• Nenhum resultado encontrado

The solution of bending plates problem with uniformly normal load , which two opposite edges of the plate jointly supported, other two edges are free

N/A
N/A
Protected

Academic year: 2017

Share "The solution of bending plates problem with uniformly normal load , which two opposite edges of the plate jointly supported, other two edges are free"

Copied!
6
0
0

Texto

(1)

Ա Ա Ա ՈՒ ՈՒ Ա Ա Ա Ա Ա Ղ Ա

В АЦ А Ь А А А А

60, №4, 2007

539.3

- ,

,

. .

лючевыеслов : , , , , .

Key words: plate, displacement, intersecting forces, flexure, exactness. . .

, ,

Ա

,

:

:

, ,

: N.G.Vasilyan

The solution of bending plates problem with uniformly normal load , which two opposite edges of the plate jointly supported, other two edges are free

This article is about the solution of plates bending problem with uniformly normal load, when two opposite edges of the plate jointly supported, other two edges are free is received. The problem is solved both by Kirchhoff theory and by improved theory.The results for displacements and intersecting forces are compared. As a result,we received, that maximal flexure of the plate for the concerned problem has order exactness relative thicknes by the theory of Kirchgov in compare with majority of problems for which order exactness is quadrate relative thicknes.

- ,

, .

. .

,

,

– .

.

1.

2

h

а

:

a

x

a

,

b

y

b

,

h

z

h

.

.

D

2

w

=

q

(1.1)

,

0

,

0

2

2

=

=

y

w

(2)

2 2

2 2

3 3

3 2

0

0

0

(2

)

0

x

x

w

w

M

x

y

w

w

N

x

x y

=

+ ν

=

=

+

− ν

=

∂ ∂

a

x

=

±

(1.3)

ν– .

, , [1].

. . [2] : « ,

(

) . (1877) . (1900)» .

,

q x y

( )

,

=

const

,

y

x

f

y

x

w

n

n

n

(

)

cos

λ

)

,

(

1

∞ =

=

(1.4*)

(1.2),

q x y

( )

,

:

0 1

(2

1)

Cos

2

n n

n

y

q

q

a

b

=

− π

=

(1.4**)

π − − = −

) 1 2 (

) 1 (

4 1

n a

n

n .

(1.4*) (1.4**) (1.1) (1.3) ,

0 1

sh

[1

ch

sh

]cos

(1

)

n n

n n n n n

n n

n

S

a

w

w

x

x

x

y

=

ν

ν λ

=

α

+

λ

+

λ

λ

λ

− ν δ

δ

(1.4)

(2

1)

,

2

n

n

b

− π

λ =

0 4 1

0 5 5

64

( 1)

,

(2

1)

n

n

q b

w

D

n

=

α =

π

(1.5)

y

x

-

a

a

b

-b

0

(3)

S

n

= + ν

(1

) sh

λ − − ν λ

n

a

(1

)

n

a

ch

λ

n

a

(1.6)

(3

δ =

n

+ ν

) sh

λ

n

a

ch

λ − − ν λ

n

a

(1

)

n

a

(1.4) ν=0

⎟⎟

⎜⎜

⎟⎟

⎜⎜

=

∗ 2

2

2 2

0

5

1

1

b

y

b

y

w

w

(1.7)

0

w

. ,

5

1

5

1536

n

n

=

π

α =

(1.8)

1

1 ,

ch

, sh

2

na

n n

a

a

a

e

b

λ

>>

λ

λ ≈

(1.9)

(1.4)

x

=

a

:

2 2

0 2 2

(1

)

( , )

1

1

1

(3

)(1

)

5

y

y

w a y

w

b

b

⎞⎛

ν + ν

+

⎟⎜

+ ν − ν

⎦ ⎝

⎠⎝

(1.10)

y

ν=0.5

43

.

1

7

10

)

,

(

=

w

y

a

w

(1.11)

(1.4) a

. ,

:

0 2

1

sh2

(1

)

16

( , )

1

(1

)

(2

1)

n n

y

n n

a

a

N a b

q b

n

=

ν

λ − − ν λ

=

+

− ν

δ

(1.12)

, (1.9)

0

(1 3 )

( , )

(1

)

y

N a b

+ ν

q b

− ν

(1.13)

2.

. .

,

,

, [3]:

3

,

4

h

q

∆Φ = −

8

3

4

0

3(1

)

3

h

h

D w

χ

− ∆ +

∆Φ −

Φ =

− ν

, 2

1

0

h

∆Ψ −

Ψ =

χ

(2.1)

χ=2/5 . . , χ=1/3 –

(4)

[4], Φ, Ψ :

1 , 2

x y y x

∂Φ ∂Ψ ∂Φ ∂Ψ

ϕ = + ϕ = −

∂ ∂ ∂ ∂ (2.2)

θ1, θ2

,

. [5],

Φ, Ψ :

1 2

2

2

,

3

3

w

w

x

G

x

y

y

G

y

x

∂Φ ∂Ψ

∂Φ ∂Ψ

θ =

+

θ =

(2.3)

w, Φ, Ψ [3]:

2

2

0,

0

2

0

w

x

y

w

G

y

y

x

y

∂Φ ∂Ψ

=

+

=

χ ∂ ∂Φ ∂Ψ

=

b

y

=

±

(2.4)

,

:

2 2 2 2 2

2 2 2 2

2

(1

)

0

0,

0

w

w

G

x y

x

y

x

y

w

x

y

G

y

x

x

y

+ ν

χ ∂ Φ

+ ν

∂ Φ

+ − ν

∂ Ψ

=

∂ ∂

∂ ∂

χ ∂Φ ∂Ψ

=

∂Φ ∂Ψ

+

=

a

x

=

±

(2.5)

(2.1), (2.4), :

1

( , )

n

( ) cos

n

,

n

w x y

f x

y

=

=

λ

1

( , )

n

( ) cos

n

n

x y

x

y

=

Φ

=

ϕ

λ

(2.6)

1

( , )

n

( ) sin

n

n

x y

x

y

=

Ψ

=

ψ

λ

(2.6) (2.1)

1

1

4( 1)

1 cos ,

(2 1)

n

n n n

n

a y a n

− ∞

=

= λ =

− π

(2.7)

:

2

0

2 2

0

2 2

2

3 , 4

2 4

3 (1 )

1

0

n n n n

n n n n n

n

n n

q a h

h h

f f q a

D D

h h

ϕ − λ ϕ = −

χ ″ − λ + ϕ = −

− ν + χ λ

ψ − ψ =

χ

(2.8)

(2.8)

0 2

3

ch

sh

4

n

n n n n n

a

D

x

C

x

q

h

ϕ =

λ +

λ +

(5)

(2.9) (2.8)

2 2 0

4

2 2

ch sh ( ch sh ) (1 )

3 1

n

n n n n n n n n n n

n n

q a h

f A x B x C x x D x x h

D D

χ = λ + λ − λ + λ + + λ

λ λ − ν (2.10)

(2.8)

sh

ch

n

F

n

p x

n

G

n

p x

n

ψ =

+

(2.11)

pn=( χh)−1 1+ χλ2nh2 (2.12)

3.

A B C D F G

n

,

n

,

n, n

,

n

,

n

x

= ±

a

(2.5). ,

x

= −

a

0

x

=

3

3

0,

0,

0

w

w

x

x

=

=

Ψ =

(3.1)

(3.1) , [3] .

(2.6), (3.1)

0,

0,

0

n n n

f

=

f

′′′

=

ψ =

(3.2)

(2.10), (2.11) (3.2)

0

n n n

C

=

B

=

G

=

(3.3)

(2.9), (2.10), (2.11) (2.6)

x

=

a

(2.5), :

1

(sh

) sh

,

n n n n

F

= −

p a

λ

a D

2 2 cth 1

1 3

n n n n

n

h

A D a a D

+ ν

⎛ ⎞

= λ λ −

− ν

λ ⎝ ⎠

(3.4)

2 2 0

2

1 2 2

3 1 2

3 4 (1 ) cth th

1 2 cth

th

4 (1 )

th

n

n n n n n

n n

n

n n

n

q a

D h a a a

h a

a h h

p a

ν ⎧ ⎡ − ν ⎤

= − + ν + λ χ − − ν λ λ − λ − − ν

λ λ ⎩ ⎣ ⎦

⎫ λ − λ χ + λ χ

(3.4) (2.9)-(2.11), (2.6),

. , (1.9)

x

=

a

:

{

}

2 2 0

4 1

2 2 1

2 2

1

( , )

3

4

1

2

4

(1

)cth

1

cos

1

n

n n

n n

n

n n n n

q

a

w a y

h

a

D

h

h

h

p a

y

=

+ ν

⎢ − ν

+ ν + λ χ − νλ −

λ ⎣

χ λ

− λ χ + λ

χ

+ +

λ

− ν ⎦

(3.5)

const

q

=

(2.7)

. ,

0

cos

1

q

=

q

λ

y

, a1=q0 an=0 n>1, q=q0(cosλ1y+αcosλ2y), 0

1 q

а = , a2=αq0 an=0 n>2. q=qNcosλNy, an =0

N

n< , aN =qN

n

>

N

.

y q

q= 0cosλ1

,

2 2

1

(6)

4 0

4 2

2 (1 )

16 (1 )

( , ) 1 cos

(1 )(3 ) (1 )(3 ) 2

q b h y

w a y

D b b b

ν + ν π χν + νπ

= ⎢ + + ⎥

π − ν + ν − ν + ν (3.7)

0

=

y :

4 0 4

2

16

(1

)

( , 0)

1

1

(1

)(3

)

(3

)

q b

h

w a

D

b

ν + ν

π χ

π

+

− ν

+ ν

+

+ ν

(3.8)

(1.9)

:

0

1

2 2

2

( , ) 1 1

3 (3 )

y

h b

q b h

N a b

h b

b

⎡ ⎛π χ ⎞ ⎤

ν −

⎢ ⎜⎟ ⎛ ⎥ ⎞ χπ

⎢ ⎝ ⎠ ⎥

− ⎜ + ⎟ π π χ + ν + ν

⎢ ⎥

⎣ ⎦

(3.9)

, (1.9),

:

4 0

5

64 (0,0) q b

w

D

π (3.10)

4 2 2

0

5 2

64 (0, 0) 1

2(1 )

q b h w

D b

⎛ π χ ⎞

+

− ν

π ⎝ ⎠ (3.11)

(3.6)

4 0

0 5

64 (0, 0) q b

w

D

π (3.12)

2 2

h b . (3.8) (3.9)

2 2

h b h b.

1. . ., - . . .: ,

1963. 635 .

2. . . . .: ,

1957. 536 .

3. . . ,

. / .: “ ”, .

. . . : ” ”, 2002. .67-88.

4. . . . .: , 1987. 360 .

5. . . – .

// . . . 1998. №3. . 46-58.

6. . .

.// . . .1992. №3. .48-64 .

Referências

Documentos relacionados

O conhecimento dos processos que regulam a estabilização da matéria orgânica do solo (MOS) é necessário para predizer as alterações nos estoques de C com

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

The efficacy of 28 individual or blended disinfectants against avian Salmonella enterica serovar Enteritidis and Escherichia coli strains was determined.. An in vitro test

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

A Case Study in the Heterogeneous Effects of Assessment District Edges.. Thomas

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

— a fundamentação teórica exigida pelo estatuto científico da disciplina não se coaduna com os princípios "teóricos" que têm sustentado o paradigma histórico-tecnicista, uma