• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número5

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número5"

Copied!
7
0
0

Texto

(1)

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Gamma

radiation

treatment

activates

glucomoringin

synthesis

in

Moringa

oleifera

Tsifhiwa

Ramabulana

a

,

Risimati

D.

Mavunda

b,c

,

Paul

A.

Steenkamp

a,d

,

Lizelle

A.

Piater

a

,

Ian

A.

Dubery

a

,

Ashwell

R.

Ndhlala

e

,

Ntakadzeni

E.

Madala

a,∗

aDepartmentofBiochemistry,UniversityofJohannesburg,AucklandPark,SouthAfrica bDepartmentofPhysics,UniversityofJohannesburg,AucklandPark,SouthAfrica cSouthAfricanNuclearEnergyCorporation,Pretoria,SouthAfrica

dCouncilofScientificandIndustrialResearch,Biosciences,NaturalProductsandAgro-processingGroup,Pretoria,SouthAfrica eAgriculturalResearchCouncil,VegetableandOrnamentalPlants,Pretoria,SouthAfrica

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received13February2017 Accepted14May2017 Availableonline24August2017

Keywords: Gammaradiation Glucosinolates Metabolitefingerprinting Oxidativestress UHPLC-qTOF-MS

a

b

s

t

r

a

c

t

Plantsareaveryrichsourceofpharmacologicallyrelevantmetabolites.However,therelative concentra-tionsofthesecompoundsaresubjecttothegeneticmake-up,thephysiologicalstateoftheplantaswellas environmentaleffects.Recently,metabolicperturbationsthroughtheuseofabioticstressorshaveproven tobeavaluablestrategyforincreasingthelevelsofthesecompounds.Oxidativestress-associated stress-ors,includingionizingradiation,havealsobeenreportedtoinducemetaboliteswithvariousbiological activitiesinplants.Hence,theaimofthecurrentstudywastoinvestigatetheeffectofgammaradiation ontheinductionofpurportedanti-cancerousmetabolites,glucomoringinanditsderivatives,inMoringa

oleiferaLam.,Moringaceae.Here,anUHPLC-qTOF-MS-basedtargetedmetabolicfingerprintingapproach

wasusedtoevaluatetheeffectofgammaradiationtreatmentontheafore-mentionedhealth-beneficial secondarymetabolitesofM.oleifera.Followingradiation,anincreaseinglucomoringinandthree acyl-atedderivativeswasnoted.Assuch,thesemoleculescanberegardedascomponentsoftheinducible defensemechanismofM.oleiferaasopposedtobeingconstitutivecomponentsasithaspreviouslybeen assumed.Thismightbeanindicationofapossible,yetunexploredroleofmoringinagainsttheeffects ofoxidativestressinM.oleiferaplants.Theresultsalsosuggestthatplantsundergoingphoto-oxidative stresscouldaccumulatehigheramountsofglucomoringinandrelatedmolecules.

©2017SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Glucosinolates(GS)aresecondarymetabolitesfoundinalmost

all plants of the order Brassicales (Fahey et al., 2001; Mithen,

2001).These compoundsarediversein origin,side chain

mod-ification,degradation and final biological functions (Grubb and

Abel,2006), and comprise short- and long-chain aliphatic

glu-cosinolates (Ile, Leu, Val, Ala and Met), indolic glucosinolates

(Trp) and aromatic glucosinolates (Tyr and Phe)(Brown et al.,

2003;Clarke,2010;AgerbirkandOlsen,2012;Leoneetal.,2015).

Undernormalconditions,GSarechemicallystable,however,

dur-ingplantwoundresponsesthesecompoundsarehydrolyzedby

theenzymemyrosinasetoproduceisothiocyanates,nitriles,

thio-cyanates,epithionitrilesand oxazolidineswhichareresponsible

∗ Correspondingauthor.

E-mail:emadala@uj.ac.za(N.E.Madala).

forthereportedbiologicalactivitiesthereof(BonesandRossiter, 2006; Zandalinasetal., 2012).GS-derivedmolecules arehighly

water-solubleduetothehydroxyl-aminosulfategroupanda

␤-thioglucosylresidueattachedtothevariableR-groupontheGS

skeletal structure (Clarke, 2010; Vo et al., 2013; Förster et al., 2015a; Leone et al., 2015), thereby contributing to a high

bio-availabilityfollowinghumanconsumption.Inplants,GSareknown

toberesponsivetobothbioticandabioticstresses,andhavebeen

shown tobeinduced byvarious environmentalfactorssuchas

solarradiation,temperaturevariationandclimatechanges(Bones

andRossiter,2006;Zandalinasetal.,2012).Almostallthe

afore-mentionedstressorsofplantsareassociatedwithoxidativestress

(Bajguzand Hayat,2009; Demidchik,2015), therebysuggesting

a possible role of these compounds in mitigating the damages

imposedasaresultofsuchstress,aphenomenonwhichhasalso

been extended tohuman-related diseases (Tumer et al., 2015;

Williamsonetal.,1998).

http://dx.doi.org/10.1016/j.bjp.2017.05.012

(2)

T.Ramabulanaetal./RevistaBrasileiradeFarmacognosia27(2017)569–575

Recently, the GS components (4-(␣-l

-rhamnopyranosyloxy)-benzyl glucosinolate followed by three isomeric acetyl-4-(␣-l

-rhamnopyranosyloxy)-benzylglucosinolate(Ac-isomer-GSI,II,III)

ofMoringa oleiferaLam.have beenreportedtopossessindirect anti-oxidantactivityduetotheabilitytoregulateananti-oxidant

enzymaticprocessesinmammaliansystems(Tumeretal.,2015).

GShavealsobeenreportedtocontrolthedamagesofother

physio-logicalconditionsassociatedwithoxidativestresssuchasreducing

therisks of several cancers (colon, bladder and breast cancer)

(Björkmanetal.,2011).IthasbeenshownthatGShavetheability

toinactivatephaseIenzymes(cytochromeP-450)ortostimulate

phaseIIenzymes(glutathione-S-transferase),therebyeliminating

carcinogenicmetabolites(ZhangandTalalay,1994).Morerecently,

consumptionof GS derivedcompounds suchas isothiocyanates

(ITC)hasbeenshowntobebeneficialformammals,sincetheylead

totheup-regulationofxenobioticmetabolism(phaseIImetabolic

enzymes),associatedwithanincreasesintheantioxidant

capac-ity,thusleadingtoimprovedprotectionagainstvariouschronic

physiologicalconditions(TrakaandMithen,2009).

Aspreviouslymentioned,thelevelsofGSinplantsaresubject

toseveralenvironmentalfactorsand,assuch, createconditions

favoringtheproductionofthesecompoundsbyplants,ashasbeen

investigated(Försteretal.,2015a).AnincreaseinaGS,

glucotropae-olin,duetoUV-Bradiationtreatmentofnasturtium(Tropaeolum

majusL.)plantshasbeenreported(Schreineretal.,2009). Differ-entformsofradiationareknowntoinduceoxidativestressinplants (Esnaultetal.,2010;Hollósy,2002;KovácsandKeresztes,2002),

andthustheinvolvementofGScouldbetocontrolthedamagesof

radiation-inducedoxidativestress.

Moringaoleiferaisaversatileandwidelycultivatedspeciesin

themonogenericfamilyofMoringaceae,andisknowntocontain

GSmolecules(Fahey,2005;Försteretal.,2015a;Moyoetal.,2011; PopoolaandObembe,2013).AlmostallpartsoftheM.oleiferaplant

containvaryingamountofaromaticGSs,withtheleavescontaining

thehighestlevels(Clarke,2010;Moyoetal.,2011).Someofthe

reportedpharmacologicalpotencyoftheplanthavebeendirectly

correlatedtothepresenceoftheseGSs(Clarke,2010).

Recently,wehaveshownthatM.oleiferadoesnotproduceother

highlysoughtafterpharmacologicallyrelevantmetabolites(rutin

foranexample)incomparisontootherrelatedspecies,M.

oval-ifolia(Makitaetal.,2016).Moreover,wefurtherspeculatedthat

productionofsuchmetabolitescouldbeinfluencedbyvarious

fac-torssuchasenvironmentalconditionsand thegeneticmake-up

oftheplants(Makitaetal.,2016).Elsewhere,thelevelsof

health-promotingmetaboliteshavebeenshowntobeaffectedbyionizing

radiation(Ramabulana etal.,2015,2016).Radiationis apotent

inducerofoxidativestress,andithasbeenusedtoidentify metabo-liteswithanti-oxidativepropertiesinvariousplants(Mittler,2002).

Withincreasingevidenceontheanti-oxidativepropertiesofGS

molecules(Guerrero-Beltránetal.,2012)andaspotentialagents

for ameliorating oxidative stress-associated diseases (

Dinkova-KostovaandKostov,2012),itisimportanttostudybioticandabiotic

factorswithpotentialofenhancingthelevelsofthesecompounds.

Assuch,inthecurrentstudy,apotentformofradiation,namely

gammaradiationwasusedtotriggeroxidativestressinM.oleifera

leaves.SubsequentperturbationsinthelevelsofGSswere

moni-toredusingUHPLC-ESI-qTOF-MS-basedfingerprinting.

Materialsandmethods

Plantmaterial

TwomontholdMoringaoleiferaLam.,Moringaceae,plantswere

obtainedfrom thePatience Wellness Centre farm in

Lebowak-gomo,South Africa.The plantspecieswasauthenticated, and a

voucherspecimen(withvouchernumberNEM001)wasprepared

anddepositedattheDepartmentofBotany,Universityof

Johan-nesburg,SouthAfrica.

Gammaradiationprocedure

Plants were irradiatedas previously described (Ramabulana

etal.,2015,2016).IrradiationwasperformedatNuclearEnergy

CooperationofSouthAfrica(NECSA)(Phelindaba,Pretoria,South

Africa). Briefly, fifteen plants were irradiated with a Cobalt-60

source(atadoserateof22kGy/h)insideawell-protectedchamber, alongwithfifteennon-irradiatedcontrolplants.Variousradiation

doses(0.1–8kGy)weretestedand2kGydosewasfoundtobemore

potentasshownpreviously(Ramabulanaetal.,2015).Total

radi-ationdoseabsorbedbyplantswasfurtherconfirmedbyHarwell

PerspexPolyMethylMethacrylateAmber(PMMA)3042

dosime-ters(HarwellCo,UnitedKingdom).

Metaboliteextraction

From the optimization results achieved with our preceding

studies, plant leaf material was harvested a day (24h)

post-radiation and dried at 50◦C for 72h(Ramabulana et al., 2015,

2016).Thedried plantmaterial wasground andextracted with

80%aqueousmethanolasdescribedbyRamabulanaetal.(2015,

2016).Theextractswereconcentrated,reconstitutedin50% aque-ousmethanolandstoredat−20◦Cuntilanalyzed.

Chromatographyandmassspectrometryanalyses

Threetechnicalrepeatsofthehydromethanolicextracts(5␮l)

were analyzed using an Acquity UHPLC equipped with an

AcquityBEHC18reversephasecolumn(150mm×2.1mm,1.7␮m)

(WatersCorporation,MA,USA).ThemobilephaseAconsistedof

0.1%formic acidin deionizedwater, while themobile phase B

consistedof0.1%formicacidinacetonitrile(RomilPureChemistry,

Cambridge,UK).Theelutiongradientstartedat98%Auntil5%at

26minfor2min,andthenreturnedtoinitialconditionsof98%Aat

28minfor2minwitharuntimeof30minataconstantflowrate

of0.4ml/min.Chromatographicseparation/elutionwasmonitored

usinga photodiode-arraydetector(PDA)collecting20 spectra/s

betweenthe200and500nmrange.Inaseconddetection,aSynapt

G1high-definitionmassspectrometer(MS) wasusedoperating

inbothpositiveandnegativeelectrosprayionization(ESI)modes.

Briefly,thefollowingMSconditionswereusedasoptimal

exper-imentalconditions:thecapillaryvoltageof2.5kV,multichannel

platedetectorpotentialof1600V,sampleconepotentialof30V,

desolvationtemperatureof450◦C,sourcetemperatureof120◦C,

conegasflow of 50l/hand desolvation gasflow of550l/h.For

MSfragmentationexperiments,theMSacquisitionmethodwith

lowcollisionenergyrampof10–30eVandahighcollisionenergy

rampof15–60eVwasusedtogeneratetypicalMSE

fragmenta-tionpatterns.MassLynxTMand MarkerLynxTM software(Waters

Corporation,MA, USA) were used tovisualize and analyzethe

UHPLC-qTOF-MSrawdatasoastogeneratedatamatrixforfurther

statisticalmodeling.

Metaboliteidentificationandstatisticalanalyses

TheUHPLC-ESI-MSdatacollectedinnegativeionizationmode

wasanalyzedusingMarkerLynxTMXSsoftwareforpeakalignment,

peak finding, peak integration and retention time (Rt)

correc-tionwiththefollowingparameters:Rt rangeof1–27min,mass

rangeof 100–1000Da, masstoleranceof0.05Da,Rt windowof

0.2min.Datawasnormalizedtototalintensity(area).Theacquired

(3)

T.Ramabulanaetal./RevistaBrasileiradeFarmacognosia27(2017)569–575

Sweden)forPrincipalcomponentanalysis(PCA)andOrthogonal

projection to latent structures-discriminant analysis (OPLS-DA)

computation(Ramabulanaetal.,2015)and,usingthesemodels,

possiblebio-markersshowingdifferentialaccumulationacross

dif-ferenttreatmentswereidentified(Madalaetal.,2012;Ramabulana etal.,2015).ThedatamatrixwasalsoexportedtoMicrosoftExcel

and,usingtheareaunderthepeakcorrespondingtothe

respec-tivemasses(m/z)ofknownGSmoleculesfromM.oleifera(Förster

etal.,2015a,b),weresearchedforandfurtherusedtocreate

box-and-whiskersplotsusingSPSSversion22 software(IBM,United

StatesofAmerica,www.ibm.com/SPSSStatistics).Furthermore,GS

moleculeswithstatisticalsignificancewerecomputedusingthe

studentt-testinMicrosoftExcel.Here,ap-valueof<0.01indicates thatthefoldincreasesoftheidentifiedmetabolitesarestatistically significant.

Tofurtherconfirmtheidentificationofmetabolites,the

frag-mentationpatternsgeneratedwiththeuseofdifferentcollision

energies were compared with the already existing knowledge.

Briefly,themolecularformulaeofallthepeakscorrespondingto

GSmoleculeswerecomputedandselectedbasedonthecriterion

thatthesearewithin5mDamassaccuracywhencomparedtothe

calculatedmassofthecorrespondingmolecules.Metaboliteswere

thusannotatedaccordingtotheMetabolomicStandardsInitiatives,

level2identification(Sumneretal.,2007).

Resultsanddiscussion

Gammaradiation isan inducerof oxidative stressthat

sub-sequently activates complicated defense mechanisms in plants

(Ahujaetal.,2014;Esnaultetal.,2010).M.oleiferaisableto

syn-thesizeGSaspartofitssecondarymetabolites.Thepredominant

GSmoleculeinthisplantspeciesis4-(␣-l

-rhamnopyranosyloxy)-benzylglucosinolate(1),knownasglucomoringin(Clarke,2010;

deGraafetal.,2015;Tumeretal.,2015).Thestructuraluniqueness

oftheseGSderivesfromthepresenceofasecondglycosylresidue

inadditiontothealreadyglycosylatedsidechain(Amagloetal.,

2010).Otherstructuralderivativesofglucomoringinsuchasthe

acylatedformsthereofhavealsobeenreportedinthisplant(Fig.1) (Försteretal.,2015a),makingthesemoleculesinterestingtostudy.

Moreremarkably,glucomoringinhasalwaysbeenthoughttoexist

onlyinM.oleifera.However,ithasalsobeenrecentlyreportedin Noccaeacaerulescensbuttheauthorscouldnotidentifythe acety-latedforms(deGraafetal.,2015).Thissuggeststheacylationof

glucomoringintobeanexclusivephenomenonofM.oleifera.

Inthecurrentstudy,gammaradiation-inducedoxidativestress

resultedinchangestothemetabolomeinM.oleiferaplants(Fig.2, Table1).UsinganUHPLC-ESI-qTOF-MS-basedtargetedmetabolite

fingerprinting approach, increasedlevels of GS molecules were

foundinplantsirradiatedwitha2kGydoseofgammaradiation

as compared to the control plants (Fig. 2; Table 1). Here, the

box-and-whiskers plots display an increase in the

concentra-tionsof glucomoringin and related GS molecules in M. oleifera

followinggammaradiationtreatment(Fig.2).Theaboveresults

provideasemi-quantitativeoverviewoftheamountofGSandits

derivativessince there arenocommerciallyavailablestandards

ofthesemoleculestoachieveabsolutequantification.Moreover,

the results indicate that the fold increase in the identified GS

werestatisticallysignificant,withalmostallhavingp-valuesof

less than 0.01 as shown in Table 1. Interestingly, it should be

re-emphasizedthatadoseof2kGywasfoundtobemorepotent

and non-lethal, thus inducing the highest levels of GS and its

derivatives.Preliminaryoptimizationshowedlowerdoses(0.1,0.5

and1.0kGy)tominimallyaffectthelevelsofGSanditsderivatives

butthelevelsabove2kGysuchas4kGand8kGywerefoundto

belethal,thuskillingtheplantsimmediatelyafterradiation.The

above phenomenon was also highlighted in studies conducted

withanotherplant,Phaseolusvulgaris(Ramabulanaetal.,2015).

Furthermore, the characterization of these metabolites was

achievedbymeansofaccuratemassMSresults(asshowninFig.3)

withtheuseoffragmentationpatternsandcomparisontoalready

publisheddata.Brieflymolecule1withprecursorion([M−H]−)at m/z570.0927(C20H29NO14S2)andRtof3.17minwasidentifiedas

4-(␣-l-rhamnosyloxy)-benzylglucosinolate(glucomoringin).The

acylatedformsofglucomoringin(2–4)producedisobaricprecursor ionsatm/z612.102(C22H31NO15S2).Interestingly,thesemolecules

elutedatdifferentRtand,inaccordancewithalreadypublished

results(Försteretal.,2015a;Tumeretal.,2015),thesethreeisomers

wereidentifiedasacetyl4-(␣-l-rhamnopyranosyloxy)-benzylGS

isomerI(2),II(3)andIII(4)elutingatRtof5.60min,6.46minand 9.63minrespectivey(Bennettetal.,2003;Försteretal.,2015a,b) (Table1).

R3O

R2O

CH2OH OH OH OH

S

S N

OR1

1 R1=R2=R3=H

2 R1=Ac; R2=R3=H

3 R1=R3=H; R2=Ac

4 R1=R2=H; R3=Ac O

O

O O

O

O O

Thepresenceoftheseacetylatedisomersposeanother

interest-ingbutchallengingdimensiontoourresultssincethefunctionof

100

0

3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00Time

9.60 612.1011

Ac-Isomer-GS III

Ac-Isomer-GS II Ac-Isomer-GS I

α-Isomer-GS

9.46 612.1042 5.60

612.1013 3.17

570.0936

%

Fig.1. UHPLC-ESI-qTOF-MSanalysesinnegativeionizationmodeofhydromethanolicextractsfrom2kGygammairradiatedMoringaoleiferashowingbasepeakintensity(BPI) chromatogramsof4-(␣-l-rhamnopyranosyloxy)-benzylglucosinolate(␣-rhamnoGS),acetyl-4-(␣-l-rhamnopyranosyloxy)-benzylglucosinolateisomerI(Ac-isomer-GSI),

(4)

T.Ramabulanaetal./RevistaBrasileiradeFarmacognosia27(2017)569–575

800

A

B

C

D

600

Peak intensity

P

eak intensity

400

200

0

200

100

100

50

0

Control Treated Control Treated

Control Treated Control Treated

120

100

80

60

40

20

0

500

400

300

200

100

0

Fig.2.Box-and-whiskersplotsshowingrelativecompositionoffouridentifiedglucosinolates(moringinderivatives),increaseddueto2kGygammaradiationtreatment ofM.oleiferawithstatisticalsignificanceofp<0.01.(A)4-(␣-l-Rhamnopyranosyloxy)-benzylglucosinolate;(B)acetyl-4-(␣-l-rhamnopyranosyloxy)-benzylglucosinolate

isomerI;(C)acetyl-4-(␣-l-rhamnopyranosyloxy)-benzylglucosinolateisomerII;and(D)acetyl-4-(␣-l-rhamnopyranosyloxy)-benzylglucosinolate,isomerIII.

Table1

Gammaradiation-inducedglucomoringinmoleculesinMoringaoleifera.

Peak Rt(min) Compoundname Mass(m/z) Elementalcomposition p-values Foldchange

1 3.09 4-(␣-l-Rhamnopyranosyloxy)-benzylglucosinolate(1) 570.0922 C20H29NO14S2 1.7×10−5 22

2 5.60 Acetyl-4-(␣-l-rhamnopyranosyloxy)-benzylglucosinolateisomerI(2) 612.1029 C22H31NO15S2 1.4×10−5 30

3 6.46 Acetyl-4-(␣-l-rhamnopyranosyloxy)-benzylglucosinolateisomerII(3) 612.1004 C22H31NO15S2 3.7×10−5 51

4 9.54 Acetyl-4-(␣-l-rhamnopyranosyloxy)-benzylglucosinolateisomerIII(4) 612.1044 C22H31NO15S2 1.5×10−8 10

thismodificationandtheeffectonthebiologicalactivityof glu-comoringinarenotknown.Thepresence ofstructurallyrelated (isomeric) metabolitesin plants is a knownphenomenon with aclassicalexamplebeingpositionalisomersofchlorogenicacids (Ncubeetal.,2014,2016).However,thepresenceofpositional iso-mersofchlorogenicacidsinplantsisalsonotfullyunderstood;but recentlyithasbeenspeculatedtobeastrategydeployedbyplants

toincreasetheconcentrationofthesemoleculesthrough

diversi-fication,soastocreatearichreservetobeutilizedwhenneeded (Karaköseetal.,2015).Assuch,thesamephenomenoncouldbetrue forthecaseofM.oleiferabutmoreresearchisneededtovalidatethis

hypothesis.Althoughalltheseisomersincreasedconcomitantly,

therelativeabundancelevelsinirradiatedplantsdiffered(Fig.1),

suggestingvaryingstabilityamongstthesecompounds.However,

elsewheretheseacetylisomerswerefoundtobeaffectedbythe

typeof extractionmethodand significantrearrangementswere

noted,withastandardofacetyl-isomer-GSIIIbeingconvertedto

acetyl-isomers-GSIandIIinabufferedsystemduetoanapparent

acetylmigration(Försteretal.,2015a).Thus,itcanbepostulated thatthediversityofGSmoleculesinM.oleiferacouldbetheresultof

bothenzymaticandnon-enzymaticreactionsinabiologicalsystem

respondingtoanoxidativestressenvironment.

EventhoughtheMSdatawasacquiredusingbothpositiveand

negativeESImodes,onlytheESInegativedatawasfoundtobe

suitableforidentificationoftheGSmoleculesandthiscouldbedue tothefactthatthesemoleculesareinherentlynegativelycharged).

TheaccurateMSspectraofthesemoleculescollectedatelevated

collisonenergy(30eV)areshowninFig.3.

Usingacombinationofmultivariateandunivariatestatistical

models(datanotshown),underlyingdifferencesinpeak

intensi-tiesoftheextractsobtainedfrombothcontrolandirradiatedplants

werenoted.ThesedifferencesinthelevelsofGSmoleculesisan

indicationofinduction oftheglucomoringinbiosynthesis

path-wayinreponsetotheoxidativestresstriggeredbytheradiation

treatment.Aspreviouslystated,GSmoleculeshavebeenshown

toaccumulatein plantsirradiatedwithUV-radiation(Schreiner

etal.,2009),whileotherresearchhasreportedthesemolecules

to be constitutively present in M. oleifera leaf extracts (Fahey,

2005;Försteretal.,2015b; Jansenetal.,2008;Vo etal.,2013).

(5)

T.Ramabulanaetal./RevistaBrasileiradeFarmacognosia27(2017)569–575

100

100 200 300 400 500 600 700 800 900 1000

0

%

100

100 200 300 400 500 600 700 800 900 1000

0

%

100

100 200 300 400 500 600 700 800 900 1000

0

%

100

100 200 300 400 500 600 700 800 900 1000

0

%

259.0064 328.0791 424.0306

570.0905

A

B

C

D

571.0988

650.0465 716.1448 952.1398

958.2131 708.1854

613.1076 612.0959

533.1224 323.1260

191.0526

193.0438

367.0981

612.0970

533.1294

613.1055

708.1782 966.2234

858.1284 693.0696

613.1198 612.1079

549.2479 259.0061 370.0934

Fig.3. SpectraofidentifiedGSsinM.oleiferaleafextractsofplantsirradiatedwith2kGydoseofgammaradiation.(A)4-(␣-l-Rhamnopyranosyloxy)-benzylglucosinolate;

(B)acetyl-4-(␣-l-rhamnopyranosyloxy)-benzylglucosinolateisomerI;(C)acetyl-4-(␣-l-rhamnopyranosyloxy)-benzylglucosinolateisomerII;and(D)acetyl-4-(␣-l

-rhamnopyranosyloxy)-benzylglucosinolateisomerIII.

induciblecomponentsofthisplantspeciesasthesewerefound

toincreaseuponradiationtreatment.Generally,GSmoleculesare

knownto respondagainst plantwounding (Bodnaryk, 1992), a

phenomenonwhichisinevitableduringleafharvestingandcould

furtherexplainwhythesecompoundsarereportedinnon-induced

leaveselsewhere(Rodríguez-Pérez et al.,2015).Previously,the

distributionand presence of these molecules inM. oleifera has

alsobeenreportedwithmixedoutcomes.Forinstance,onlyone

glucomoringinmoleculewasidentifiedinthecurrentstudybut

three distinct glucomoringin molecules were identified in M.

oleiferafromMadagascar(Rodríguez-Pérez etal.,2015).As

pre-viouslystated, glucomoringinwas alsorecentlyidentified in N.

caerulescens plants, but the distribution was only limited to a

fewsamplesanalyzedandabsentinotheraccessions/cultivars(de

Graafetal.,2015).Thesameauthorsconcludedthatthese differ-encesareduetoregionalgeneticvariationratherthantheinitially

thoughtenvironmentalfactorssuchas metaltoxicity (deGraaf

et al.,2015).Geneticvariation was furtherusedtojustify why

glucomoringinwasneverdetectedinsomespeciesrelatedtoN.

caerulescens(Tolràetal.,2000;Asadetal.,2013).Recently,

acetyl-(4-␣-l-rhamnopyranosyloxy)-benzyl GS isomers were foundto

onlyaccumulateinsome,butnotallM.oleiferaplantsofthesame ecotype(Försteretal.,2015b).Takentogether,alltheaboveresults

areanindicationthatthepresenceandrelativeconcentrationof

these compounds are subject tounderlying cellular conditions

or geneticmakeup of plants. Assuch, not allGS-containing M.

oleiferaplantswillhavesimilarGS-mediatedbio-activities. There-fore,studiesofconditionswiththeabilitytoincreasethelevelsof GSmoleculesinplantscapableofGSsynthesisareimportant.Inthis

regard,thedistributionofGSmoleculesinM.oleiferahasbeen stud-iedbyvaryingthecultivationconditionssuchassulfurfertilization

andwateravailability,andithasbeenshownthattheGScontent

increasedunderawater-deficientregiment,withtheeffectmore

pronouncedinselectedecotypes(Försteretal.,2015b).Thisagain

highlightstheimportanceofgeneticvariationandabioticstress

conditions.

Inthecurrentstudy,anincreaseinGScontentduetogamma

radiationwasnotedand,moreimportantly,alltheirradiatedplants exhibitedaconsistentresponse.Ingeneral,theinvolvementofGSs

againstoxidativestresscausedbybioticandabioticstresseshas

beenreportedelsewhere(Björkmanet al.,2011; Sardansetal.,

2011;Zhangetal.,2011;Zandalinasetal.,2012).Accumulation

oftheGScontentinplantstreatedwithradiation(i.e.UVlight)

hasbeenreportedinT.majus(Schreineretal.,2009), Arabidop-sisthaliana(Wangetal.,2011)andbroccoli(Pérez-Balibreaetal., 2008;Mewisetal.,2012).Therefore,takentogether,theincreasein

GSmoleculesinresponsetoamorepotentstimulatorofoxidative

stressintheformof gammaradiationisanindicationof

possi-bleanti-oxidativepropertiesofthesemoleculesinplants.Hitherto, thereareverylimitedreportsonthedirectanti-oxidantactivityof

GSmoleculesandwhetherthesecompoundsfunctionas

indepen-dententitiesorsynergistically(Försteretal.,2015a,b).Thoughthe

currentresultshasindicatedgammaradiationasapotentinducer

ofmedicinallyimportantmetabolites,careneedstobetakensince

thistypeofradiationisknowntocauseirreversibledamagesto

foodvitaminssuchasvitaminC(Dionísioetal.,2009).Assuch,

pro-longedexposuretomilderformsofradiationcanbeusedinstead

(6)

T.Ramabulanaetal./RevistaBrasileiradeFarmacognosia27(2017)569–575

Conclusion

Thestudyrepresentsaproofonconceptmanipulationof

health-beneficialneutraceuticalsinamedicinalplantwheretheinducer

leavesnochemicalresidue.Here,thetargetedmetabolite

profil-ingconfirmsthepresenceof structurallydiverseglucomoringin

moleculesinM.oleiferaand demonstrates therelative

accumu-lationpost-gammaradiationtreatment.Thecurrent resultsalso

showtheGSmoleculesofM.oleiferatobepartoftheinducible

defensemechanismofplantsratherthanconstitutivecomponents

aspreviously perceived.Our resultssupportsan inplanta

anti-oxidativeroleforglucomoringinandacylatedderivativesfromM.

oleifera, and by extension in thehuman body when consumed

asherbalsupplement. Assuch, consumptionof non-inducedM.

oleiferaleafmaterialdoesnotnecessarilyguaranteethereported

activitiesassociated withthesemolecules.However, theuseof

radiationmayprovideanattractivewaytoenhanceGScontent

and,as such, Moringa plants grown underlight intensive

envi-ronmentscontributingtophoto-oxidativestress,areexpectedto

containahighercontentthereof.Moreover,irradiatedplantsare

alsoexpectedtoexhibitenhancedpharmacologicalpropertiesand,

assuch,futurestudiesshouldfocusonevaluationandbiological

testingofextractspreparedfromirradiatedplants.

Authors’contributions

NEM,RDMandIADconceivedofthestudy,TRconductedthe

experiments.TR,ARN,NEMandPASanalyzedtheMSdata.NEM,

RDM,LAPandIADsupervisedtheprojectandLAPparticipatedin

criticalreadingofthemanuscript.Allauthorsreadandapproved

thefinalmanuscript.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

SouthAfricanNationalResearchFoundation(NRF),University

ofJohannesburgandNuclearEnergyCorporationofSouthAfrica

(NECSA)arethankedforfinancialsupport.MrManfredRellingis

thankedforhisassistancewithradiationexperiments.

References

Agerbirk,N.,Olsen,C.E.,2012.Glucosinolatestructuresinevolution.Phytochemistry 77,16–45.

Ahuja,S.,Kumar,M.,Kumar,P.,Gupta,V.K.,Singhal,R.K.,Yadav,A.,Singh,B.,2014. Metabolicandbiochemicalchangescausedbygammairradiationinplants.J. Radioanal.Nucl.Chem.300,199–212.

Amaglo,N.K.,Bennett,R.N.,LoCurto,R.B.,Rosa,E.S.,LoTurco,V.,Giuffrida,A.,Curto, A.,Lo,Crea,F.,Timpo,G.M.,2010.Profilingselectedphytochemicalsand nutri-entsindifferenttissuesofthemultipurposetreeMoringaoleiferaL.,grownin Ghana.FoodChem.122,1047–1054.

Asad,S.A.,Young,S.,West,H.,2013.Effectofnickelandcadmiumonglucosinolate productioninThlaspicaerulescens.PakistanJ.Bot.45,495–500.

Bajguz,A.,Hayat,S.,2009.Effectsofbrassinosteroidsontheplantresponsesto environmentalstresses.PlantPhysiol.Biochem.47,1–8.

Bennett,R.N.,Mellon,F.,Foidl,N.,Pratt,J.H.,Dupont,M.S.,Perkins,L.,Kroon,P.,2003. Profilingglucosinolatesandphenolicsinvegetativeandreproductivetissues ofthemulti-purposetreesMoringaoleiferaL.(Horseradishtree)andMoringa stenopetalaL.J.Agric.FoodChem.51,3546–3553.

Björkman,M.,Klingen,I.,Birch,A.N.E.,Bones,A.M.,Bruce, T.J.A.,Johansen,T.J., Meadow,R.,Mølmann,J.,Seljåsen,R.,Smart,L.E.,Stewart,D.,2011. Phytochemi-calsofBrassicaceaeinplantprotectionandhumanhealth–influencesofclimate, environmentandagronomicpractice.Phytochemistry72,538–556.

Bodnaryk,R.P.,1992.Effectsofwoundingonglucosinolatesinthecotyledonsof oilseedrapeandmustard.Phytochemistry31,2671–2677.

Bones,A.M.,Rossiter,J.T.,2006.Theenzymicandchemicallyinduceddecomposition ofglucosinolates.Phytochemistry67,1053–1067.

Brown,P.D.,Tokuhisa,J.G.,Reichelt,M.,Gershenzon,J.,2003.Variationof glu-cosinolateaccumulationamongdifferentorgansanddevelopmentalstagesof Arabidopsisthaliana.Phytochemistry62,471–481.

Clarke,D.B.,2010.Glucosinolates,structuresandanalysisinfood.Anal.Chem.9660, 310–325.

deGraaf,R.M.,Krosse,S.,Swolfs,A.E.M.,teBrinke,E.,Prill,N.,Leimu,R.,vanGalen, P.M.,Wang,Y.,Aarts,M.G.M.,vanDam,N.M.,2015.Isolationand identifica-tionof4-␣-rhamnosyloxybenzylglucosinolateinNoccaeacaerulescensshowing intraspecificvariation.Phytochemistry110,166–171.

Demidchik,V.,2015.Mechanismsofoxidativestressinplants:fromclassical chem-istrytocellbiology.Environ.Exp.Bot.109,212–228.

Dinkova-Kostova,A.T.,Kostov,R.V.,2012.Glucosinolatesandisothiocyanatesin healthanddisease.TrendsMol.Med.18,337–347.

Dionísio,A.P.,Gomes,R.T.,Oetterer,M.,2009.Ionizingradiationeffectsonfood vitamins:areview.Braz.Arch.Biol.Technol.52,1267–2127.

Esnault,M.,Legue,F.,Chenal,C.,2010.Ionizingradiation:advancesinplantresponse. Environ.Exp.Bot.68,231–237.

Fahey,J.,2005.Moringaoleifera:areviewofthemedicalevidenceforits nutri-tional,therapeuticand prophylacticproperties,Part1. TreesLife J. 1,15, http://www.tfljournal.org/article.php/20051201124931586.

Fahey,J.W.,Zalcmann,A.T.,Talalay,P.,2001.Thechemicaldiversityanddistribution ofglucosinolatesandisothiocyanatesamongplants.Phytochemistry56,5–51. Förster,N.,Ulrichs,C.,Schreiner,M.,Müller,C.T.,Mewis,I.,2015a.Developmentof

areliableextractionandquantificationmethodforglucosinolatesinMoringa oleifera.FoodChem.166,456–464.

Förster,N.,Ulrichs,C.,Schreiner,M.,Arndt,N.,Schmidt,R.,Mewis,I.,2015b. Eco-typevariabilityingrowthandsecondarymetaboliteprofileinMoringaoleifera: impactofsulfurandwatervailability.J.Agric.FoodChem.63,2852–2861. Guerrero-Beltrán,C.E.,Calderón-Oliver,M.,Pedraza-Chaverri,J.,Chirino,Y.I.,2012.

Protectiveeffectofsulforaphaneagainstoxidativestress:recentadvances.Exp. Toxicol.Pathol.64,503–508.

Grubb,C.D.,Abel,S.,2006.Glucosinolatemetabolismanditscontrol.TrendsPlant Sci.11,89–100.

Hollósy,F.,2002.Effectsofultravioletradiationonplantcells.Micron33,179–197. Jansen,J.J.,Allwood,J.W.,Marsden-Edwards,E.,vanderPutten,W.H.,Goodacre,R., vanDam,N.M.,2008.Metabolomicanalysisoftheinteractionbetweenplants andherbivores.Metabolomics5,150–161.

Karaköse,H.,Jaiswal,R.,Deshpande,S.,Kuhnert,N.,2015.Investigationofthe pho-tochemicalchangesofchlorogenicacidsinducedbyultravioletlightinmodel systemsandinagriculturalpracticewithSteviarebaudianacultivationasan example.J.Agric.FoodChem.63,3338–3347.

Kovács,E.,Keresztes,Á.,2002.EffectofgammaandUV-B/Cradiationonplantcells. Micron33,199–210.

Leone,A.,Spada,A.,Battezzati,A.,Schiraldi,A.,Aristil,J.,Bertoli,S.,2015.Cultivation, genetic,ethnopharmacology,phytochemistryandpharmacologyofMoringa oleiferaleaves:anoverview.Int.J.Mol.Sci.16,12791–12835.

Madala,N.E.,Steenkamp,P.A.,Piater,L.A.,Dubery,I.A.,2012.Collisionenergy alter-ationduringmassspectrometricacquisitionisessentialtoensureunbiased metabolomicanalysis.Anal.Bioanal.Chem.404,367–372.

Makita,C.,Chimuka,L.,Steenkamp,P.,Cukrowska,E.,Madala,E.,2016.Comparative analysesofflavonoidcontentinMoringaoleiferaandMoringaovalifoliawiththe aidofUHPLC-qTOF-MSfingerprinting.SouthAfricanJ.Bot.105,116–122. Mewis,I.,Schreiner,M.,Nguyen,C.N.,Krumbein,A.,Ulrichs,C.,Lohse,M.,Zrenner,

R.,2012.UV-Birradiationchangesspecificallythesecondarymetaboliteprofile inbroccolisprouts:inducedsignalingoverlapswithdefenseresponsetobiotic stressors.PlantCellPhysiol.53,1546–1560.

Mithen,R.,2001.Glucosinolates–biochemistry, geneticsandbiological activity. PlantGrowthRegul.34,91–103.

Mittler,R.,2002.Oxidativestress,antioxidantsandstresstolerance.TrendsPlant Sci.7,405–410.

Moyo,B.,Masika,P.J.,Hugo,A.,Muchenje,V.,2011.Nutritionalcharacterizationof Moringa(MoringaoleiferaLam.)leaves.AfricanJ.Biotechnol.10,12925–12933. Ncube,E.N.,Mhlongo,M.I.,Piater,L.,Steenkamp,P.,Dubery,I.,Madala,N.E.,2014. Analysesofchlorogenicacidsandrelatedcinnamicacidderivativesfrom Nico-tianatabacumtissueswiththeaidofUPLC-QTOF-MS/MSbasedonthein-source collision-induceddissociationmethod.Chem.Cent.J.8,1–10.

Ncube,E.N.,Steenkamp,P.A.,Madala,N.E.,Dubery,I.A.,2016.Chlorogenicacids biosynthesisinCentellaasiaticacellsisnotstimulatedbysalicylicacid manipu-lation.Appl.Biochem.Biotechnol.179,685–696.

Pérez-Balibrea,S.,Moreno,D.A.,Garcia-Viguera,C.,2008.Influence oflighton health-promotingphytochemicalsofbroccolisprouts.J.Food.Agric.Environ. 88,904–910.

Popoola,J.O.,Obembe,O.O.,2013.Localknowledge,usepatternandgeographical distributionofMoringaoleiferaLam.(Moringaceae)inNigeria.J. Ethnopharma-col.150,682–691.

Ramabulana,T.,Mavunda,R.D.,Steenkamp,P.A.,Piater,L.A.,Dubery,I.A.,Madala, N.E.,2015.SecondarymetaboliteperturbationsinPhaseolusvulgarisleavesdue togammaradiation.PlantPhysiol.Biochem.97,287–295.

Ramabulana,T.,Mavunda,R.D.,Steenkamp,P.A.,Piater,L.A.,Dubery,I.A.,Madala, N.E.,2016.Perturbationofpharmacologicallyrelevantpolyphenoliccompounds inMoringaoleiferaagainstphoto-oxidativedamagesimposedbygamma radia-tion.J.Photochem.Photobiol.B:Biol.156,79–86.

(7)

T.Ramabulanaetal./RevistaBrasileiradeFarmacognosia27(2017)569–575

Sardans,J.,Pe˜nuelas,J.,Rivas-Ubach,A.,2011.Ecologicalmetabolomics:overview ofcurrentdevelopmentsandfuturechallenges.Chemoecology21,191–225. Schreiner,M.,Krumbein,A.,Mewis,I.,Ulrichs,C.,Huyskens-Keil,S.,2009.Short-term

andmoderateUV-Bradiationeffectsonsecondaryplantmetabolismindifferent organsofnasturtium(TropaeolummajusL.).Innov.FoodSci.Emerg.Technol.10, 93–96.

Sumner,L.W.,Amberg,A.,Barrett,D.,Beale,M.H.,Beger,R.,Daykin,C.A.,Fan, T.W.-M.,Fiehn,O.,Goodacre,R.,Griffin,J.L.,Hankemeier,T.,Hardy,N.,Harnly,J., Higashi,R.,Kopka,J.,Lane,A.N.,Lindon,J.C.,Marriott,P.,Nicholls,A.W.,Reily, M.D.,Thaden,J.J.,Viant,M.R.,2007.Proposedminimumreportingstandards forchemicalanalysisChemicalAnalysisWorkingGroup(CAWG)Metabolomics StandardsInitiative(MSI).Metabolomics3,211–221.

Tolrà,R.P.,Alonso,R.,Poschenrieder,C.,Barceló,D.,Barceló,J.,2000. Determi-nationofglucosinolatesinrapeseedandThlaspicaerulescensplantsbyliquid chromatography-atmosphericpressurechemicalionizationmassspectrometry. J.Chromatogr.889,75–81.

Traka,M.,Mithen,R.,2009.Glucosinolates,isothiocyanatesandhumanhealth. Phy-tochem.Rev.8,269–282.

Tumer,T.B.,Rojas-Silva,P.,Poulev,A.,Raskin,I.,Waterman,C.,2015.Directand indi-rectantioxidantactivityofpolyphenol-andisothiocyanate-enrichedfractions fromMoringaoleifera.J.Agric.FoodChem.63,1505–1513.

Vo,Q.V.,Trenerry,C.,Rochfort,S.,Wadeson,J.,Leyton,C.,Hughes,A.B.,2013. Synthe-sisandanti-inflammatoryactivityofaromaticglucosinolates.BioorganicMed. Chem.21,5945–5954.

Wang,Y.,Xu,W.-J.,Yan,X.-F.,Wang,Y.,2011.Glucosinolatecontentandrelated geneexpressioninresponsetoenhancedUV-BradiationinArabidopsis.African J.Biotechnol.10,6481–6491.

Williamson,G.,Faulkner,K.,Plumb,G.W.,1998.Glucosinolatesandphenolicsas antioxidantsfromplantfoods.Eur.J.CancerPrev.7,17–21.

Zandalinas,S.I.,Vives-Peris,V.,Gómez-Cadenas,A.,Arbona,V.,2012.Afastand precisemethodtoidentifyindolicglucosinolatesandcamalexininplantsby combiningmassspectrometricandbiologicalinformation.J.Agric.FoodChem. 60,8648–8658.

Zhang,W.J.,Björn,L.O.,2009.Theeffectofultravioletradiationontheaccumulation ofmedicinalcompoundsinplants.Fitoterapia80,207–218.

Zhang,J.,Sun,X.,Zhang,Z.,Ni,Y.,Zhang,Q.,Liang,X.,Xiao,H.,Chen,J.,Tokuhisa, J.G.,2011. Phytochemistrymetaboliteprofilingof Arabidopsisseedlingsin response to exogenoussinalbin and sulfurdeficiency. Phytochemistry 72, 1767–1778.

Imagem

Fig. 1. UHPLC-ESI-qTOF-MS analyses in negative ionization mode of hydromethanolic extracts from 2 kGy gamma irradiated Moringa oleifera showing base peak intensity (BPI) chromatograms of 4-(␣-l-rhamnopyranosyloxy)-benzyl glucosinolate (␣-rhamno GS), acetyl
Fig. 2. Box-and-whiskers plots showing relative composition of four identified glucosinolates (moringin derivatives), increased due to 2 kGy gamma radiation treatment of M
Fig. 3. Spectra of identified GSs in M. oleifera leaf extracts of plants irradiated with 2 kGy dose of gamma radiation

Referências

Documentos relacionados

The aim of the present study was to compare, through photoelastic analysis, the distribution of stress of a fixed prosthesis with 3 parallel implants to the distribution of stress

High- mortality outbreaks in small ruminants have also been reported in Brazil (Table 1), with an outbreak reported in Paraíba associated with the ingestion of poultry

The remaining 43 suppliers were compared and ranked based on the defined scorecard, resulting in the shortlist shown below (figure 5).. This shortlist is the basis to start

A DV tem como intuito determinar qual a proporção da previsão da variância dos erros de cada variável que pode ser explicada por choques exógenos às outras

Elaborou-se, assim, uma revisão de um conjunto relevante de artigos com vista a melhor compreender o papel da fisiopatologia do carcinoma nasofaríngeo e bem assim a utilização

É imperativo o despontar de novos paradigmas sócio-culturais, onde os valores e o respeito mútuo, quer pelos seres humanos, quer pelo mundo natural, se sobreponham ao modo egoísta

During the last decades oxidative stress has been implicated in the pathogenesis of various neurodegenerative and neuropsychiatric disor- ders, including depression ( Lombard, 2010

Whereas steroids may induce oxidative stress and that the use of acupuncture (AC) or electroacupuncture (EAc) can attenuate the oxidative stress in different organs and tissues such