soluble molecules, and this is important for

anticoagulant and other biological activities (Mendes et al.,

2009).

Glucans of the ␤-(1→3)- and ␤-(1→3;1→6)-types are the mostdescribed inscientific articlesand patents.Theyhave lin-ear,branchedorcyclic(Laroche&Michaud,2007)structures,and aretargetsforresearchfortheirpharmacologicaland immunolog-icaleffects(Vetvickaetal.,2008).␤-(1→6)-d-Glucansarewidely

knownaspustulanproducedbylichensofUmbilicariaceaespecies (Narui,Sawada,Culberson,Culberson,&Shibata, 1999), andare commonlypresentasconstituentsofthefungalandyeastcellwall (Klis,Mol,Hellingwerf,&Brul,2002).Asexocellularbiopolymers, ␤-(1→6)-d-glucansareuncommon,ifnotrare,andareknownto

beproducedbyonlysomefungi(Cunhaetal.,2012;Vasconcelos etal.,2008).

Thebiological activityofthe␤-glucansfromfungiincluding mushrooms thatcompriseboth ␤-(1→3)-and (1→6)-d-glucans

areconsideredthemosteffectiveimmunestimulatoryagents(Rop, Mlcek&Jurikova,2009),andthepresenceofbranchesatC-6onthe ␤-(1→3)-glucanchainaswellasatriplehelixconformationare

importantstructuralfeaturesdeterminingBRMactivityofthese

polysaccharides(Bohn&BeMiller,1995;Leung,Liu,Koon,&Fung, 2006).

0144-8617© 2012 Elsevier Ltd.

http://dx.doi.org/10.1016/j.carbpol.2012.10.034

Open access under the Elsevier OA license.

(2)

92 (2013) 1908–1914 1909

Substanceswithanticoagulantpropertieshavebeenusedboth

in therapeutic processes and in vitro to treat medical

condi-tions,andnaturalheparinismostwidelyused(Wang,Li,Zheng, Normakhamatov, & Guo, 2007). Unfortunately, heparin shows

somecontra-indicationssuchasbleeding,andmoreover,because

heparinisextractedfromanimaltissues,ittendstocausearisk

ofcontaminationbyanimal-derivedpathogens.Developmentof

alternativestoheparinthereforeisanimportantfieldofresearch. Nomammaliansourceofheparinoritsderivativesareconsidered tobeidealchoices,andconsequently,polysaccharidesulfonates (naturalorchemicallyderivatized)areofspecialinterest(Glauser etal.,2009;Pomin,2012).

Anabundantsourceofanticoagulantpolysaccharidesismarine algaethatcontainavarietyofnaturalsulfatedgalactansand sul-fatedfucans(Melo,Pereira,Foguel,&Mourão,2004).Othersulfated

polysaccharideswithanticoagulantactivityarefoundin marine

invertebrates (Pomin,2012).Chemically sulfonated

polysaccha-rides, which present anticoagulant and antithrombotic activity,

have been obtainedfrom various polysaccharidetypes suchas

microbial ␤-glucans (Brandi et al., 2011; Mendes et al., 2009)

anddextrans,andplant-derivedgalactoglucomannansand

galac-tomannans(Martinichen-Herreroetal.,2005;Yang,Du,Wen,Li,& Hu,2003).

Inthisworkwedescribeforthefirsttimethesulfonationofan exocellular ␤-(1→6)-d-glucan(lasiodiplodan) fromLasiodiplodia

theobromaeMMLRgrownonsucroseascarbonsource(Vasconcelos

et al., 2008), and the effect of sulfonation on promoting the

solubilityofthispolysaccharideinaqueoussolutions,andthe phys-iologicalactivityasananticoagulantasalternativetoheparin.

2. Experimental

2.1. Materials

Sodium heparin (5000UI/mL) was purchased from Akzo

Organon (São Paulo, Brazil). Human plasma was obtained by

centrifugation (450×g/15min at25◦C)of citrated blood. Blood

coagulationtimereagents:activatedpartialthromboplastintime

(APTT), thrombin time (TT) and prothrombin time (PT), were

acquired from In-Vitro Diagnóstica S/A (Itabira, MG, Brazil).

Thrombin and antithrombin were obtainedfrom Haematologic

Technologies,USA,andchromogenicsubstrateS-2238from

Chro-mogenix,Sweden. ChlorosulfonicacidwasobtainedfromVetec

(RiodeJaneiro,RJ,Brazil).

2.2. Productionandpreparationofˇ-(1→6)-d-glucan

(lasiodiplodan)

␤-(1→6)-d-Glucan(lasiodiplodan)wasproducedbyL.

theobro-maeMMLRandgrownonnutrientmediumcontainingsucroseas

previouslydescribed(Vasconcelosetal.,2008).Cell-freeculture fluidwasobtainedafterremovalofthemyceliumbycentrifugation (5500×g/20min)at4◦C.Thesupernatantwastreatedwith3

vol-umesofabsoluteethanol,theprecipitatedmaterialrecoveredand dissolvedindistilledwater,followedbyextensivedialysisagainst frequentchangesofdistilledwaterover48h,andthenfreeze-dried.

2.3. Analyticaltechniques

Carbohydrate was determined by the phenol–sulfuric acid

method(Dubois,Gilles,Hamilton,&Rebers,1956)withd-glucose

as standard. Protein was measured by the Bradford method

(Bradford,1976)usingbovineserumalbuminasstandard.

2.4. Sulfonation

Sulfonationof␤-(1→6)-d-glucanwasperformedaccordingto O’Neill (1955) with some modifications: lasiodiplodan powder (50.0mg)wassolubilizedindryformamide(10.0mL)with vigor-ousstirringfor24hatroomtemperature.Then10.0mLofpyridine

wasaddedtothemixturefollowed bycontinuationofvigorous

stirringforanother30hatroomtemperature.Chlorosulfonicacid

(4.0mL)wasnextaddeddrop-wisetothemixtureinanice-bath

overanintervalof2h,andthenleftat4◦Cfor12h.Thereaction

wasterminatedbyaddingice-water,andneutralizedbyaddinga

solutionof10%(w/v)NaHCO3untilallCO2evolutionceased.The

reactionmixturewasthendialyzedexhaustivelyagainstdistilled waterfor6dayswithseveralchangesofwater,andthedialysate concentratedunderreducedpressure(<39◦C)andlyophilized.The

productobtainedwasreferredtoassulfonated␤-(1→6)-d-glucan.

Thesulfonationreactionwasrepeatedtwofurthertimesuntila

degreeofsubstitution(DS)ofgreaterthan0.80wasobtained.

2.5. Determinationofthedegreeofsubstitution(DS)

Samples of sulfonated ␤-(1→6)-d-glucan (1.0mg) were

hydrolyzedusing1.0MHCl(1.0mL)for5hat100◦C.Todetermine

the DS, 0.2mLof hydrolyzedthe sulfonated ␤-(1→6)-d-glucan

samplewasreactedwith3.8mLof3%(w/v)trichloroaceticacid

(TCA)inaglasstube,andthen1.0mLofprotectorsolution(6.0g NaCl,0.5mLc.HCl,2.5mLof0.1%(w/v)gelatinand47.0mLdistilled

water) and 0.03gBaCl2 wereadded. Thecontents were stirred

for 1minand left for 15min.The resulting BaSO4 formed was

measuredturbidimetricallyat360nm.TheDS,whichdesignates

the average number of sulfonyl groups oneach sugar-residue,

wasestablishedfromthesulfurcontentaccordingtoWhistlerand Spencer(1964),inwhichS=%sulfur:

S(%)= (BaSO4,␮g)×0.1374×100

Sample,␮g

DS= 162×S

3200−102×S

2.6. Homogeneityoftheˇ-(1→6)-d-glucanandsulfonated ˇ-(1→6)-d-glucan

Thehomogeneityofthe␤-(1→6)-d-glucans(naturaland

sul-fonated) was determined by gel permeation chromatography.

Onemilligramofeachofthe2polysaccharidesampleswas

dis-solvedinwater(1.5mL)andappliedtoaSepharoseCL-4Bcolumn (1.5cm×30cm),andelutedwithdistilledwaterataflowrateof 0.5mL/min.Fractions(1.5mL)werecollectedandanalyzedfor

car-bohydrate(490nm).Thevoidvolume(19.5mL)wasdetermined

usingbluedextran.

2.7. Spectroscopyanalysis

Fourier-transform infra-red (FT-IR) spectra of the

exopolysaccharides samples (␤-(1→6)-d-glucan and sulfonated

␤-(1→6)-d-glucan, 1mg) were recorded using KBr pellets

(250.0mg) on a Bruker Vector 22 Model spectrometer. The

ultraviolet–visible(UV–vis)absorptionspectrafordiluteaqueous solutions (1.0mg/mL) of ␤-(1→6)-d-glucan and sulfonated

-(1→6)-d-glucanweredeterminedusingaShimadzu1601UV-Vis

spectrophotometer. Nuclear magnetic resonance spectroscopy

ofcarbon thirteen(13CNMR)analysisof-(16)-d-glucanand

sulfonated ␤-(1→6)-d-glucanwerecarriedoutusinga400MHz

Bruker model DRX Avance spectrometer incorporating Fourier

(3)

1910 92 (2013) 1908–1914

examinedat50or70◦C.Chemicalshiftsareexpressedinppm(ı)

relativetoresonanceofMe2SO-d6at39.70forsamplesexamined

inthissolvent.

2.8. Bloodclottingassays

Theanticoagulantactivityofthesamples(␤-(1→6)-d-glucan

andsulfonated␤-(1→6)-d-glucan;0–200␮g/mL)wasdetermined

bymeasuringthe clottingtimes (inseconds)of humanplasma

using the reagents prothrombin time (PT), thrombin time (TT)

and activatedpartial thromboplastin time (APTT) according to

the manufacturer’s instructions. Each assay was performed at

37◦C.Heparin(0–30g/mL)wasusedasstandard.Normalhuman

plasma (900␮L) wasmixed with 100␮L of exopolysaccharides

solution (␤-(1→6)-d-glucan and sulfonated -(16)-d-glucan),

orheparindissolvedinisotonicsaline,withintheconcentration rangesindicated above.Isotonicsaline(100␮L)wasusedinthe controlgroup.Ineachofthebloodclottingassays,thereagents(PT, TTandAPTT)andallglasstubeswerepre-heatedat37◦Cbeforeto

use.Theassayswereperformedintriplicateandtheresults repre-sentthemeans±SD.

2.9. Inhibitionofthrombinbyantithrombininthepresenceof

ˇ-(1→6)-d-glucan,sulfonatedˇ-(16)-d-glucanandheparin

The inhibition of thrombin by antithrombin wasperformed

according to Melo et al. (2004) with the following

modifica-tions:incubationswereperformedin disposablemicrocuvettes.

Thereactionmixturecontained25␮Lofhumanplasmaorpurified

antithrombin (40nM), and 25␮L of exopolymer solution (␤

-(1→6)-d-glucanorsulfonated-(16)-d-glucan;0–400g/mL),

orheparin(0–1␮g/mL)inTS/PEGbuffer(0.02MTris/HCl,0.15M NaCl,and1.0mg/mLpolyethyleneglycol,pH7.4).Thrombin(10␮L, 20nM)wasnextaddedtothemixturetoinitiatethereaction,and after60sincubation(roomtemperature),500␮LofTS/PEGbuffer

containing25␮MchromogenicsubstrateS-2238forthrombinwas

added,andtheabsorbanceat405nmrecordedfor300s.No

inhi-bitionoccurredinthecontrolexperimentinwhichthrombinwas

incubatedwithantithrombinintheabsenceofsulfated

polysac-charides.

3. Resultsanddiscussion

3.1. Sulfonationandstructuralcharacterization

Theexocellular␤-(1→6)-d-glucanwasselectedforthiswork

asitpresentsimportantcharacteristicsforbiologicalactivitywith regardstopurity,uniformity,homogeneity(Fig.1)andtriplehelix

conformational structure at previously described (Vasconcelos

etal.,2008).Ashydratedthebiopolymerformedaviscous solu-tion,andthederivatizationbysulfonationwasawaytoimprove itssolubilityinaqueoussolutions,andtopromoteanticoagulant activity.Itiswellknownthattheintroductionofchargedgroups

onaneutralpolysaccharidechainimproveswatersolubilityand

canenhanceitsbiologicalactivitiessuchasanticoagulation(Brandi etal.,2011;Jung,Bae,Lee,&Lee,2011).

Inthis work,sulfonation(threecycles) wasperformedusing

formamideassolvent,pyridineascatalyticreagentand chlorosul-fonicacidasthehydroxylgroupdonor.Theeffectivenessofeach

cycleof thesulfonationreactionwasmonitoredbyUV–vis and

FT-IRanalysis.Theintegrityofsulfonatedmaterialwasperformed

bygelpermeationchromatographyonSepharoseCL-4B(Fig.1),

andpresentedasinglecarbohydratepeak.Followingsulfonation,

UV–visspectroscopyshowedanewbandat261nm(Fig.2)that

canbe attributabletothen→␲* transition ofsulfonate orthe

Fig.1. Gelpermeationchromatographyprofileofthe␤-(1→6)-d-glucan(---)and

sulfonated␤-(1→6)-d-glucan(—)onacolumnofSepharoseCL-4B.Thecolumn (1.5cm×30cm)waselutedwithwaterataflowrateof0.5mL/min.

unsaturatedbondformedinthesulfonationprocess(Brandietal., 2011;Yangetal.,2003).

Thesuccessofthereactionwasaccompaniedbytheappearance oftwocharacteristicsabsorptionbandsonFT-IRspectraofthe sul-fonated␤-(1→6)-d-glucan(Fig.2):oneat1258cm−1describingan

asymmetricalS Ostretchingvibration(Yang,Du,Huang,Wan,&Li, 2002;Zhang,Zhang,Zhou,Chen,&Zeng,2000),whereastheband at810cm−1 representingasymmetricalC O Svibration

associ-atedwithaC O SO3group(Brandietal.,2011;Nie,Shi,Ding,&

Tao,2006)demonstratedthatlasiodiplodanwassuccessfully sul-fonated.Additionally,anewbandat1631cm−1couldberelatedto

theunsaturatedbondformedduetothesulfonationprocess(Yang etal.,2003).

Thesulfurcontentofthesulfonatedpolysaccharidewas

deter-mined by calculating the DS, and in this case was 0.95. In

studiesrelatedtoanticoagulantactivitiesofchemicallymodified␤ -glucans,theDSwasaround1.95(Martinichen-Herreroetal.,2005), 1.74(Nieetal.,2006)and1.54(Brandietal.,2011).Accordingto publishedreports,DSvaluesequalorhigherthan0.80arerequired foranticoagulantactivity(Han,Yao,Yang,Liu,&Gao,2005).The contentof sulfurobtainedfor thesulfonated␤-(1→6)-d-glucan

was11.73%,andwithintherangeofvaluesnecessaryfor antico-agulantactivity.

Thepositionsofthesulfonylgroupsinpolysaccharidescanbe determinedby13CNMR(Hanetal.,2005;Zhangetal.,2008),and

theliteratureshowsthatthemainpositionfortheentryof sul-fonylgroupsin␤-(1→3)-glucansistheprimarycarbon,i.e.atC-6, followedbyC-2andC-4(Tellesetal.,2011;Zhangetal.,2000).

The13CNMRspectraofnative-(16)-d-glucanandits

sul-fonatedderivativearepresentedinFig.3.Thechemical shiftat 103.0ppmof␤-(1→6)-d-glucanwasattributedtotheanomeric

carbonandthatat69.0ppmtosubstitutedC-6.Thesignalsat75.9,

75.0,73.2and69.9ppmwereattributedtoC-3,C-5,C-2and

C-4,respectively (Naruiet al.,1999;Sassakiet al.,2002).The13C

NMRspectrumofsulfonatedglucanswasmorecomplicatedwith

broader signals, resulting fromthe sulfonation of thehydroxyl

groups (Brandi et al., 2011). Usuallyfollowing sulfonation, the

spectrabecame morecomplicated becausethecarbons directly

attachedtotheelectronegativesulfonatedestergroupsshiftdown field,whilethecarbonsindirectlyattached(neighborhood)tothe sulfonylgroupshifttoanupfieldposition(Perlin&Casu,1982; Tellesetal.,2011).

Thechemicalshiftsinthe13CNMRspectrumofthesulfonated

␤-(1→6)-d-glucanpresentedasmallvariation(+0.3ppm),in

(4)

92 (2013) 1908–1914 1911

Fig.2.FT-IRandUV–vis(inset)spectraof␤-(1→6)-d-glucanbefore(---)andaftersulfonation(—).

attributedtoC-1asthesignalofC-1splitswhenan OHgroupon C-2issubstitutedwithasulfonylgroup.Inaddition,thechemical

shiftat73.2ppmassignedasC-2alsosplitandmoveddownfield

(73.6ppm),suggestingthatpartofC-2wassulfonated.Theintense

signalat70.2ppmcorrespondedprobablytothesubstitutedC-6

andfreeC-4,whilethatat71.9ppmcouldbeassignedtoC-4 sub-stitutedbysulfonylgroups(␣shift).Thesmallsignalat68.6ppm (␤shift)canberelatedtocarbonindirectlyattachedtosulfonyl

groups.Probablypartof C-3wasalsosubstituted,however,the

attributionisdifficultbecausethechemicalshiftsmaycorrespond tomorethanonecarbon.Fromtheresultsweconcludedthat non-selectivesulfonationof␤-(1→6)-d-glucanhasoccurred,asC-2and

C-4weresplitindicatingpartialsubstitution.

Afterthesulfonationreaction,thesolutions ofsulfonated ␤

-(1→6)-d-glucan became less viscous and more water soluble,

whichfacilitatesthebioassaystodetermineanticoagulant activ-itythroughtraditionaltestsofbloodcoagulationwithheparinas thereference.

3.2. Anticoagulantactivity

3.2.1. APTT,TTandPTclottingtimes

Toinvestigatetheanticoagulantpropertyof␤-(1→6)-d-glucan

andsulfonated ␤-(1→6)-d-glucan,APTT,PTandTTassays were

conductedusingnormalhumanplasmaandtheeffectsofthe␤

-glucansontheclottingtimesmeasured.Theresultswerecompared withthoseforheparinasthereferencestandard.

TheAPTTtestisrelatedtothephaseofintrinsiccoagulationin plasmaandmeasuresthefunctionofbloodcoagulationfactorsXII, XI,IXandVIII.PTisrelatedtotheextrinsicphase,whichdepends

uponthetissuefactoroftheactivationprocessandmeasuresthe integrityofthecommonphaseofcoagulation.TheTTassay evalu-atestheconversionofplasmaticfibrinogentofibrininthepresence ofexogenousthrombin.Thecoagulationtimeinthelaststageof thecoagulationcascadeofeventsistheconversionoffibrinogento fibrinbythrombin(Beutler,Coller,Lichtman,&Kipps,2001;Melo etal.,2004;Mendesetal.,2009).

TheresultsfortheAPPT,TTandPTassaysareshowninTable1.

ThesulfonatedpolysaccharidewasabletoprolongtheAPPTand

TTtimes ina concentration-dependentmanner.Withregard to

theAPTTandTTresults,theanticoagulanteffectofsulfonated␤ -(1→6)-d-glucanat 30and 40g/mLconcentrationwas5and ∼7 times greater, respectively, than the control. These results demonstratedanimportantinvitroanticoagulantactivityforthe sulfonated ␤-(1→6)-d-glucan asdemonstrated by theincreases

inthedose-dependenceofAPTTandTT,andthisactioncouldbe

attributabletothedegreeofsulfonation(DS0.95).

TheAPTTprolongationtimesuggestsinhibitionoftheintrinsic

coagulationpathway,whereasprolongationofTTtimeindicates

inhibition of thrombin-mediated fibrin formation (Wanget al.,

2007).NoprolongationofPTdemonstratedtherewasnoinhibition oftheextrinsicpathwayofcoagulation(Maoetal.,2009).Sincethe anticoagulanteffectofheparinisnotmediatedbymodulationof theextrinsicsystem,thesulfonated␤-(1→6)-d-glucanisapoor

inhibitoroftheextrinsicpathway.TheAPTTandTTvalueswere

compared withheparin,and a concentration∼10times greater

ofthesulfonated␤-(1→6)-d-glucanwasnecessarytoachievethe

sameeffectasexhibitedbyheparin.Thesulfonated␤-(1→3;1→

6)-d-glucan (named botryosphaeran) from Botryosphaeria rhodina

(5)

1912 92 (2013) 1908–1914

Fig.3.13CNMRspectraofexocellular-(1

→6)-d-glucanandsulfonated␤-(16)-d-glucan.

(Brandi et al., 2011), showed similar results as anticoagulants. AccordingtoMartinichen-Herreroetal.(2005),sulfated

polysac-charideswithaloweranticoagulantactivitythanheparin could

exhibit a potent antithrombotic effect with less hemorrhagic

risk.

Aswithheparin, theweakest effect wasobservedin thePT

assayfor thesulfonated ␤-(1→6)-d-glucan. Therelative lackof

effectofsulfonated␤-(1→6)-d-glucanonthePTisconsistentwith

theobservationthatthistestisalsonotsensitivetoheparin,and severalothersulfatedpolysaccharides(Martinichen-Herreroetal.,

Table1

Anticoagulantactivityofnormalhumanplasmainthepresenceof␤-(1→6)-d-glucan,sulfonated␤-(1→6)-d-glucanandheparinasmeasuredbytheactivatedpartial

thromboplastintime(APTT),thrombintime(TT)andprothrombintime(PT).

Polysaccharide Amount(␮g/mL) Clottingtimes(s)

APTT TT PT

␤-(1→6)-d-Glucan Control(0) 46.65±0.8 19.45±0.4 12.87±0.8

1 39.45±0.2 15.92±0.4 16.04±0.1

5 39.94±0.6 16.56±0.5 14.87±0.1

10 42.30±0.1 14.24±0.3 15.77±0.1

15 41.07±0.7 14.53±0.2 14.27±0.2

20 41,09±0.2 14.43±0.4 16.87±0.1

Sulfonated␤-(1→6)-d-glucan Control(0) 46.65±0.8 19.45±0.4 12.87±0.8

1 46.79±0.2 15.67±0.3 15.12±0.0

5 58.27±0.1 26.75±1.6 17.56±0.1

10 70.55±3.6 50.87±1.1 17.52±0.4

15 96.97±1.3 70.06±0.6 18.65±0.2

20 105.69±0.1 187.54±1.5 18.61±0.4

30 228.49±3.7 227.06±2.2 17.45±0.4

40 298.13±1.0 249.45±0.6 17.17±0.7

Heparina Control(0) 46.65±0.8 19.45±0.4 12.87±0.8

1 55.60±0.6 95.00±0.7 16.56±0.2

2 76.19±1.0 275.98±1.3 17.93±0.6

3 106.08±0.3 592.70±2.9 19.20±0.2

(6)

92 (2013) 1908–1914 1913

Fig.4.Concentrationdependenceof␤-(1→6)-d-glucan,sulfonated␤-(1→6)-d -glucanandheparinontheinactivationofthrombinby(a)antithrombinofhuman plasmaand(b)apurifiedantithrombinpreparation.

2005).The␤-(1→6)-d-glucan(lasiodiplodan)didnotinhibitthe

APTT,TTandPTassays,anddemonstratedthatthepresenceof sul-fonylgroupswasanessentialrequirementfortheseanticoagulant activities.

3.2.2. Inhibitionofthrombinbyantithrombininthepresenceof

ˇ-(1→6)-d-glucan,sulfonatedˇ-(16)-d-glucanandheparin

Thebiologicalmechanismofsulfonatedpolysaccharidesoccurs bythepotentiationofplasmaticcofactors,whichare physiologi-calinhibitorsofthecoagulationcascadeasantithrombinthatacts byinhibitingthrombinandfactorsXa,XIIa,XIaandIX,andmay haveitsactionstrengthenedbythepresenceofheparin(Meloetal., 2004; Mendes etal., 2009).Toelucidate the inhibitory mecha-nismoftheanticoagulantactivityofsulfonated␤-(1→6)-d-glucan,

theeffectsonthrombinactivitywerestudiedusingchromogenic

substratesinthepresenceofplasmaasasourceofphysiological inhibitors(antithrombinandheparincofactorII),andalsopurified antithrombin.

Fig.4(a)and(b)showsthatthesulfonated␤-(1→6)-d-glucan

wasabletopotentiatethrombininhibitioninamannersimilarto thatofheparin.However,comparingthevaluesofIC50

(concentra-tionofthesulfonated␤-(1→6)-d-glucannecessarytoobtain50%

inhibitionofthrombinactivity)obtainedforbothsetsofassays, theactivityofthesulfonated␤-(1→6)-d-glucanwasapproximately

180-foldlowerthanthatofheparininexperimentsusingthe

puri-fiedantithrombin,and∼38-foldlowerwithhumanplasma.These

resultssuggestthatbesidestheactivationofantithrombin,the sul-fonated␤-(1→6)-d-glucancouldpossiblycontributetoanincrease

intheactionofanotherphysiologicalinhibitorofthrombin (hep-arincofactorII)absentintheassayswithpurifiedantithrombin. HeparincofactorIIisaninhibitorofserineproteaseandthrombin.

Antithrombininhibitsallintrinsicpathwaycoagulationenzymes

(Maoetal.,2009).

Therefore,theresultsoftheanticoagulanttestsdescribedinthis workdemonstratedthatthesulfonated␤-(1→6)-d-glucan

exhib-itedanticoagulantactivity,andwasmostlikelyinvolvedwiththe

intrinsic pathway. The lasiodiplodan didnot present inhibiting

activityatanyoftheconcentrationsexamined,demonstratingthat thepresenceofsulfonylgroupsinthis␤-(1→6)-d-glucanwasan

importantcharacteristicofanticoagulantaction.

4. Conclusions

Anexocellular␤-(1-6)-d-glucan(lasiodiplodan)wassulfonated

(three cycles)using formamide assolvent,pyridine ascatalytic reagentandchlorosulfonicacidasthehydroxylgroupdonor.The

effectiveness of each sulfonation reaction cyclewas monitored

byUV–visandFT-IRanalysis,andonlythesulfonated␤-(1-6)-d

-glucanshowedsulfonateortheunsaturatedbondformedinthe

sulfonation process. The content of sulfur and DS obtainedfor

the sulfonated ␤-(1→6)-d-glucanwas 11.73% and0.95,

respec-tively,whichindicatedthattherewasapproximatelyonesulfonyl groupperresidueofglucose.Thepositionsofthesulfonylgroups introducedinlasiodiplodanweredeterminedby13CNMR,andfrom

theresultsitwasconcludedthatnon-selectivesulfonationofthe ␤-(1→6)-d-glucanhadoccurred,withC-2andC-4beingpartially

substituted.ItispossiblethatC-3alsoreceivedasulfonylgroup.The prolongationofAPTTinthepresenceofthesulfonated␤-(1→6)-d

-glucansuggestedinhibitionoftheintrinsicpathwayofcoagulation, whileanextensionoftheTTtimeprobablyindicatedinhibitionof thereactionresultingintheconversionoffibrinogenintofibrin. Thus,thisworkdemonstratedthatthechemicalderivatizationof exocellular␤-(1→6)-d-glucanbysulfonationproducedamodified

polysaccharideresultinginanticoagulationactivity.

Acknowledgements

AFDVasconcelosthanksCAPES(Brazil)foradoctoral scholar-ship.TheauthorsaregratefultoAnaMariaTovarandPauloA.de SouzaMourão(Lab.Tec.Conjuntivo,H.U.ClementinoFraga Filho-UniversidadeFederaldoRiodeJaneiro)forscientificassistanceand discussions.

References

Beutler,E.,Coller,B.S.,Lichtman,M.A.,&Kipps,T.J.(2001).Williamshematology (6thed.).NewYork:MacGraw-Hill.

Bohn,J.A.,&BeMiller,J.N.(1995).(1→3)-␤-d-Glucansasbiologicalresponse modifiers:Areviewofstructure–functionalactivityrelationships.Carbohydrate Polymers,28,3–14.

Bradford,M.M.A.(1976).Arapidandsensitivemethodforthequantitationof microgramsquantitiesofproteinutilizingtheprincipleorprotein-dyebinding. AnalyticalBiochemistry,72,248–254.

Brandi, J., Oliveira,E. C.,Monteiro, N.K.,Vasconcelos, A.F. D., Dekker,R. F. H.,Barbosa,A.M.,etal.(2011).Chemicalmodificationofbotryosphaeran: Structuralcharacterizationandanticoagulantactivityofawater-soluble sul-fonated(1→3)(1→6)-␤-d-glucan.JournalofMicrobiologyandBiotechnology,21, 1036–1042.

Cunha,M.A.A.,Turmina,J.A.,Ivanov,R.C.,Barroso,R.R.,Marques,P.T.,Fonseca,E.A. I.,etal.(2012).Lasiodiplodan,anexocellular(1(6)-␤-d-glucanfromLasiodiplodia theobromaeMMPI:Productiononglucose,fermentationkinetics,rheologyand anti-proliferativeactivity.JournalofIndustrialMicrobiologyandBiotechnology, 39,1–10.

Dubois,N.,Gilles,K.A.,Hamilton,J.K.,&Rebers,P.A.(1956).Colorimetricmethod fordeterminationofsugarandrelatedsubstances.AnalyticalChemistry,28, 350–356.

(7)

1914 92 (2013) 1908–1914

Serpin-independenteffectandspecificinteractionwithfactorXa.Thrombosis andHaemostasis,102,1183–1193.

Han, F.,Yao, W., Yang, X., Liu, X., & Gao, X.(2005). Experimentalstudy on anticoagulantandantiplateletaggregationactivityofachemicallysulfated marinepolysaccharideYCP.InternationalJournalofBiologicalMacromolecules, 36,201–207.

Jung,H.J.,Bae,J.Y.,Lee,S.,&Lee,H.G.(2011).Effectofthedegreeofsulfationonthe physicochemicalandbiologicalpropertiesofPleurotuseryngiipolysaccharides. FoodHydrocolloids,25,1291–1295.

Kato,D.,Era,S.,Watanabe,I.,Arihara,M.,Sugiura,N.,Kimata,K.,etal.(2010). Antivi-ralactivityofchondroitinsulphateEtargetingdenguevirusenvelopeprotein. AntiviralResearch,88,236–243.

Klis,P.,Mol,K.,Hellingwerf,L.,&Brul,S.(2002).Dynamicsofcellwallstructurein Saccharomycescerevisiae.MicrobiologyReviews,26,239–256.

Laroche,C.,&Michaud,P.(2007).Newdevelopmentsandprospectiveapplications for␤-(1→3)-d-glucans.RecentPatentsonBiotechnology,1,59–73.

Leung,M.Y.K.,Liu,C.,Koon,J.C.M.,&Fung,K.P.(2006).Polysaccharidebiological responsemodifiers.ImmunologyLetters,105,101–114.

Mantovani,M.S.,Bellini,M.F.,Angeli,J.P.F.,Oliveira,R.J.,Silva,A.F.,&Ribeiro, L.R.(2008).␤-Glucansinpromotinghealth:Preventionagainstmutationand cancer.MutationResearch,658,154–161.

Mao,W.,Li,H.,Zhang,H.,Qi,X.,Sun,H.,Chen,Y.,etal.(2009).Chemical charac-teristicandanticoagulantactivityofthesulfatedpolysaccharideisolatedfrom Monostromalatissimum(Chlorophyta).InternationalJournalofBiological Macro-molecules,44,70–74.

Martinichen-Herrero,J.C.,Carbonero,E.R.,Gorin,P.A.J.,&Iacomini,M.(2005). Anticoagulantandantithromboticactivityofasulfateobtainedfromaglucan componentofthelichenParmotremamantiqueirenseHale.Carbohydrate Poly-mers,60,7–13.

Melo,F.R.,Pereira,M.S.,Foguel,D.,&Mourão,P.A.S.(2004).Antithrombin-mediated anticoagulantactivityofsulfatedpolysaccharidesdifferentmechanismsfor heparin and sulfated galactans. The Journal of Biological Chemistry, 279, 20824–20835.

Mendes,S.F.,Santos,O.,Jr.,Barbosa,A.M.,Vasconcelos,A.F.D.,Aranda-Selverio, G.,Monteiro,N.K.,etal.(2009).Sulfonationand anticoagulantactivityof botryosphaeranfromBotryosphaeriarhodinaMAMB-05grownonfructose. Inter-nationalJournalofBiologicalMacromolecules,45,305–309.

Narui,T.,Sawada,K.,Culberson,C.F.,Culberson,W.L.,&Shibata,S.(1999). Pustulan-typepolysaccharidesasaconstantcharacteroftheUmbilicariaceae(Lichenized Ascomycotina).TheBryologist,102,80–85.

Nie,X.,Shi,B.,Ding,Y.,&Tao,W.(2006).Preparationofachemicallysulfated polysaccharidederivedfromGrifolafrondosaanditspotentialbiological activi-ties.InternationalJournalofBiologicalMacromolecules,39,228–233.

O’Neill,A.N.(1955).Sulphatedderivativesoflaminarin.CanadianJournalChemistry, 33,1097–1101.

Perlin,A.S.,&Casu,B.(1982).Spectroscopicmethods.InG.O.Aspinall(Ed.),The polysaccharides(pp.133–189).NewYork:AcademicPress.

Pomin, V. H. (2012). Structure–function relationship of anticoagulant and antithrombotic well-defined sulfated polysaccharides from marine invertebrates.AdvancesinFoodandNutritionResearch,65,196–207.

Rop,O.,Mlcek,J.,&Jurikova,T.(2009).Beta-glucansinhigherfungiandtheirhealth effects.NutritionReviews,67,624–631.

Sassaki,G.L.,Ferreira,J.C.,Glienke-Blanco,C.,Torri,G.,Toni,F.D.,Gorin,P.A.J.,etal. (2002).Pustulanandbranched␤-galactofurananfromthephytopathogenic fun-gusGuignardiacitricarpa,excretedfrommediacontainingglucoseandsucrose. CarbohydratePolymers,48,385–389.

Telles,C.B.S.,Sabry,D.A.,Almeida-Lima,J.,Costa,M.S.S.P.,Melo-Silveira,R. F.,Trindade,E.S.,etal.(2011).Sulfationoftheextracellularpolysaccharide producedbytheediblemushroomPleurotussajor-cajualtersitsantioxidant, anticoagulantandantiproliferativepropertiesinvitro.CarbohydratePolymers, 85,514–521.

Vasconcelos,A.F.D.,Monteiro,N.K.,Dekker,R.F.H.,Barbosa,A.M.,Carbonero,E.R., Silveira,J.L.M.,etal.(2008).Threeexopolysaccharidesofthe␤-(1→6)-d-glucan typeanda␤-(1→3;1→6)-d-glucanproducedbystrainsofBotryosphaeria rhod-inaisolatedfromrottingtropicalfruit.CarbohydrateResearch,14,2481–2485. Vetvicka,V.,Vetvickova,J.,Frank,J.,&Yvin,J-C.(2008).Enhancingeffectsofnew

biologicalresponsemodifier␤-1,3glucansulfatePS3onimmunereactions. BiomedicineandPharmacotherapy,62,283–288.

Wang,J.,Guo,H.,Zhang,J.,Wang,X.,Zhao,B.,Yao,J.,etal.(2010).Sulfated mod-ification,characterizationandstructure–antioxidantrelationshipsofArtemisia sphaerocephalapolysaccharides.CarbohydratePolymers,81,897–905. Wang,Z.M.,Li,L.,Zheng,B.S.,Normakhamatov,N.,&Guo,S.Y.(2007).Preparation

andanticoagulationactivityofsodiumcellulosesulfate.InternationalJournalof BiologicalMacromolecules,41,41376–41382.

Whistler,R.L.,&Spencer,W.W.(1964).Sulfation.MethodsinCarbohydrateChemistry, 4,235–275.

Williams,D.L.(1997).Overviewof(1→3)-␤-d-glucanimmunobiology.Mediatorsof Inflammation,6,247–250.

Yang,J.,Du,Y.,Huang,R.,Wan,Y.,&Li,T.(2002).Chemicalmodification, charac-terizationandstructure–anticoagulantactivityrelationshipsofChineselacquer polysaccharides.InternationalJournalofBiologicalMacromolecules,31,55–62. Yang,J.,Du,Y.,Wen,Y.,Li,T.,&Hu,L.(2003).SulfationofChineselacquer

polysac-charidesindifferentsolvents.CarbohydratePolymers,52,397–403.

Zhang,L.,Zhang,M.,Zhou,Q.,Chen,J.,&Zeng,F.(2000).Solutionpropertiesof antitumorsulfatedderivativeof␣-(1→3)-d-glucanfromGanodermalucidum. BiosciencesofBiotechnologyandBiochemistry,64,2172–2178.

Imagem

Fig. 1. Gel permeation chromatography profile of the ␤-(1→6)-d-glucan (- - -) and sulfonated ␤-(1→6)-d-glucan (—) on a column of Sepharose CL-4B
Fig. 2. FT-IR and UV–vis (inset) spectra of ␤-(1→6)-d-glucan before (- - -) and after sulfonation (—).
Fig. 3. 13 C NMR spectra of exocellular ␤-(1→6)-d-glucan and sulfonated ␤-(1→6)-d-glucan.
Fig. 4. Concentration dependence of ␤-(1→6)-d-glucan, sulfonated ␤-(1→6)-d- ␤-(1→6)-d-glucan and heparin on the inactivation of thrombin by (a) antithrombin of human plasma and (b) a purified antithrombin preparation.

Referências

Documentos relacionados

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Na hepatite B, as enzimas hepáticas têm valores menores tanto para quem toma quanto para os que não tomam café comparados ao vírus C, porém os dados foram estatisticamente

social assistance. The protection of jobs within some enterprises, cooperatives, forms of economical associations, constitute an efficient social policy, totally different from

Abstract: As in ancient architecture of Greece and Rome there was an interconnection between picturesque and monumental forms of arts, in antique period in the architecture

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Key words: antibacterial activity, chelator, hydroxyl radical, ferric ion, siderophore.. Iron is a nutritionally essential trace element and

The efficacy of 28 individual or blended disinfectants against avian Salmonella enterica serovar Enteritidis and Escherichia coli strains was determined.. An in vitro test

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,