• Nenhum resultado encontrado

Synthesis, characterization and antifungal activity of quaternary derivatives of chitosan on Aspergillus flavus

N/A
N/A
Protected

Academic year: 2017

Share "Synthesis, characterization and antifungal activity of quaternary derivatives of chitosan on Aspergillus flavus"

Copied!
6
0
0

Texto

(1)

MicrobiologicalResearch168 (2013) 50–55

ContentslistsavailableatSciVerseScienceDirect

Microbiological

Research

j o ur n a l ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / m i c r e s

Synthesis,

characterization

and

antifungal

activity

of

quaternary

derivatives

of

chitosan

on

Aspergillus

flavus

Rafael

de

Oliveira

Pedro

a

,

Mirelle

Takaki

a

,

Teresa

Cristina

Castilho

Gorayeb

b

,

Vanildo

Luiz

Del

Bianchi

b

,

João

Cláudio

Thomeo

b

,

Marcio

José

Tiera

a

,

Vera

Aparecida

de

Oliveira

Tiera

a,∗

aDepartmentofChemistryandEnvironmentalSciences,InstituteofBiosciences,HumanitiesandExactSciencesIBILCE,SãoPauloStateUniversityUNESP,SãoJosédoRioPreto,

SãoPaulo,Brazil

bDepartmentofTechnologyandFoodEngineering,InstituteofBiosciences,HumanitiesandExactSciencesIBILCE,SãoPauloStateUniversityUNESP,SãoJosédoRioPreto,São

Paulo,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received29February2012

Receivedinrevisedform16June2012 Accepted23June2012

Keywords: Chitosan Derivatives Aspergillusflavus Antifungalactivity Mycotoxins

a

b

s

t

r

a

c

t

Twoseriesofnewchitosanderivativesweresynthesizedbyreactionofdeacetylatedchitosan(CH)with propyl(CH-Propyl)andpentyl(CH-Pentyl)trimethylammoniumbromidestoobtainderivativeswith increasingdegreesofsubstitution(DS).Thederivativeswerecharacterizedby1HNMRand

potentiomet-rictitrationtechniquesandtheirantifungalactivitiesonthemycelialgrowthofAspergillusflavuswere investigatedinvitro.TheantifungalactivitiesincreasewithDSandthemoresubstitutedderivativesof bothseries,CH-PropylandCH-Pentyl,exhibitedantifungalactivitiesrespectivelythreeandsixtimes higherthanthoseobtainedwithcommercialanddeacetylatedchitosan.Theminimuminhibitory con-centrations(MIC)wereevaluatedat24,48and72hbyvaryingthepolymerconcentrationfrom0.5to 16g/Landtheresultsshowedthatthequaternaryderivativesinhibitedthefungusgrowthatpolymer concentrationsfourtimeslowerthanthatobtainedwithdeacetylatedchitosan(CH).Thechitosans mod-ifiedwithpentyltrimethylammoniumbromideexhibitedhigheractivityandresultsarediscussedtaking intoaccountthedegreeofsubstitution(DS).

© 2012 Elsevier GmbH. All rights reserved.

1. Introduction

Chitosanisapolysaccharideusuallyobtainedfrom deacetyla-tionofchitin,whichaftercelluloseisthesecondmostabundant natural biopolymer foundin nature. It may be extracted from various sources, particularly from exoskeletons of arthropods ofcrustaceans, fungi,insects, annelids, mollusks and coelenter-ata. The structures of chitin and chitosan correspond to those of poly[␤(1→4)-2-acetamide-2-deoxy-d-glucopyranose] and

poly[␤(1→4)-2-amino-2-deoxy-d-glucopyranose], respectively

(Ravi Kumar 2000). The homopolymer is a weak base with a pKa valueofthed-glucosamineresidue ofabout6.2–7.0and is

therefore insolubleat neutral and alkaline pH values. In acidic mediums,theaminegroupswillbepositivelycharged,conferring tothepolysaccharidea highcharge density. Duetoits polyca-tionic nature, chitosan, after being dissolved in aqueous acid solutions,canbeeasilymoldedandusedasmembranes,beads, microparticlesandgels(Rinaudo 2006;RaviKumar2000).Also, itsfunctionalpropertiessuchasbiodegradabilityandlowtoxicity (Domard2011;KeanandThanou2010)havedriventheresearch

Correspondingauthor.Tel.:+551732212358;fax:+551732212356.

E-mailaddress:verapoli@ibilce.unesp.br(V.A.deOliveiraTiera).

andapplicationsofchitosantomedicine(Rinaudo2006;Shietal. 2006;Jayakumar etal.2010), foodsadditivesand preservatives (Shahidietal.1999)aswellasinthepaperindustryandforthe treatmentofindustrialwastewater(NgahandTeong2011).

Oneofthemostattractivefeaturesofchitosanisitsantibacterial, antiviralandantifungalactivity(Zhangetal.2011;Jayakumaretal. 2011).Recentlytheutilizationofchitosanasafoodpreservative oradjuvantinagriculturetoprotectorstimulatethedefenseof differentcropshasincreased(Zhangetal.2011;Jayakumaretal. 2011).Itiswellknownthatpesticideresiduesaretoxicforhumans andanimalsandmanyofthemarenotbiodegradable,whatcan causeseriousenvironmentalproblemssuchascontaminationof thewaterandsoil(Satpathyetal.2011).Chitosananditsoligomers haveemergedasapromisingsourceformanyapplicationssinceit canbeusedtoproducebiodegradablefungicidestoregulatethe growingofplantsandtoprotectseeds(Alburquenqueetal.2010). Theantifungal activityof chitosan is believedto occurfrom the interaction between the cationic chain and the negatively chargedresiduesofmacromolecules exposedonthefungalcell surface,leadingtoleakageofintracellularelectrolytesandother constituents(Muzzarellietal.2001).Itisbelievedthatchitosan mayaffectthemorphogenisisofthecellwallinterferingdirectly ontheactivityofenzymesresponsibleforthegrowingofthefungi (ElGhaouthetal.1992).RecentlyLietal.,basedonconfocallaser

(2)

subsequentaflatoxin productionbyinducing susceptibletissues toproducemorephenoliccompounds.Recently,Zhangetal. pre-paredchitosan-basedblendfilmsusingchitosan,soybeantrypsin inhibitorextractsandglycerolsolutions(Zhangetal.,2009).The authors showed that the germination and growth of A. flavus

werestronglyinhibitedbyfilmspreparedfromsoybeantrypsin inhibitorextract(STI)/wildsoybeantrypsininhibitorextract(WTI) andglycerol(Gly)solutions(chitosan-STI/WTI-Gly),indicatingthat thefilmscouldbeusefulaspotentialbio-controlpackagingagainst

A.flavusduringthepeanut’sandothercereal’sstorage.Thestudy ofnewbiomoleculeshavingantifungalactivitieshasemergedasa newsubjectandthemodificationofthechitosanstructureaiming toimproveitsactivityisapromisingwaytoachieveeffective bio-fungicides(Kenawyetal.2005;Mássonetal.2008)andbactericides (Xuetal.2011).

Theaimofthepaperistoreportasimpleandreliablemethodto preparechitosansderivativeswithimprovedcapabilitiesof inhib-itingthegrowthofA.flavus.Thesynthesis,characterizationand antifungal activityof chitosan derivativesagainst thefungus A. flavusaredescribed.Aseriesofchitosanderivativeswasobtained bythereactionoftheaminogroupsofchitosanwithpropyland pentyltrimethylammoniumbromides.Theresultsoftheantifungal activityofthesederivativeswerepresentedanddiscussed,taking intoaccountthedegreeofsubstitutionofthesubstituted deriva-tives.

2. Materialsandmethods

2.1. Materials

Chitosan(degree of deacetylation (DD) 85%) was purchased fromPolymarCo., Brazil,(3-bromopropyl) trimethylammonium bromide,(5-bromopentyl)trimethylammoniumbromide,sodium hydroxide,sodiumacetate,andaceticacidwerepurchasedfrom SigmaAldrichChemicalCo.,Brazil.Spectra/poremembranes (Spec-trum)were employedfor dialysis.All solventswere ofreagent gradeandusedasreceived.WaterwasdeionizedusingaGehaka waterpurificationsystem.

2.2. Instrumentation

1HNMRspectrawererecordedonaBrukerARX-500500MHz

spectrometer.UV/VisspectraweremeasuredwithaCary100 spec-trophotometerequippedwithaPeltiersystem.pHvaluesofthe solutionsweredeterminedusinganDigimedpH-meter.

2.3. Preparationofthealkyltrimethylammonium-modified chitosans

Chitosan was deacetylated as described earlier (Tiera et al. 2006).Theresultingpolymerwaspurifiedbydialysisagainstwater for3daysandisolatedbylyophilization.Next,chitosanswith vary-ingamountofgraftedalkyltrimethylammoniumbromideswere preparedinaqueousNaOHsolutionsandtheprocedureisdescribed below(Fig.1).Thedegreeofsubstitutionwasvariedbysettingthe

for2days,thenagainstaqueousNaOH(0.05M)for1day,andfinally againstwaterfor2days.Theproductwasisolatedbylyophilization andcharacterizedby1HNMRandpotentiometry.

2.4. Viscositymeasurements

Viscosity measurements were carried out in water ther-mostatedbathwithacapillarycalibratedviscosimeterfordilution Cannon-Ubbelohde9722M-50(CannonInstr.Co.)atpH4.5acetic acid(0.3M)/sodiumacetate(0.2M)buffer.Theviscosimeterwas immersed in a thermostatic bath at 298.15±0.05◦C and the

samples were allowed to equilibrate for 10min in the bath beforemeasurements.Measurementsateachconcentrationwere repeated and the reproducibility was better than ±0.01s. The

resultsoftheviscositymeasurementswereexpressedasreduced viscosityvaluescalculatedfrom

=(t−to)/to

c

wheretisthemeasuredeffluxtimeofthepolymersolution,toisthe

effluxtimeofthepuresolvent,andcisthepolymerconcentration (g/L).Themeanviscosimetricmolecularweightofchitosanandits derivativesweredeterminedbyusingtheMark–Houwink equa-tion,withconstantsa=0.796,K=0.079mLg−1(RobertsandWang 1996).

2.5. Pathogenandcultures

The microorganism chosen totest theantifungal activity of chitosanand itsderivativeswasA.flavus.Thestrainwaskindly providedbyBrazilianCollectionofMicroorganismsfromthe Envi-ronmentandIndustry–CBMAI,Campinas–SãoPaulo,Brazil,and it wasmaintained onpotato dextroseagar (PDA) (potato infu-sionfrom200g/L,20g/Ldextrose,and15g/Lagar)inthedarkat 25±2◦C.

2.6. Antifungalassays

Theantifungalactivityofdeacetylatedandcommercialchitosan wascompared tothoseofthealkyltrimethylammonium deriva-tivesmodifiedwithadegreeofsubstitutionvaryingfrom0.5to65%. ThepolymerssolutionwerepreparedatpH5.5inaceticacidand addedatconcentrationsof0.0(controlplate)0.1,0.5and1.0g/L tothemelted culturemedium, whichcontained10.0mLof10% potatodextrosebrothandthentransferredtoPetridishes.After solidification,themixtureswereinoculatedwitha1mmin diame-termyceliumfungusA.flavusatthecenterofPetridishesandthese wereincubatedinanovenfor7daysat25±2◦C.Inhibitionindexof

thefungusbythepolymerswasdeterminedbytheradialgrowthof thecolonywithacaliperonthe3rd,5thand7thdaysofcultivation, withtheresultofthe7thdayusedforcomparativepurposes.

Theantifungalindexwascalculatedasfollows:

Antifungalindex (%)=1−Da

Db

(3)

52 168 (2013) 50–55

Fig.1.Schematicrepresentationofthesynthesisofthequaternaryderivativesofchitosan.

whereDaisadiameterofthegrowthzoneinthetestplatesandDb

isgrowthzoneinthecontrolplate,accordingtoGuoetal.(2006). Eachexperimentwasperformedinquadruplicate,andthedata wereaveraged.ThestudentT-testandtheKruskal–Wallistestwith Dunn’smultiplecomparisonwereusedtoevaluatethedifferences inantifungalindexinantifungaltests.ResultswithP<0.05were consideredstatisticallysignificant.

2.7. Minimuminhibitoryconcentrations

The minimum inhibitory concentrations (MICs) were deter-minedusingthemicrodilutionassayinpotatodextroseagar(PDA), followingthestandardmethodappliedtofilamentousfungi(CLSI 2008).Thechitosanderivativesweredissolvedinaqueousacetic acidatpH5.5toobtainstocksolutionsof16.0g/L.Thesesolutions weresubsequentlydilutedtoobtaindecreasingpolymer concen-trations(16.0,8.0,4.0,2.0,1.0,0.5,0.25g/L).Thereafter100␮Lof thepolymersolutionswastransferredon96-wellplatesand2␮L ofthefungussuspensionatadensityof106conidia/mLwere

inoc-ulatedateachwell.Theexperimentswerecarriedoutintriplicate andtheMICsweredeterminedbyvisualinspectionofthewells. Thelowestconcentrationthatgavecompletegrowthinhibitionin allthreereplicateswasrecordedastheminimuminhibitory con-centration(MIC)after24,48and72h.

3. Resultsanddiscussion

3.1. Preparationoftheantifungalderivatives

Toachieve thefunctionalizationofchitosan withquaternary aminogroups,weusednucleophilicsubstitutionoftheC-2amine groups, thus leaving intact all thehydroxyl groups which play an important partin the biological activity of chitosan deriva-tives(Fig.1).Thesyntheticstrategywassuccessivelycarriedout byusingthealquiltrimethylammonium bromides.The transfor-mation was carried out starting from a deacetylated chitosan, obtainedviadeacetylationofacommercialchitosansamplewitha

nominaldegreeofdeacetylation(DD)of85%,followinga previ-ouslydescribedprocedure(Tieraetal. 2006).Thedeacetylation wascarriedoutundercontinuousbubblingofnitrogeninorderto preventdegradationofthepolymer.Thedegreeofdeacetylation, expressedin NH2mol%,determinedfromthe1HNMRspectraof

thestartingmaterialandthedeacetylatedsample,were86.1and 98.7mol%,respectively.Thesevalueswereobtainedfromtheareas ofthedoubletat5.5ppm,duetotheresonanceoftheanomeric pro-ton(H1)andofthesingletat2.7ppmattributedtotheacetamido methylprotons(Fig.2a).Potentiometrictitrationconductedona solutionofCHconfirmedthatthedeacetylationoccurredwithhigh efficiency,yieldingaDDvalueof98.5.

Thedegreeofsubstitutionwasvariedbysettingtheinitialmolar ratioofN-alkyltrimethylammoniumtoglucosamineunitsto val-uesrangingfrom1.2to8.0.The1HNMRspectraofthechitosan

derivativeobtainedfromreactionwith(3-bromopropyl) trimethy-lammoniumbromideexhibitedasingletat3.67ppm,whichwas attributedtotheresonanceofthetrimethylammoniumprotons of theN-alkyltrimethylammonium moiety and alsoexhibited a signalatı2.81ppmcorrespondingtotheresonanceofthe methy-lene protons CH2CH2CH2N+(CH3)3 (Fig. 2a). The attachment of

alkyltrimethylammoniumgroupstothechitosanframeworkbrings furtherchangestothe1HNMRspectrumofchitosan,mostnotably

intheresonancesoftheprotonsincloseproximitytothe substitu-tionsite:theanomericprotonH-1andtheprotonH-2linkedtothe C2oftheglucosamineunit.Theanomericprotonsignalundergoes adownfieldshift,fromı5.40ppmtoı5.56ppm,whilethepeakat

ı3.67ppmshiftsto3.85ppm.Thesamepatternwasalsoobserved inthe1HNMRspectraofthepentyltrimethylammonium

deriva-tives,howeverthepentyltrimethylammoniumbromideexhibited atripletfrom2.00to2.50ppmattributedtothemethyleneprotons frompentylhydrocarbonchain.SimilardeshieldingofH-1andH-2 uponC-2derivatisationofchitosanhasbeenreportedinthecase ofchitosancarryingoligosaccharidebranches(Tømmeraasetal. 2002).

Thedegreeofsubstitution(DS)wasdeterminedfromtheareas ofthesignalatı2.81ppm,whichcorrespondstotheresonanceof

Table1

PropertiesandDS(degreeofsubstitution)ofthechitosanderivatives.

Derivative Molarratioa

R/NH2

DS(potentiometry) DS(1HNMR) Mv(kDa)

CH-C – 86.1% 85.9% 32.8

CHb 98.5% 98.7% 24.4

CH-Propyl-10 1.2 11.2% 10.7% 30.3

CH-Propyl-15 1.5 14.3% 14.7% 11.9

CH-Propyl-20 2.3 23.4% 18.1% 18.8

CH-Propyl-40 3.8 39.1% 38.4% –

CH-Pentyl-25 1.5 – 25.1% 17.4

CH-Pentyl-30 2.5 – 30.0% –

CH-Pentyl-65 8.0 – 64.9% 20.1

aMolarratioofalkyltrimethylammoniumbromide(R)toaminogroups( NH

(4)

Fig.2. 1HNMRspectraofdeacetylatedchitosanandtheir(a) propyltrimethylam-moniumand(b)pentyltrimethylammoniumderivativesofchitosan.Theresonance ofthemethyleneprotons(greencolor)equidistantfromthenitrogenatomswas usedtodetermineDS.(Forinterpretationofthereferencestocolorinthisfigure legend,thereaderisreferredtothewebversionofthearticle.)

themethyleneprotonsCH2CH2CH2N+(CH3)3(Fig.2a)andfromthe

signalsduetotheanomericprotonsofpropyltrimethylammonium substitutedandunsubstitutedglucosamineresidues,H1sandH1,

respectively(Fig.2a)usingEq.(1):

DS= (1/2)ICH2

IH1+IH1s

(1)

ThesameequationwasusedtodetermineDSforthederivatives obtainedwithpentyltrimethylammonium,howeverthesignalatı

2.05ppm,whichcorrespondstotheresonanceofthemethylene protonsCH2CH2CH2CH2 CH2N+(CH3)3,wasutilizedfor this

pur-pose(Fig.2b).Alldegreesofsubstitution(DS)areshowninTable1.

3.2. Antifungalactivityofcommercialchitosanandits deacetylatedandquaternaryderivatives

TheantifungalactivityagainstA.flavuswaspreviouslytested forcommercial(CH-C)anddeacetylated(CH)chitosans(Table1). Theconcentrationrangewasvariedfrom0.1to1.0g/Land inhi-bitionpercentageswerecalculated asdescribedin theprevious section(Section2.6).Theinhibition decreaseswithtime, which isdue tothe adaptationofthe fungustoitsnew environment, forinstancetheinhibitionindexobtainedwithdeacetylated chi-tosanis8.1,6.5and5.1inthe3rd,5thand7thdayrespectively

Fig.3.InhibitionpercentagesforCH-CandCHatdifferentpolymerconcentrations. ThedifferencesbetweenthegroupswerenotstatisticallysignificantwithP<0.05.

andthesamepatternwasobservedfortheotherderivatives.As canbeseenfromFig.3theinhibitionpercentageobtainedfor CH-CandCHremainedaround5%andincreasedslightlyfrom0.1to 1.0g/Lforthederivativesubstitutedwith10%ofpropyltrimethyl ammoniumgroups(CH-Propyl-10),which isduetothelowthe degreeofsubstitution.ThisresultissimilartothatobservedbyLi etal.investigatingtheantifungalactivitiesofchitosansonF.fulva. Theseauthorsshowedthatinhibitionpercentagesoflow molec-ularweightchitosans,measuredby themycelialradial growth, exhibitedmodestincreasesintheconcentrationrangefrom0.1to 1.0g/L(Lietal.2011).Althoughunexpected,inthisworkthefungal adaptationtothenewenvironmentwasrapidandasthetimeof incubationwas7daystheeffectofconcentrationwasnotclearly observed.However,thedeterminationoftheminimuminhibitory concentrations(MICs),discussedaheadinthepaper,makesclear thatderivativeshavingthehigherdegreesofsubstitutionexhibita significantinhibitionincrease.

Althoughincreasingconcentrations ofchitosanmayimprove theinhibitionpercentageonmanypathogensthistrenddepends onseveralfactorssuchasmolecularweightofchitosan,targeted pathogenandpH(Yangetal.2005).Theactivityofchitosanhas beenexplainedasbeingbasedontheelectrostaticinteractionof thechargedaminogroupsofchitosanwithnegativelychargedcell wallsurfaceofthetargetedmicroorganisms,whichcanleadtothe disruptionofthecellwallandthereforetothedeathofthecell. Anotherpossibilityforantifungalactivityofchitosanaccountsfor itschainstocrossthecellmembraneinhibitingthecellgrowing frominside(Guoetal.2007).However,fordeacetylatedchitosan (CH)andthederivativeshavinglow degreesofsubstitutionthe mechanismonA.flavusandtheinteractionwithcellsurfacemay formanimpermeablelayeraroundthecell,thusblockingthe trans-portofessentialsolutesintothecell(Eatonetal.2008).

Inthiswork,wehypothesizedthat,themodificationofchitosan by introducing permanently charged quaternary groups could improvetheantifungalactivityofchitosan.Theadditionof qua-ternizedchitosantotheBDAmediuminhibitedmycelialgrowth ofA.flavussignificantlyatallconcentrationstested.A representa-tiveexperimentcomparingtheeffectofCHandCH-Propyl-40is showninFig.4.AsshowninFig.5theresultsobtainedin microbi-ologicalassaysshowedthatthecapabilitytoinhibitfungusgrowth

(5)

54 168 (2013) 50–55

Fig.4. Comparativeeffectofthequaternizationofchitosanontheinhibitionindexat0.5g/Lafter3daysofincubation:fromlefttorightBDA;CHandCH-Propyl-40.

significanceof0.05aimingtoverifytheexistenceofsignificant dif-ferencesbetweenresultsobtainedfortheinhibitionindex with 0.1and0.5g/L.Thedescriptivestatisticsshowedthatno signifi-cantdifferenceswereobservedregardingthe0.1and0.5g/L,since theobtainedPvalueswerealwayshigherthan0.5,whichconfirm that,inthisconcentrationrange,theinhibitiondoesnotchange. Acomparisonbetweentheinhibitionindexesofthedifferent chi-tosanderivativeswasalsoperformed.TheKruskal–Wallistestwith Dunn’smultiplecomparisonwasutilizedtothelevelofsignificance 0.05andthedescriptivestatisticsshowedthatPvaluesfoundfor 0.1g/Lweresmallerthan0.001,indicatingthatstructuralchanges onthechitosanchainsignificantlyincreasestheantifungalactivity. The most substituted derivative from CH-Propyl series (DS=38.5%)showedaninhibitionindexthreetimeshigherthan thatobservedwithdeaceylatedchitosan(CH).

However,thehighest inhibition indexwas obtainedfor CH-PentylderivativehavingwithDS65%,whichexhibitedaninhibition indexalmostsixtimeshigherthanCH.Asshownbyotherauthors, thisactivitycanbeattributedtoahighernumberofcationicgroups availableonthepolymerchain,whichallowsastronger interac-tionbetweenthepolycationchainsandthecellwall,increasing

the antifungal activity. However by comparingthe efficiencies of both series it becomes clear that the less substituted CH-Pentylderivative(DS=25%)exhibitedahigherinhibitionthanthat obtainedusingthemore substitutedderivativefromCH-Propyl series(DS=38.5%).Since boththeseriespresent thesame qua-ternary group,this higher activity for CH-Pentyl seriesmay be attributedtothelongerhydrocarbonchainofthegraftedpentyl groups,whichcouldfavorahydrophobicandstrongerinteraction withthecellmembrane.

3.3. Minimuminhibitoryconcentrations

TheresultsobtainedfromMICsdeterminationconfirmedthat thecationicderivativessynthesizedexhibitincreasingefficiencies withthedegreeofsubstitutionbythecationicgroups,withMICsin therangeof1.0–4.0g/L.AscanbeseenfromTable2inthefirst48h, thederivativesCH-Pentyl-30,CH-Propyl-40,CH-Pentyl-25and CH-Pentyl-65inhibitedcompletelythegrowthofthefungusat1.0g/L,

i.e.,aconcentrationfourtimessmallerthanthoseneededfor com-mercial(CH-C)anddeacetylatedchitosan(CH)(Table2).Moreover, after72hnogrowthwasobservedinthepresenceofCH-Pentyl-65

(6)

CH-Pentyl-25 0.5 1.0 2.0

CH-Pentyl-30 0.5 1.0 2.0

CH-Pentyl-65 0.5 1.0 1.0

atconcentrationof2.0g/L.TheMICsforCH-CandCHwas4.0g/L andthisvalueiswithinoftherangereportedintheliterature,which variesfrom10to5000ppmdependingonmolecularweight,degree ofacetylationandtypeoffungi(Sajomsangetal.2012).Similar responseswereobservedbyotherauthorsandtheMICsof quater-nizedchitosansdecreasewithdegreeofsubstitution,whichcanbe explainedbasedontheinteractionofthesegroupswithnegatively chargedcellsurfacemembrane,preventingnutrientsfromentering thecell(Guoetal.2007;Yangetal.2005).

4. Conclusions

Thesynthesisandcharacterizationofnewquaternary deriva-tivesofchitosanwerecarriedoutandtheirantifungalactivities againstA.flavusweretested.Theresultshaveshownthatthe anti-fungalactivityofchitosancanbeimprovedbyincreasingthedegree of substitution(DS) of alkyltrimethylammoniumgroups onthe polymerchain.Theinhibitionindexesforbothsynthesizedseries (propyland pentyltrimethylammonium) increasedwith DS and themostsubstitutedderivatives(CH-Propyl-40andCH-Pentyl-65) exhibitedinhibitionvaluesthreeandsixtimesrespectivelyhigher thanthoseobtainedwithchitosan.Thehigheractivityexhibited byCH-Pentylderivativescanbeattributedtothelonger hydrocar-bonchainofthissubstituent,whichallowsastrongerinteraction withthe cellmembrane. Thesynthesis and characterization of newderivatives,havinglongerhydrocarbonchains,areongoingin ourlaboratoryaimingtoobtainderivativeswithhigherantifungal activities.

Acknowledgements

FinancialsupportbyFAPESP(GrantNo.2012/03619-9), FUN-DUNESP (Grant 430/09). R.O.P and M.T. thank FAPESP and PET-CAPESforundergraduatefellowship.

References

AlburquenqueC,BucareySA,Neira-CarrilloA,UrzúaB,HermosillaG,TapiaCV. Antifungalactivityoflowmolecularweightchitosanagainstclinicalisolates ofCandidaspp.MedMycol2010;48(8):1018–23.

BinderEM,TanLM,ChinLJ,HandlJ,RichardJ.Worldwideoccurrenceof myco-toxinsincommodities,feedsandfeedingredients. AnimFeed SciTechnol 2007;137(3–4):265–82.

ductionbyAspergillusflavus.FoodBiotechnol1994;8(2–3):191–211. GuoZY,ChenR,XingR,LiuS,YuH,WangP,etal.Novelderivativesofchitosanand

theirantifungalactivitiesinvitro.CarbohydrRes2006;341(3):351–4. GuoZY,XingR,LiuS,ZhongZ,JiX,WangL,etal.Theinfluenceofthecationicof

qua-ternizedchitosanonantifungalactivity.IntJFoodMicrobiol2007;118(2):214–7. JayakumarR,PrabaharanM,SudheeshKumarPT,NairSV,TamuraH.Biomaterials basedonchitinandchitosaninwounddressingapplications.BiotechnolAdv 2011;29(3):322–37.

JayakumarR,PrabaharanM,NairSV,TokuraS,TamuraH,SelvamuruganN.Novel carboxymethylderivativesofchitinandchitosanmaterialsandtheirbiomedical applications.ProgMaterSci2010;55(7):675–709.

KeanT,ThanouM.Biodegradation,biodistributionandtoxicityofchitosan.AdvDrug DeliverRev2010;62(1):3–11.

KenawyEl-R,Abdel-HayFI,El-MagdAA,MahmoudY.Biologicallyactivepolymers: modificationandanti-microbialactivityofchitosanderivatives.JBioactCompat Polym2005;20:95–111.

LiMQ,ChenXG,LiuJM,ZhangWF,TangXX.Molecularweight-dependentantifungal activityandactionmodeofchitosanagainstFulviafulva(Cooke)Ciffrri.JAppl PolymSci2011;119(6):3127–35.

MássonM,HolappaJ,HjálmarsdóttirM,RúnarssonÖV,NevalainenT,JärvinenT. Antimicrobialactivityofpiperazinederivativesofchitosan.CarbohydrPolym 2008;74(3):566–71.

MuzzarelliRAA,MuzzarelliC,TarsiR,MilianiM,GabbanelliF,CartolariM.Fungistatic activityofmodifiedchitosansagainstSaprolegniaparasitica.Biomacromolecules 2001;2(1):165–9.

NgahWSW,TeongLC.HanafiahMAKMadsorptionofdyesandheavymetalionsby chitosancomposites:areview.CarbohydrPolym2011;83(4):1446–56. RaviKumarMNV.Areviewofchitinandchitosanapplications.ReactFunctPolym

2000;46(1):1–27.

RobertsGAF,WangW.EvaluationofMark–Houwinkviscosimetricconstantsfor chitosan.In:DomardJ,MuzzarelliR,editors.Advancesinchitinscience.Lyon: JacquesAndre;1996.p.279–84.

RinaudoM.Chitin andchitosan: properties and applications.Prog PolymSci 2006;31(7):603–32.

SajomsangW,GonilP,SaesooS,OvatlarnpornC.Antifungalpropertyofquaternized chitosananditsderivatives.IntJBiolMacromol2012;50(1):263–9.

SatpathyG,TyagiYK,GuptaRK.Anoveloptimisedandvalidatedmethodfor analysisofmulti-residuesofpesticidesinfruitsandvegetablesby microwave-assistedextraction(MAE)–dispersivesolid-phaseextraction(d-SPE)–retention timelocked(RTL)–gaschromatography–massspectrometrywithdeconvolution reportingsoftware(DRS).FoodChem2011;127(3):1300–8.

ShahidiF,ArachchiJKV,JeonYJ.Foodapplicationsofchitinandchitosans.Trends FoodSciTechnol1999;10(2):37–51.

ShiCM,ZhuY,RanX,WangM,SuY,ChengT.Therapeuticpotentialofchitosanand itsderivativesinregenerativemedicine.JSurgRes2006;133(2):185–92. TieraMJ,QiuXP,BechaouchS,ShiQ,FernandesJC,WinnikFM.Synthesisand

charac-terizationofphosphorylcholine-substitutedchitosanssolubleinphysiological pHconditions.Biomacromolecules2006;7(11):3151–6.

Tømmeraas K, Köping-Höggård M, Vårum KM, Christensen BE, Artursson P, SmidsrødO.Preparationandcharacterisationofchitosanswitholigosaccharide branches.CarbohydrRes2002;337(24):2455–62.

XuT, XinM, LiM, HuangH, Zhou S,Liu J. Synthesis, characterization,and antibacterialactivityofN,O-quaternaryammoniumchitosan.CarbohydrRes 2011;346(15):2445–50.

YangTC,ChouCC,LiCF.AntibacterialactivityofN-alkylateddisaccharidechitosan derivatives.IntJFoodMicrobiol2005;97(3):237–45.

Zhang B, Wang DF, Li HY, Xu Y, Zhang L. Preparation and properties of chitosan–soybeantrypsininhibitorblendfilmwithanti-Aspergillusflavus activ-ity.IndCropProd2009;29(2–3):541–8.

Imagem

Fig. 1. Schematic representation of the synthesis of the quaternary derivatives of chitosan.
Fig. 3. Inhibition percentages for CH-C and CH at different polymer concentrations.
Fig. 5. Effect of the degree of substitution of the chitosan derivatives on the inhibition percentage of Aspergillus flavus “in vitro” at 0.1 and 0.5 g/L (mean ± SD, n = 4)

Referências

Documentos relacionados

Chemical composition, acetylcholinesterase inhibitory and antifungal activities of Pera glabrata (Schott)

With the aim of obtaining new compounds with potential antifungal activity, lecanoric acid, a chemical constituent of the lichen Parmotrema tinctorum and its derivatives prepared

Due to the importance of the core of the thiazolidine ring, eleven compounds have been synthesized by our research group, some products already known and others unknown by

The antifungal activity of experiments revealed that the RC and SC monoterpenes promoted strong antifungal effect with MIC 50 of 256 µg/mL for strains of Candida albicans and

The ethyl acetate extract of VITJS11 showed maximum antifungal activity against three Aspergillus species and prominent antibacterial activity against two Gram positive and

Following the premise that compounds with a 1,4-naphthoquinone core have promising antifungal activity, a series of halogenated naphthoquinone derivatives was synthesized, and

It was found that both γ -pyridyl substituted precursors and inal products, tetrahydroquinolines, showed very good antifungal activities against Aspergillus fumigatus

A series of 21 1,3,4-oxadiazoline derivatives was synthesized by cyclization of N -acylhydrazones with acetic anhydride and evaluated for their in vitro antifungal activity