• Nenhum resultado encontrado

Reliability of semiconductor and gas-filled diodes for over-voltage protection exposed to ionizing radiation

N/A
N/A
Protected

Academic year: 2017

Share "Reliability of semiconductor and gas-filled diodes for over-voltage protection exposed to ionizing radiation"

Copied!
6
0
0

Texto

(1)

RE LI ABIL ITY OF SEMI CON DUC TOR AND

GAS-FILLED DI ODES FOR OVER-VOLT AGE PRO TEC TION

EX POSED TO ION IZ ING RA DI A TION

by

Koviljka STANKOVI]

1

, Milo{ VUJISI]

2

, and Edin DOLI]ANIN

3

Re ceived on May 8, 2009; ac cepted on June 13, 2009

The wide-spread use of semi con duc tor and gas-filled di odes for non-lin ear over-volt age pro tec tion re sults in a va ri ety of pos si ble work ing con di tions. It is there fore es sen tial to have a thor ough in sight into their re li abil ity in ex ploi ta tion en vi ron ments which im ply ex po sure to ion iz ing ra di a tion. The aim of this pa per is to in ves ti gate the in flu ence of ir ra di a tion on overvolt age di ode char ac ter is tics by ex pos ing the di odes to cal i for -nium-252 com bined neu tron/gamma ra di a tion field. The ir ra di a tion of semi con duc tor over-volt age di odes causes se vere deg ra da tion of their pro tec tion char ac ter is tics. On the other hand, gasfilled overvolt age di odes ex hibit a tem po ral im prove ment of per for -mance. The re sults are pre sented with the ac com pa ny ing the o ret i cal in ter pre ta tions of the ob served changes in overvolt age di ode be hav iour, based on the in ter ac tion of ra di a -tion with ma te ri als con sti tut ing the di odes.

Key words: di odes, nu clear ra di a tion ef fects, over-volt age pro tec tion

IN TRO DUC TION

Over-volt age is a rather com mon oc cur rence in all elec tronic cir cuits, which makes ef fi cient over-volt age pro tec tion a pri mary de sign re quire ment. The ef fi cient over-volt age pro tec tion has two as pects: the pro tec tion of in teg rity (no per ma nent dam age of the pro tected de -vice) and the main te nance of op er a tional func tion al ity (op er a tion re li abil ity in the event of an over-volt age). Both power sys tems (en ergy gen er a tion, trans mis sion

and dis tri bu tion) and low-volt age (elec tronic) sys tems are sus cep ti ble to over-volt ages. The ex tent to which an elec tronic com po nent can with stand a tem po rary over-volt age with out dam age is re duced sig nif i cantly as com po nents are min ia tur ized [1, 2].

Overvolt age pro tec tion com po nents can gen er ally be di vided into lin ear and nonlin ear ones. The lin -ear group in cludes ca pac i tors, coils, re sis tors, or their com bi na tions as fil ters. Semi con duc tor over-volt age di odes (known also as tran sient volt age sup pres sion di odes) and gas-filled over-volt age di odes (also called gas-filled surge ar rest ers) fall into the group of non-lin ear over-volt age pro tec tion com po nents. In prac tice, var i ous hy brid schemes com bin ing the lin ear and non-lin ear com po nents are of ten used.

Semi con duc tor over-volt age di odes pro vide a way to in crease the im mu nity of a cir cuit to elec tro mag netic in ter fer ence (EMI) and elec tro static dis charge (ESD). Most in te grated cir cuits (IC) con tain in -ter nal surge pro tec tion cir cuits that func tion well at pre vent ing ESD fail ures that oc cur in the as sem bly. How ever, they are of ten in ad e quate for pro tect ing against surge events that oc cur in the reg u lar prod uct us age. The surge abil ity of an overvolt age di ode is di rectly re lated to its size, and ex ter nal de vices are typ i -cally ten times larger than the in ter nal IC over-volt age Nu clear Tech nol ogy & Ra di a tion Pro tec tion

Sci en tific pa per

UDC: 621.315.592:621.385.2:614.876 DOI: 10.2298/NTRP0902132S Au thors' ad dresses:

1

Vin~a In sti tute of Nu clear Sci ences,

Ra di a tion and En vi ron men tal Pro tec tion De part ment P. O. Box 522, 11001 Bel grade, Ser bia

2Faculty of Elec tri cal En gi neer ing,

Uni ver sity of Bel grade

P. O. Box 3554, 11001 Bel grade, Ser bia

3

Faculty of Electronic En gi neer ing, Uni ver sity of Ni{

(2)

de vices. Ex ter nal over-volt age di odes pro vide a higher level of surge pro tec tion be cause it is not prac ti -cal for an IC to in cor po rate large pro tec tion de vices. In ad di tion, the in ter nal pro tec tion cir cuit of most IC is de signed to han dle only a few ESD events, while an ex ter nal over-volt age de vice pro vides im mu nity for an in def i nite amount of surges.

Gas-filled over-volt age di odes are largely used for pro tect ing cir cuits in tele com mu ni ca tions (where EMI events can be in duced in many ways, in clud ing light ning), as well as in high-volt age en gi neer ing (where switch ing overvolt ages may arise as a con se -quence of en ergy re di rec tion within a power system).

Semi con duc tor and gas-filled over-volt age di odes are com ple men tary with re spect to surge ca pa bil ity and re sponse time. While semi con duc tor di odes are ef fec tive at cur rents up to 50 A, gas-filled di odes can with stand cur rents as high as 20 kA. On the other hand, semi con duc tor overvolt age di odes have a subnanosecond re -sponse, while the re sponse time of gas-filled di odes can go up to 5 ms [3, 4].

The use of mod ern elec tronic and elec tri cal de -vices in con di tions which im ply ex po sure to ion iz ing ra di a tion, e. g. at nu clear plants, in mil i tary in dus try and space tech nol ogy, brings up the is sue of overvolt -age di ode ra di a tion hard ness. The aim of this pa per is to in ves ti gate the in flu ence of ra di a tion ex po sure on over-volt age di ode char ac ter is tics. Only per ma nent ef fects, which are man i fested even upon ces sa tion of ir ra di a tion, are con sid ered.

THE EX PER I MENT

The mea sur ing equip ment for both semi con duc -tor and gas-filled over-volt age di odes con sisted of a cur rent source (with a 3000 V max i mum volt age), a dig i tal os cil lo scope, a DC high-volt age power sup ply and a per sonal com puter. All mea sur ing in stru ments were pro tected from elec tro mag netic in ter fer ence by elec tro mag netic shield ing. The ex per i men tal pro ce -dure was fully au to mated. This ap proach as sured very high ac cu racy of mea sure ment and good re peat abil ity of re sults. The spe cial ized PC-based con trol soft ware (HPIB or IEEE488 pro to col) was de vel oped to pro -vide over all ex per i ment se quenc ing, mea sure ment, and data ac qui si tion. A sche matic rep re sen ta tion of the mea sur ing sys tem is given in fig. 1.

The ra di a tion in duced changes of di odes’ char -ac ter is tics were in ves ti gated by ex pos ing them to a com bined neu tron/gamma ra di a tion field of the cal i -for nium-252 source. Cal i -for nium iso tope 252Cf, en

-cap su lated in the form of Cf2O3, was used. The mass of the used 252Cf radionuclide was 2.265 mg, its spe

-cific neu tron and gamma emis sion rates 2.34×106

mg–1s–1 and 5.3

×109 mg–1s–1, re spec tively. Av er age neu tron en ergy of the 252Cf source is 2.14 MeV, and

av er age gamma pho ton en ergy is 0.88 MeV.

Semi con duc tor over-volt age di odes

Com mer cially avail able av a lanche sil i con di -odes, with 250 V nom i nal turn-on volt age, were used for the ex per i ments. The di odes were all pro duced by a sin gle man u fac turer, with iden ti cal nom i nal char ac ter -is tics, which re sulted in low sta t-is ti cal d-is per sion of the ob tained re sults. Each se ries of mea sure ments was per formed on a sam ple con sist ing of 50 di odes. Di ode char ac ter is tics pre sented in the pa per are based on the sam ple mean val ues.

The in flu ence of ion iz ing ra di a tion on semi con -duc tor over-volt age di ode op er a tion was in ves ti gated by mon i tor ing the volt-am pere char ac ter is tic, the volt-ohm char ac ter is tic, break down volt age, and the non-lin ear ity co ef fi cient a, de fined as

a= log

log I I U U

2 1 2 1

(1)

where (U1, I1) and (U2, I2) are points taken from the

voltam pere curve. The ex per i ments con sisted in ap ply -ing dou ble ex po nen tial cur rent pulses (13 A, 8/20 ms) to the di odes and re cord ing volt age re sponse at the trail ing edge of the cur rent pulse, while vary ing the ab sorbed dose. Prior to each se ries of mea sure ments, the overvolt age di odes were con di tioned with 25 break downs. A thirtysec ond pause be tween each two suc -ces sive mea sure ments was in tro duced. The volt-ohm char ac ter is tic was cal cu lated from the volt-am pere curve.

(3)

The semi con duc tor di -odes were ex posed to three dif fer ent lev els of neu tron ab sorbed dose in sil i con (Dn), given in tab. 1 in as cend ing or der. Each dose level is marked by a num ber (n) shown in the first col umn. The pre-ir ra di a tion state is des ig nated by n = 0.

Gas-filled over-volt age di odes

A com mer cially avail able ar gonfilled overvolt -age di ode, with 750 V nom i nal DC break down volt -age, was used for the ex per i ment. The ra di a tion in duced changes in the di ode were ex am ined by mon i tor ing the DC break down volt age and pulse break down volt age ran dom vari ables, as well as the pulse (volt-sec ond) char ac ter is tic, as the ab sorbed dose in creased. The mea sure ment of the gasfilled di ode voltsec ond char ac ter -is tics was based on the Area law. The method con s-isted in ap ply ing a se ries of 50 dou ble ex po nen tial volt age pulses (1.2/50 ms) be fore and im me di ately af ter ex po -sure to ra di a tion, with a thirty-sec ond pause be tween con sec u tive pulses.

The gas-filled over-volt age di ode was sub jected to three neu tron ab sorbed doses in ar gon: 3.79 Gy, 6.14 Gy, and 11.17 Gy. The gamma com po nent of the ra di a tion field in flu enced the elec tric prop er ties of the gas-filled di ode only in the course of ir ra di a tion. More over, for neu tron and gamma ray en er gies of the used 252Cf source, ac cord ing to non-ion iz ing en ergy

loss (NIEL) hy poth e sis, the dis place ment dam age cross-sec tion of the neu tron com po nent is much larger than for the cor re spond ing gamma ray com po nent [5-7]. These facts al lowed only neu tron fluence to be con sid ered.

The in flu ence on the DC break down volt age and pulse break down volt age ran dom vari ables was tested mea sur ing 1000 val ues of each. The dis charge en ergy (cur rent) was main tained con stant dur ing the mea sure -ment se ries. The re sults ob tained in the mea sure -ment se ries were di vided into ten groups of 50 suc ces sive val ues of the break down volt age. There af ter, each group of the re sults was tested sta tis ti cally. U-test with 5% sig nif i cance level was used to de ter mine whether the mea sure ments in a sin gle group be longed to the same ran dom vari able. Ap ply ing chi-square and Kolmogorov tests, the mea sured val ues of the break -down volt age (within one group of mea sure ments) were tested with re spect to the type of sta tis ti cal dis tri -bu tion (normal, exponential, double-exponential, and Weibull) [8].

The in flu ence of ra di a tion on the pulse char ac -ter is tic was probed in the same man ner, us ing the Area law. Ac cord ing to this law, there has to be a con stant

geo met ri cal area formed in the volt agetime plane be -tween the pulse-volt age time-shape and the DC break down volt age level, for pulse (dy namic) break -down to oc cur. Since the area de lim ited by pulse and DC break down volt ages is a spe cific prop erty of a par -tic u lar gas, and does n’t de pend on the ap plied volt age, know ing the size of this area suf fices for the cal cu la -tion of pulse (volt-second) characteristic.

RE SULTS AND DIS CUS SION

Semi con duc tor over-volt age di odes

Fig ure 2 shows the ex per i men tally ob served changes in voltam pere char ac ter is tic, voltohm char -ac ter is tic, break down volt age, and the non-lin ear ity co ef fi cient of semi con duc tor over-volt age di odes, as the ab sorbed dose in creases. Ac cord ing to these plots, the over-volt age di odes ex hibit break down volt age drop, re flected in the in crease of the volt-am pere plot slope, and con se quently the de crease of the nonlin -ear ity co ef fi cient.

Per ma nent changes no ticed dur ing postir ra di a -tion in spec -tion of semi con duc tor di odes’ char ac ter is tics can be at trib uted to the so called dis place ment dam age caused by neu tron and gamma ra di a tion. The ba sic ra di -a tion de fect of this kind is the Frenkel p-air, con sist ing of a dis placed in ter sti tial atom and a va cancy. The en ergy lev els of these de fects, as well as of the sta ble com -plexes which they form with at oms of im pu ri ties and dop ants pres ent in the semi con duc tor, are lo cated within the en ergy gap. Some of these de fects rep re sent very ef fi cient re com bi na tion cen ters. The re com bi na tion rate of mi nor ity car ri ers de pends on the con cen tra tion of re com bi na tion cen ters, be com ing higher in an ir -ra di ated semi con duc tor ma te rial. This fur ther de creases mi nor ity car rier life time, caus ing an in crease in di ode leak ing cur rent and a de crease of the break down volt age. The rise of charge car rier re com bi na tion rate pro -duces a drop in their con cen tra tion and mo bil ity, which causes an in crease of semi con duc tor ma te rial spe cific re sis tance. Con se quently, the nonlin ear co ef fi cient de -creases [9, 10].

The in flu ence of the neu tron field com po nent on the in crease of bulk car rier re com bi na tion is much larger than the in flu ence of the gamma com po nent, since at en er gies char ac ter is tic of the cal i for nium-252 source neu trons cause sig nif i cantly more (ap prox i -mately hun dred fold more) dis place ments of at oms from the crys tal lattice than gamma rays do [11].

Lat tice dis con ti nu ities at the bound ary sur face of di ode semi con duc tor ma te rial in tro duce sur face states, with en ergy lev els within the for bid den gap. These states act as re com bi na tion cen ters for charge car ri ers reach ing the sur face, in the same way as bulk de fects and im pu ri ties. The ar eal den sity of such states for ox ide-pas si vat ed di odes used in this pa per

Ta ble 1. Val ues of neu tron ab sorbed dose (Dn) used for irradiation

(4)

is ~1011 cm–2. When semi con duc tor ma te rial is ir ra di ated with gamma pho tons, both the sur face re com bi -na tion rate and the den sity of sur face states in crease [12, 13]. The in crease of the sur face re com bi na tion rate, as well as tran sient ra di a tion ef fects (also called dose-rate ef fects, such as photocurrents pro duced by gamma ray ion iza tion in the semi con duc tor), is man i fested only dur ing the ir ra di a tion pro cess, and there -fore causes no per ma nent dam age to the di odes which could have been ob served in the ex per i ments. For this rea son, gamma ab sorbed doses, mea sured dur ing the ex per i ments, have not been stated in the pa per [14-16].

Gas-filled over-volt age di odes

Fig ure 3 shows the DC break down volt age UbDC

of the gas-filled over-volt age di ode vs. the ab sorbed dose. In fig. 4(a) and (b) the 99.99% and 0.01% quantiles of the gasfilled di ode voltsec ond char ac ter is tic be fore and af ter ir ra di a tion are pre sented. The ex -per i men tal re sults show that by ir ra di at ing the gas-filled over-volt age di ode the stan dard de vi a tion of its DC break down volt age sig nif i cantly de creases (quantile curves move closer to each other). The ir ra -di ated gas-filled di ode ex hib ited a more rapid re -sponse and had a nar rower volt-sec ond char ac ter is tic

Fig ure 2. Post-ir ra di a tion char ac ter is tics of semi con duc tor over-volt age di odes

(5)

(i. e. a smaller value of pulse break down volt age Ubp).

This means that its pro tec tive char ac ter is tics were im -proved.

Faster re sponse of the gasfilled di ode af ter ir ra -di a tion is a con se quence of a higher con cen tra tion of free elec trons in the inter-elec trode gap cre ated by gas ion iza tion. Ion iza tion is in duced through the neu tron ac ti va tion of di ode con struc tion ma te ri als. The short en ing of gasfilled di ode re sponse time can be at trib -uted to higher avail abil ity of po ten tially initializing

free elec trons. Fig ure 5 pres ents the gas-filled di ode ac ti va tion anal y sis di a grams (a) im me di ately af ter ex -po sure to the ra dio ac tive source, and (b) six hours af ter ir ra di a tion, ob tained by a gamma spec trom e ter. The ac tiv ity of ra dio ac tive iso topes con sists of both a and

b com po nents. Due to the in duced ra dio ac tiv ity, gas ion iza tion is in ten si fied and the sta tis ti cal time of a pulse break down volt age is re duced. Neu tron ra di a -tion ef fects im prove the pulse shape char ac ter is tic for a short pe riod of time. This ef fect of neu tron ra di a tion dis ap pears quickly, since the half-life time of in duced ac tiv ity var ies from sev eral min utes to sev eral hours. This fact is con firmed clearly by the ac ti va tion anal y -sis plot re corded six hours af ter ir ra di a tion, fig. 5 (b). It can be no ticed from these plots that neu tron ac ti va tion prod ucts have de cayed al most com pletely and that the gasfilled di ode has re cov ered back to the preir ra di a -tion state [17-20].

CON CLU SIONS

The ex per i men tal re sults showed that ir ra di a tion of semi con duc tor overvolt age di odes by a com bined neu -tron/gamma field causes a per ma nent deg ra da tion of their pro tec tion char ac ter is tics. On the other hand, gasfilled overvolt age di odes ex hibit a tem po ral im prove ment of per for mance. As was dis cussed in the pa -per, ra di a tion in duced changes in semi con duc tor over-volt age di ode op er a tion is at trib uted to the rise of bulk and sur face car rier re com bi na tion rates, caused by

Fig ure 3. Gas-filled over-volt age di ode DC break down volt age vs. neu tron ab sorbed dose in ar gon

Fig ure 4. Quantiles (99.99% and 0.01%) of the gas-filled over-volt age di ode volt-sec ond char ac ter is tic

(a) be fore and (b) af ter ir ra di a tion

Fig ure 5. Ac ti va tion anal y sis di a grams for the gas-filled over-volt age di ode

(6)

both neu trons and gamma rays. In the case of gas-filled over-volt age di odes, ra di a tion in duced changes are mainly due to the ef fects of neu tron field com po nent, pro duc ing a higher con cen tra tion of po ten tially initializing free elec trons in the di ode inter-elec trode gap.

AC KNOWL EDG EMENT

The Min is try of Sci ence and Tech no log i cal Development of the Re pub lic of Ser bia sup ported this work un der con tract 141046.

REF ER ENCES

[1] Standler, R. B., Pro tec tion of Elec tronic Cir cuits from Overvoltages, Do ver Pub li ca tions, Mineola, N. J., USA, 2002

[2] Beyer, M., Boeck, W., Möller, K., Zaengl, W.,

Hochspannungstechnik, Theoretische und Praktische Grundlagen, Springer-Verlag, Berlin, 1986

[3] Howard, C., New Av a lanche Di ode for Tran sient Pro -tec tion, Elec tronic Prod uct De signs, Bloomingdale, N. J., USA, 1983

[4] Osmokrovi}, P., Lon~ar, B., Stankovi}, S., The New Method of De ter min ing Char ac ter is tics of El e ments for Overvoltage Pro tec tion of Low-Volt age Sys tem, IEEE Trans ac tions on In stru men ta tion and Mea sure -ment, 55 (2006), 1, pp. 257-265

[5] Gill, K., Hall, G., MacEvoy, B., Bulk Dam age Ef fects in Ir ra di ated Sil i con De tec tors Due to Clus tered Divacancies, J. Appl. Phys., 82 (1997), 1, pp. 126-130

[6] Vasilescu, A., Fluence Nor mali sa tion Based on the NIEL Scal ing Hy poth e sis, 3rd ROSE Work shop, DESY, Ham burg, Feb ru ary 12-14, 1998, Ger many, DESY-Proc. 1998-02

[7] Gill, K., Hall, G., Roe, S., Sotthibandhu, S., Wheadon, R., Giubellino, P., Ramello, L., Ra di a tion Dam age by Neu trons and Pho tons to Sil i con De tec tors, Nucl. Inst. and Meth., A322 (1992), 2, pp. 177-188

[8] Hauschild, W., Mosch, W., Sta tis ti cal Tech niques for High-Volt age En gi neer ing, IEEE Power Se ries 13,

Pe ter Peregrinus Ltd., Stevenage, Hert ford shire, UK, 1992

[9] Vavilov, V. S., Ukhin, N. A., Ra di a tion Ef fects in Semi con duc tors and Semi con duc tor De vices, Con -sul tants Bu reau, New York, USA, 1977

[10] HolmesSiedle, A. G., Ad ams, L., Hand book of Ra di -a tion Ef fects, 2nd ed., Ox ford Uni ver sity Press, Ox -ford, UK, 2002

[11] Mes sen ger, G. C., Ash, M. S., The Ef fects of Ra di a -tion on Elec tronic Sys tems, 2nd ed., an Nostrand

Reinhold, New York, USA, 1992

[12] Osmokrovi}, P., Stojanovi}, M., Lon~ar, B., Kartalovi}, N., Krivokapi}, I., Ra dio ac tive Re sis -tance of El e ments for Over-Volt age Pro tec tion of Low-Volt age Sys tems, Nucl. Inst. and Meth. in Phys -ics Re search B, 140 (1998), 1, pp. 143-151

[13] Al ex an der, D. R., Tran sient Ion iz ing Ra di a tion Ef -fects in De vices and Cir cuits, IEEE Trans. Nucl. Sci., 50 (2003), 3, pp. 565-582

[14] Vasi}, A., Osmokrovi}, P., Lon~ar, B., Stankovi}, S., Ex trac tion of Pa ram e ters from I-V Data for Nonideal Photodetectors: A Com par a tive Study, Ma te ri als Sci -ence Fo rum, 494 (2005), 1, pp. 83-88

[15] Normand, E., Ra di a tion Ef fects in Com mer cial Elec -tron ics, IEEE Nu clear and Space Ra di a tion Ef fects Con fer ence Short Course, July 18-24, Fuscon, Ariz., USA, 1994

[16] Lon~ar, B., Osmokrovi}, P., Stojanovi}, M., Stankovi}, S., Ra dio ac tive Re li abil ity of Pro gram ma -ble Mem o ries, Jap a nese Jour nal of Ap plied Phys ics, 40 (2001), Pt. 1, No. 2B, pp. 1126 –1129

[17] Vasi}, A., Stankovi}, S., Lon~ar, B., In flu ence of the Ra di a tion Ef fects on Elec tri cal Char ac ter is tics of Photodetectors, Ma te ri als Sci ence Fo rum, 413 (2003), 1, pp.171-174

[18] Stankovi}, K., Vujisi}, M., In flu ence of Ra di a tion En ergy and An gle of In ci dence on the Un cer tainty in Mea sure ments by GM Coun ters, Nu clear Tech nol ogy & Ra di a tion Pro tec tion, 23 (2008), 1, pp. 41-42

[19] Pejovi}, M. M., Risti}, G., Gamma and UV Ra di a tion Ef fects on Break down Volt age of Neon-filled Tube, IEEE Trans. Plasma Sci., 33 (2005), 3, pp. 1047-1052

[20] Lon~ar, B., Osmokrovi}, P., Vasi}, A., Stankovi}, S., In flu ence of Gamma and X Ra di a tion on Gas-filled Surge Ar rester Char ac ter is tics, IEEE Trans ac tions on Plasma Sci ence, 34 (2006), 4, pp. 1561-1565

Koviqka STANKOVI], Milo{ VUJISI], Edin DOLI]ANIN

POUZDANOST POLUPROVODNI^KIH I GASNIH DIODA

ZA PRENAPONSKU ZA[TITU IZLO@ENIH JONIZUJU]EM ZRA^EWU

[iroka primena poluprovodni~kih i gasnih dioda za nelinearnu prenaponsku za{titu dovodi do razli~itih mogu}ih uslova rada. Zbog toga je neophodno imati uvid u wihovu pouzdanost u radnom okru`ewu koje podrazumeva izlagawe jonizuju}em zra~ewu. Ciq ovog rada je da ispita

uticaj zra~ewa na karakteristike prenaponske di ode, izlagawem dioda kombinovanom

neutronskom i gama radijacionom poqu kalifornijuma-252. Ozra~ivawe poluprovodni~kih prenaponskih dioda izaziva veliku degradaciju wihovih za{titnih karakteristika. S druge strane, gasne prenaponske di ode ispoqavaju privremeno poboq{awe karakteristika. Dobijeni rezultati su prikazani zajedno sa teorijskom interpretacijom uo~enih promena u pona{awu prenaponskih dioda, na osnovu interakcije zra~ewa sa konstitutivnim materijalima dioda.

Referências

Documentos relacionados

Teflon (ptfe) is a widely used material for a wide range of applications thanks to its very stable.. chemical composition that gives it considerable

so le noid’s shield ing on spin track ing is di rectly pro por tional to the in ten sity of the mag netic in - duc tion B on the axis of the so le noid and that the in flu ence of

thick ness of the most ef fec tive ma te ri als to at - ten u ate each in di vid ual type of ra di a tion in space (us ing two-di men sional Monte Carlo anal y sis of the

We also determined the critical strain rate (CSR), understood as the tangent of the inclination angle between the tangent to the crack development curve and the crack development

and the TCP-1 ring complex (TriC) respectively. The assistance from the chaperonins is achieved via an active ATP-dependent mechanism that undergoes large scale

Upon exposure to gas, the forward current of the devices changes due to variations in the Schottky barrier height.. For NO gas, the response follows a simple Langmuir

A num ber of sesquiterpene lac tones af fect plant growth, al though the na ture and ex tent of the ef fects pro- duced de pend on a num ber of fac tors, in clud ing

Ac cord ing to these facts and con sid er ing the lack of stud ies on the ef fects of Er:YAG la ser ir ra di - a tion on root sur faces sub mit ted to scal ing and root plan ing,