• Nenhum resultado encontrado

SOLUTION OF SIGNAL UNCERTAINTY PROBLEM AT ANALYTICAL DESIGN OF CONSECUTIVE COMPENSATOR IN PIEZO ACTUATOR CONTROL

N/A
N/A
Protected

Academic year: 2017

Share "SOLUTION OF SIGNAL UNCERTAINTY PROBLEM AT ANALYTICAL DESIGN OF CONSECUTIVE COMPENSATOR IN PIEZO ACTUATOR CONTROL"

Copied!
9
0
0

Texto

(1)

А Е Е А Ы Е , Е А а–ю ь 2016 16№ 3 ISSN 2226-1494 http://ntv.ifmo.ru/ SCIENTIFIC AND TECHNICAL JOURNAL OF INFORMATION TECHNOLOGIES, MECHANICS AND OPTICS

May–June 2016 Vol. 16 No 3 ISSN 2226-1494 http://ntv.ifmo.ru/en

ɍȾɄ 62.50

Ɋȿɒȿɇɂȿ

ɉɊɈȻɅȿɆɕ

ɋɂȽɇȺɅɖɇɈɃ

ɇȿɈɉɊȿȾȿɅȿɇɇɈɋɌɂ

ɉɊɂ

ȺɇȺɅɂɌɂɑȿɋɄɈɆ

ɄɈɇɋɌɊɍɂɊɈȼȺɇɂɂ

ɉɈɋɅȿȾɈȼȺɌȿɅɖɇɈȽɈ

ɄɈɆɉȿɇɋȺɌɈɊȺ

ȼ

ɁȺȾȺɑȿ

ɍɉɊȺȼɅȿɇɂə

ɉɖȿɁɈɉɊɂȼɈȾɈɆ

ɋ.ȼ. Ȼɵɫɬɪɨɜa, ɇ.Ⱥ. ȼɭɧɞɟɪa, Ⱥ.ȼ. ɍɲɚɤɨɜa

a , - , 197101,

: sbystrov@mail.ru

ɂɧɮɨɪɦɚɰɢɹɨɫɬɚɬɶɟ

22.01.16, 16.03.16 doi: 10.17586/2226-1494-2016-16-3-451-459

ɋɫɵɥɤɚ ɞɥɹ ɰɢɬɢɪɨɜɚɧɢɹ: . ., . ., . .

//

-, . 2016. . 16. № 3. . 451–459. doi: 10.17586/2226-1494-2016-16-3-451-459

Ⱥɧɧɨɬɚɰɢɹ

ɉɪɟɞɦɟɬɢɫɫɥɟɞɨɜɚɧɢɹ. .

, . Ɇɟɬɨɞ.

, 1958 . Э

– .

.

.

,

. Ɉɫɧɨɜɧɵɟɪɟɡɭɥɶɬɚɬɵ.

« – » « –

» .

« – »

, ,

, .

. ɉɪɚɤɬɢɱɟɫɤɚɹ ɡɧɚɱɢɦɨɫɬɶ.

. ,

.

Ʉɥɸɱɟɜɵɟɫɥɨɜɚ

, , ,

,

Ȼɥɚɝɨɞɚɪɧɨɫɬɢ

( 074-U01) ( 14. Z50.31.0031).

SOLUTION OF SIGNAL UNCERTAINTY PROBLEM AT ANALYTICAL DESIGN

OF CONSECUTIVE COMPENSATOR IN PIEZO ACTUATOR CONTROL

S.V. Bystrova, N.A. Vundera, A.V. Ushakova

aITMO University, Saint Petersburg, 197101, Russian Federation

Corresponding author: sbystrov@mail.ru

Article info

(2)

For citation: Bystrov S.V., Vunder N.A., Ushakov A.V. Solution of signal uncertainty problem at analytical design of consecutive compensator in piezo actuator control. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2016, vol. 16, no. 3, pp. 451–459. doi: 10.17586/2226-1494-2016-16-3-451-459

Abstract

Subject of Research. We present research results for the signal uncertainty problem that naturally arises for the developers of servomechanisms, including analytical design of serial compensators, delivering the required quality indexes for servomechanisms. Method. The problem was solved with the use of Besekerskiy engineering approach, formulated in 1958. This gave the possibility to reduce requirements for input signal composition of servomechanisms by using only two of their quantitative characteristics, such as maximum speed and acceleration. Information about input signal maximum speed and acceleration allows entering into consideration the equivalent harmonic input signal with calculated amplitude and frequency. In combination with requirements for maximum tracking error, the amplitude and frequency of the equivalent harmonic effects make it possible to estimate analytically the value of the amplitude characteristics of the system by error and then convert it to amplitude characteristic of open-loop system transfer function. While previously Besekerskiy approach was mainly used in relation to the apparatus of logarithmic characteristics, we use this approach for analytical synthesis of consecutive compensators. Main Results. Proposed technique is used to create analytical representation of "input–output" and "error–output" polynomial dynamic models of the designed system. In turn, the desired model of the designed system in the "error–output" form of analytical representation of transfer functions is the basis for the design of consecutive compensator, that delivers the desired placement of state matrix eigenvalues and, consequently, the necessary set of dynamic indexes for the designed system. The given procedure of consecutive compensator analytical design on the basis of Besekerskiy engineering approach under conditions of signal uncertainty is illustrated by an example. Practical Relevance.

The obtained theoretical results are used in the task of developing precise positioning systems with piezoelectric actuation mechanism. Proposed procedure for analytical synthesis of consecutive compensator is also believed to be usable for design of servo mechanisms of arbitrary application.

Keywords

signal uncertainty, Besekerskiy approach, consecutive compensator, piezoelectric actuator, precise positioning system

Acknowledgements

This work was supported by the Government of the Russian Federation, Grant 074-U01 and the Ministry of Education and Science of the Russian Federation (Project 14. Z50.31.0031)

ȼɜɟɞɟɧɢɟ.ɉɨɫɬɚɧɨɜɤɚɡɚɞɚɱɢ

-.

.

[1].

,

-.

[2], . ,

[3–9],

-, .

,

-, .

( ),

, .

. ,

-,

-, .

,

.

. Э

-.

.

Ɏɨɪɦɢɪɨɜɚɧɢɟɩɨɥɢɧɨɦɢɚɥɶɧɨɣɞɢɧɚɦɢɱɟɫɤɨɣɦɨɞɟɥɢɩɪɨɟɤɬɢɪɭɟɦɨɣɫɢɫɬɟɦɵɧɚɨɫɧɨɜɟ

ɢɧɠɟɧɟɪɧɨɝɨɩɨɞɯɨɞɚȻɟɫɟɤɟɪɫɤɨɝɨ

, ,

.

ɍɬɜɟɪɠɞɟɧɢɟ 1. ( ),

(3)

 

 

1

n n

n

n n i

i i

v v

s

D s

s v s

  

, (1)

n

v ,i,i1,n – , s – ,

- ,

-σ μ t ,

« – »

0

0

0 0 0 1 , , n n n n n

n i n i

i i

v v

s

D s

s v s

  

(2)

, σ

μ t , (1), 0

-. □

Ⱦɨɤɚɡɚɬɟɥɶɫɬɜɨ. (2)

-:

0 0

0 1 2 2 1

1 0 2 0 1 0 0

0 1

,

n n

n n

n n n n n n

n i n i n n

i i

v v

s

s v s v s v s v s v s

              

. (3)

(3) 0

n,

0

1

1 1

0 0 0

, n

n n

n n

v s

s s s

v v v

                           = 1 n n

n n i

i i

v

s v s  

=

 

s

 ,

0

ss . . ■

ɉɪɢɦɟɱɚɧɢɟ 1. ,

1,

i

s in D s

 

si

 

0

i1,n

D s

, 0

 

0 0

1,

i i

ss in .

, 0

(2)

-, (1),

1,

i

v in

0. vi

.

[10].

[10],

-, . -, . ! , 1, !( )! i i n n

v C i n i n i

  

 , (4)

i n

Cn ( ) i. ■

ɍɬɜɟɪɠɞɟɧɢɟ 2.

-

0 0

0 1 2 2 1

1 0 2 0 1 0 0

0 1

,

n n

n n

n n n n n n

n i n i n n

i i

v v

s

s v s v s v s v s v s

(4)

1 n 0 n1

Dv v . □(5)

Ⱦɨɤɚɡɚɬɟɥɶɫɬɜɨ.

-,

1 0 у

Dg , (6)

0

g  g(t) , у

,

 

0

lim

у

tt

 . (7)

[11] (7)

:

 

0

 

0

0

  

lim lim lim ,

у

t t s s ss s G s

    , (8)

   

s ,G s

 

 

t g(t); 

s, 0

,

 

 

1 0 1 2 20 2 1 01

0 0 1 2 2 1

1 0 2 0 1 0 0

, 1 ,

n n n n

n

n n n n n

n n

Ε s s v s v s v s

s s

G s s v s v s v s v

  

  

   

    

    

 . (9)

g(t) g t

 

g t0 G s

 

- 

2

0

G sgs . (10)

(8) (9) (10) s0,

1 0

0

n

у

n v g

v

  , (6) (5). ■

ɉɪɢɦɟɱɚɧɢɟ 2. « – » 

s, 0

, (4) vn1,vn

-1

1 , 1.

n n

n n n n

v C  n vC  (11)

(11) (5)

1 n 0 n1 0 Dv v  n.

(2) , c – , М

« – », – .

.

n

σ, %

0

t D1 0  1 0

c

0

М

0,707

М

0,05

|1

М

|

0,05



0

,05

1 s 0 0 3 1 90 1 1 20 0,32 0,051

2 s22 0s 02 0 4,8 0,5 76,4 0,5 0,7 5,04 0,25 0,024

3 3 2 2 3

0 0 0

3 3

sss 0 6 0,333 71,3 0,33 0,5 2,78 0,17 0,017

4

4 3 2 2

0 0

3 4

0 0

4 6

4

s s s

s

  

  0 7,8 0,25 68,6 0,25 0,4 2,0 0,14 0,013

5

5 4 2 3

0 0

3 2 4 5

0 0 0

5 10

10 5

s s s

s s

  

(5)

(2) ,

,

-. [12], ,

g t

 

m gm

-m

g . Э

.

Ɉɫɧɨɜɧɨɣɪɟɡɭɥɶɬɚɬ.

ȺɥɝɨɪɢɬɦɫɢɧɬɟɡɚɫɢɫɬɟɦɵɧɚɨɫɧɨɜɟɢɧɠɟɧɟɪɧɨɝɨɩɨɞɯɨɞɚȻɟɫɟɤɟɪɫɤɨɝɨ

:

1. :

1.1.

σ0%

-t ;

1.2. m

D1;

2. g t

 

:

2.1. gm;

2.2. gm;

3.

( ) msin

g tg t, (12)

m

g (12) . . 2.1.

2.2.

   

2

 

,

m m m m m

ggg  g g ;

3.

 

tg t

   

y tmsin

t

,

 

y t – ; – ;

4. 

 

 

         

'

=  m gmm gm  ; (13)

5. « – »

(2) , ,

;

6. 

s, 0

1 0

0 1

0 0

0 0

1 1

, 1 , 1

n

n i n i

n i

n i

n n

n i n i n i n i

i i

i i

s v s

v

s s

s v s s v s

 

 

 

      

 

; (14)

7. 

s, 0

0, (14)

1 0 1 1

0

0 0

,

n

n n

n

n n

v s v s s

v v

 

   ; (15)

8. , (15)

(11),

 

1

0

0 0

, n

n

v n

j

v

(6)

9. (16) 0,

(2), (13)

(12),

 

1

 

0

n

n

v n

v

  ;

10. 0

- 

0

tt , D1

 

1 1

 

1

 

0 max 0 arg 0 , 0 1, 0

n n

n n

v D v n

t t nD

v v

  

      

; (17)

11. (17) « – »

(2);

12. W

s, 0

s, 0

 « – » , .12,

0

0

0 1

0

0 1

, ( , )

1 ,

n n n

i n i

i i

s v

W s

s

v s

 

 

 

;

13. W

 

s ;

14. W

s, 0

 

W s

, 0

W s :

, 0

, 0

  

W sW s W s ; (18)

15. (18)

 

0

0

,

, W s

W s

W s

 ; (19)

16.

(19) Simulink;

17. . 17

-.

ɂɥɥɸɫɬɪɚɬɢɜɧɵɣɩɪɢɦɟɪ

.

.

[13–16]. , :

1. :

1.1. σ0%, t ≤0,01 ;

1.2. 7

10

m

 ;

1.3. 1

1 100 c

D   ;

2. g t

 

5

3,14 10

m

g    /

5

9,87 10

m

g    /c2;

3. g t( )gmsin t:

   

2 105 ,

   

3,14 1

m m m m m

ggg    g g   ;

4. ( . . 11) 0,

1 0 942 c ;

(7)

5. ( . . 4– . 13) W

s, 0

-

0 3

0 1 3 2 2

0 1

942 ,

3 942 3 942

n n n

i n i

i i

v

W s

s s s

v s

 

 

   

;

6. ( . . 14)

 

 



6

2 2 4 8 2 5

1 2 2

8 2 5

10

1 2ς 1 5 10 1 2,56 10 3, 2 10 1 78156

, 2000 2,56 10 1250 391 10

k W s

T s T s T s s s s

s s s

  

  

         

    

k – ;

.

7. ( . . 15– . 16)

 

0

2 5

0 2

1250 391 10

, 2000

, 10710

2826 2662092

s s

W s s

W s

W s s s s

  

  

  ,

« – »

0 3

0 3 2 2 3

0 1

942 ,

3 942 3 942 942

n n n

n i n i

i i

v s

s s s

s v s 

  

     

;

8. . 7

Simulink, . 1, 2 3

-:

 

 

5

0 1 , 0 10

g tgt g   ,

 

5

0 , 0 m 3,14 10

g tg t g  g   

5

10 ,

m

g   3,14 1,

-

σ0%

: t 0, 007 c ≤ 0,01 5 7 1 1

1 3,14 10 10 314 c 100 c

D         ,

7 5

10 10 0, 01

m gm

 

   ;

. 1.

. 2.

g(t)

y(t) (t)

1 0,8 0,6

0,4

0,2

0 0,004 0,008 0,012 t, c

g(t)

y(t) (t)

10–5

10–7

g(t)

y(t) (t)

5

4

3

2

1

0 0,004 0,008 0,012 t, c

g(t)

(8)

. 3.

( ) ( )

9. . 6

.

Ɂɚɤɥɸɱɟɧɢɟ

,

,

.

[17], .

References

1. Brasch F.M. Jr., Pearson J.B. Pole placement using dynamic compensators. IEEE Transactions on Automatic Control, 1970, vol. 15, no. 1, pp. 34–43. doi: 10.1109/TAC.1970.1099352

2. Gaiduk A.R. Teoriya i Metody Analiticheskogo Sinteza Sistem Avtomaticheskogo Upravleniya (Polinomial'nyi Podkhod) [Theory and Methods of Analytical Synthesis of Automatic Control Systems (Polynomial Approach)]. Moscow, Fizmatlit Publ., 2012, 360 p.

3. Porter B., Crossley R. Modal Control: Theory and Application. New York, Barnes and Noble, 1972, 233 p. 4. Bryson A.E. Jr., Luenberger D.G. The synthesis of regulator logic using state-variable concepts. Proceedings

of the IEEE, 1970, vol. 58, no. 11, pp. 1803–1811. doi: 10.1109/PROC.1970.8020

5. Ackermann J. Der Entwurf linearer Regelungssysteme im Zustandsraum [State Space design of linear control systems]. Regelungstechnik, 1972, vol. 20, pp. 297–300. doi: 10.1524/auto.1972.20.112.297

6. Grigor'ev V.V., Drozdov V.N., Lavrent'ev V.V., Ushakov A.V. Sintez Diskretnykh Sistem Regulyatorov pri Pomoshchi EVM [Synthesis of Digital Systems Using Computer Controls]. Leningrad, Mashinostroenie Publ., 1983, 245 p.

7. Kazhinskaya L.I. Vornovitskii A.E. Upravlenie Kachestvom Sistem: Sintez Sistem Upravleniya s Zadannym Kachestvom Metodami Modal'nogo Upravleniya [Quality Systems Management: Synthesis of Control Systems with the Specified Quality by Methods of Modal Control]. Moscow, Mashinostroenie Publ., 1979, 124 p.

8. Vunder N.A., Ushakov A.V. Algebraic properties of the matrix components of control process models in algorithms of eigenvalues placement. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2016, vol. 16, no. 2, pp. 371–374.

9. Andreev Yu.N. Upravlenie Konechnomernymi Lineinymi Ob"ektami [Control of Finite Linear Objects]. Moscow, Nauka Publ., 1976, 424 p.

10.Kwakernaak H., Sivan R. Linear Optimal Control Systems. Wiley, 1972.

11.Besekerskii V.A., Popov E.P. Teoriya Sistem Avtomaticheskogo Regulirovaniya [The Theory of Automatic Control Systems]. 4th ed. St. Petersburg, Professiya Publ., 2003, 752 p.

12.Besekerskii V.A., Orlov V.P., Polonskaya L.V., Fedorov S.M. Proektirovanie Sledyashchikh Sistem Maloi Moshchnosti [Design of Low-Power Tracking Systems]. Leningrad, Sudpromgiz Publ., 1957, 508 p.

13.Bystrov S.V., Nikolaev P.V., Sabinin Yu.A., Smirnov A.V. Peredatochnye funktsii p'ezoelektricheskogo ispolnitel'nogo ustroistva [Transfer functions of the piezoelectric execution device]. Journal of Instrument Engineering, 1988, vol. 31, no. 6, pp. 19–24.

10–5 10–7

g(t)

y(t) 1 (t)

0,5 0

–0,5 –1 –1,5

0 1 2 3 4 t, c 0 1 2 3 4 t, c 1

0,5 0 –0,5

(9)

14.Nikol'skii A.A. Tochnye Dvukhkanal'nye Sledyashchie Elektroprivody s P'ezokompensatorami [Precise Two-Channel Tracking Actuators with Piezo Compensators]. Moscow, Energoatomizdat Publ., 1988, 160 p. 15.Bystrov S.V., Erashov V.I., Sabinin Yu.A., Chezhin M.S. Dvigateli Mikroperemeshchenii [Engines for

Microdisplacements]. Leningrad, LDNTP Publ., 1988, 20 p.

16.Sabinin Yu.A. Pozitsionnye i Sledyashchie Elektromekhanicheskie Sistemy: Uchebnoe posobie [Positional and Tracking Electromechanical Systems: Textbook]. St. Petersburg, Energoatomizdat Publ., 2001, 208 p. 17.Pichkalev A.V. Generalized Harrington's desirability function for the comparative analysis of technical

facilities. The Research of the Science City, 2012, no. 1, pp. 25–28.

ы С а – , , , ,

- , 197101, , sbystrov@mail.ru

Н а а а – , , - , 197101,

, polinova_nina@mail.ru

У а а а – , , ,

, - , 197101, ,

79214215187@ya.ru

Sergey V. Bystrov – PhD, Associate professor, Associate professor, ITMO University, Saint Petersburg, 197101, Russian Federation, sbystrov@mail.ru

Nina A. Vunder – postgraduate, ITMO University, Saint Petersburg, 197101, Russian

Federation, polinova_nina@mail.ru

Referências

Documentos relacionados

As the increase of the analytical signal was very small by using poly (vinylalcohol) solution, to avoid adherence of precipitate in the inner walls of the tubes, coil and/or cell,

Abstract: As in ancient architecture of Greece and Rome there was an interconnection between picturesque and monumental forms of arts, in antique period in the architecture

Themes emerge on lack of knowledge/knowledge; The health staff and family, support to cope with the diagnosis and not falter; Positive attitude; Suffering in view of adversity;

Emergen temas acerca del Desconocimiento/ conocimiento; El personal de salud y familiar, un soporte para enfrentar el diagnóstico y no desfallecer; Actitud positiva; Sufrimiento ante

Abstract : This article presents to an analytical calculation methodology of the Steinmetz Equivalent Diagram Elements applied to the prediction of Eddy current loss in a

We also determined the critical strain rate (CSR), understood as the tangent of the inclination angle between the tangent to the crack development curve and the crack development

The iterative methods: Jacobi, Gauss-Seidel and SOR methods were incorporated into the acceleration scheme (Chebyshev extrapolation, Residual smoothing, Accelerated

Youden’s test is a reliable method to evaluate the robustness of analytical methods, by means of an experiment design which involves seven analytical