• Nenhum resultado encontrado

ON THE LOCAL PROPERTY OF SUMMABILITY OF A FACTORED FOURIER SERIES

N/A
N/A
Protected

Academic year: 2017

Share "ON THE LOCAL PROPERTY OF SUMMABILITY OF A FACTORED FOURIER SERIES"

Copied!
6
0
0

Texto

(1)

162

ON THE LOCAL PROPERTY OF

N

,

p

n

,

n k

SUMMABILITY OF A

FACTORED FOURIER SERIES

U.K. Misra1,Mahendra Misra2, B.P. Padhy3 & S.K. Buxi4

1

Department of Mathematics,Berhampur University,Berhampur – 760007,Orissa, India,

2

Principal,Government Science College,Mlkangiri, Orissa, India.

3

Roland Institute of Technology,Golanthara-760008,Orissa, India.

4

Department of Mathematics,Gunupur Science College,Gunupur,Odisha, India. Email: 1umakanta_misra@yahoo.com , 2mahendramisra@2007.gmail.com , 3iraady@gmail.com

ABSTRACT In this paper we have established a theorem on the local property of

k n n

p

N

,

,

summability of factored Fourier series.

Keywords:

k n

p

N

,

-summability,

N

,

p

n

,

n k-summability,

k n

p

N,

-summability and Fourier series. AMS CLASSIFICATION NO: 40D25

1. INTRODUCTION

Let

a

n be a given infinite series with sequence of partial sums

 

s

n .Let

 

p

n be a sequence of positive real

constants such that

(1.1)

  

n i i

n

p

as

n

P

p

i

P

0

)

1

,

0

(

  The sequence –to-sequence transformation

(1.2)

 

n n

n

n

p

s

P

t

0

1

  

defines

N

,

p

n -means of the sequence

 

s

n generated by the sequence of coefficients

 

p

n .The series

a

n is

said to be summable

k n

p

N

,

,

k

1

,

if

(1.3)

 





1

1 1

n

k n n k

n n

t

t

p

P

.

For k=1,

k n

p

N

,

-summability is same as

N

,

p

n -summability. When

p

n

1

for

all

n

and

k

1

,

k n

p

N

,

-summability is same as

C

,

1

-summability.

Let

 

n be any sequence of positive numbers. The series

a

n is said to be summable

N

,

p

,

,

k

1

k n

n

, if

(1.4)

 

k

n n n

k

n

t

t

1 1

1

.

A sequence

 

n is said to be convex if

0

2

n for every positive integer n.

Let

f

 

t

be a periodic function with period

2

and integrable in the sense of Lebesgue over

(

,

)

.Without loss of generality we may assume that the constant term in the Fourier series of

f

 

t

is zero, so that

(1.5)

 

 

 

1 1

)

sin

cos

(

~

n n n

n

n

nt

b

nt

A

t

a

t

(2)

163 2. KNOWN THEOREMS

Dealing with the

k n

p

N

,

-

summability of an infinite series Bor[1] proved the following theorem: THEOREM:

Let

k

1

and let the sequences

 

p

n

and

 

n be such that

(2.1)

n

O

X

n

1

,

(2.2)

 

1

1 1

n

k n k n k n

n

X

,

and

(2.3)

1

)

1

(

n

n k

n

X

,

where

.

n n n

np

P

X

Then the summability

k n

p

N

,

of the factored Fourier series

1

)

(

n

n n n

t

X

A

at a point can

be ensured by the local property.

In this paper we have proved a theorem on the local property of

k n n

p

N

,

,

summability of factored Fourier series:

3. MAIN THEOREM

Let

k

1

.

Suppose

 

n be a convex sequence such that

n

1

nis convergent and

 

p

n be a sequence such that

(3.1)

n

O

X

n

1

,

(3.2)





   

r r n

r n n

r n

p

P

P

p

O

P

P

1 1 1

,

(3.3)

 





  

 

r r n

r n k m

r n

n

P

p

O

P

p

1 1

1

,

(3.4)

 

1 1

n

k n k n

n

X

,

and

(3.5)

 

1 1

n

k n k n

n

X

,

where

.

n n n

np

P

X

Then the summability

N

,

p

,

,

k

1

k n

n

of the factored Fourier series

1

)

(

n

n n n

t

X

A

at a

(3)

164 4. LEMMA

Let

k

1

.

Suppose

 

n be a convex sequence such that

n

1

n is convergent and

 

p

n be a sequence such

that the conditions (3.1)-(3.5)are satisfied. If

 

s

n is bounded then the series

1

n

n n n

X

a

is

k n n

p

N

,

,

-summable, where

 

n is a sequence of positive numbers . 5. PROOF OF THE LEMMA

Let

 

T

n denote the

N

,

p

n

-

mean of the series

1

n

n n n

X

a

.

Then by definition we have

  

n

r

r r r n

n

n

p

a

X

P

T

0 0

1

 

n

r n n

r

r r r n

p

X

a

P

 

0

1

 

n

r n n

r

r r r n

p

X

a

P

 

0

1

 

n

r

r r r n r n

X

P

a

P

0

1

Hence

 

 

1

1 1 1

1 1

1

1

n

r

r r r r n n

n

r

r r r r n n n

n

P

a

X

P

X

a

P

P

T

T

r r r

n

r n

r n n

r

n

a

X

P

P

P

P

 

  





1 1

1

r r r

n

r

n r n n r n n

n

X

a

P

P

P

P

P

P

    

1

1 1

1

1

 

    

n r

r

r r n r n n r n n

n

a

X

P

P

P

P

P

P

1

1

1

1 1

1

1

 

   

 

  

       

     

     

1

1

1 2

1 1 1

1

2 1

1 1

1

1 1

1 1

n

r

r r r n r n n r n n

r

r r r n r n n r n n

r

r r r n r n n r n n

n

s X P

P P P

s X P

P P P

s X P p P p P

P

(by Abel’s transformation)

T

n,1

T

n,2

T

n,3

T

n,4

T

n,5

T

n,6

(

say

)

.

To complete the theorem by using Minokowski’s inequality, it is sufficient to show that

 

1

,

2

,

3

,

4

,

5

,

6

.

1

,

1

i

for

T

n

k i n k n

Now, we have

 

1

2

1 , 1

m

n

k n k n

T

 

  

 

1

2

1

1

1 1

1

1

m

n

k n

r

r r r n r n n

n k

n

p

P

X

s

P

P

(4)

165

 

1 1

1 1

2

1

1

1

1

1

 

 

 





k n

r r n n m

n

n

r

k r k r k r r n n

k

n

p

P

X

s

p

P

 

 

 





1

1 1

1

)

1

(

m

r

n n

r n k n m

r

k r k r

P

p

X

O

r r m

r

k r k r

P

p

X

O

1

)

1

(

,by(3.3)

(

1

)

,

1

1

r r r r m

r

k r k r

rp

P

P

p

X

O

as

n n n

np

P

X

r

X

O

k r m

r k r

 

1 1

)

1

(

O

(

1

)

as

m

,

by (3.4). Next,

 

1

2

2 , 1

m

n

k n k n

T

 

 

 

1

2

1

1 1 1

1

1

m

n

k n

r

r r r n r n n

n k

n

p

P

X

s

P

P

 

1 1

1 1 1

1

2

1

1 1 1

1

1

1

 

  

 

  

 





k n

r r n n

m

n

n

r

k r k r k r r n n

k

n

p

P

X

s

p

P

 

 

  





1

1 1

1 1

1

)

1

(

m

r

n n

r n k n m

r

k r k r

P

p

X

O

r r m

r

k r k r

P

p

X

O

1

)

1

(

,by(3.3)

(

1

)

,

1

1

r r r r m

r

k r k r

rp

P

P

p

X

O

as

n n n

np

P

X

r

X

O

k r m

r k r

 

1 1

)

1

(

O

(

1

)

as

m

,

by (3.4). Further,

 

1

2

3 , 1

m

n

k n k n

T

 

  

1

2

1

1

1 1 1

1

1

m

n

k n

r

r r r n r n n

n k

n

P

P

X

s

P

P

 

1 1

1 1 1

2

1

1 1

1

1

1

 

 

 





k

r n

r r n n m

n

n

r

k r k r k r r n n

k

n

P

P

X

s

P

P

 

 

  





1

1

1 1

1

)

1

(

m

r

n n

r n k n m

r

k r k r

P

P

X

O





 

  

1

1 1

1

1

(

1

)

1

n

r r n

r

r r n n

O

P

P

Since

r r m

r

k r k r

P

p

X

O

1

)

1

(5)

166

(

1

)

,

1

1

r r r r m

r

k r k r

rp

P

P

p

X

O

as

n n n

np

P

X

r

X

O

k r m

r k r

 

1 1

)

1

(

O

(

1

)

as

m

,

by (3.5). Now,

 

1

2

4 , 1

m

n

k n k n

T

 

 

1

2

1

1 2 1

1

1

m

n

k n

r

r r r n r n n

n k

n

P

P

X

s

P

P

 

1 1

1 2 1

1

2

1

1 2 1

1

1

1

 

  

 

  

 





k

r n

r r n n m

n

n

r

k r k r k r r n n

k

n

P

P

X

s

P

P

 

 

  





1

1 1

2 1

1

)

1

(

m

r

n n

r n k n m

r

k r k r

P

P

X

O

,(as above)

r r m

r

k r k r

P

p

X

O

1

)

1

(

, by (3.3)

(

1

)

,

1

1

r r r r m

r

k r k r

rp

P

P

p

X

O

as

n n n

np

P

X

r

X

O

k r m

r k r

 

1 1

)

1

(

O

(

1

)

as

m

,

by (3.5). Again

 

 

1

2

5 , 1

m

n

k n k n

T

 

    

1

2

1

1

1 1 1 1

1

1

m

n

k n

r

r r r n r n n

n k

n

P

P

X

s

P

P

 

 

 

1

2

1

1

1 1 1

m

n

k n

r

r r r n r n k

n

X

s

P

P

 

  

 

1

2

1

1

1 1

1 1

m

n

k n

r

r r r r r n

r n k

n

X

s

p

P

P

p

,by(3.2)

 

  

  

1

2

1

1

1 1

1

1

1

m

n

k n

r

r r r r n

r n k

n

r

s

p

P

P

p

, by(3.1)

 

  

  

1

2

1

1

1 1

1 1

m

n

k n

r r

r r r r r r n

r n k

n

P

p

X

s

p

P

P

p

,as

n n n

np

P

X

 

1 1

1 1

1 1

2

1

1

1 1

1 1

 

 

  

  

  

k n

r n r n m

n

n

r

k r k r k r n

r n k

n

P

p

X

s

P

p

 

 

  

 





1

1 1

1 1

1 1

)

1

(

m

r

n n

r n k n m

r

k r k r

P

p

X

(6)

167

(

1

)

,

1

1 1

r r r r m

r

k r k r

rp

P

P

p

X

O

 

as

n n n

np

P

X

and by(3.3)

(

1

)

,

1

1 1

 

m

r

k r k r

X

r

O

O

(

1

)

as

m

,

by (3.4). Finally,

 

1

2

6 , 1

m

n

k n k n

T

 

   

1

2

1

1

1 2 1

1

1

m

n

k n

r

r r r n r n n

n k

n

P

P

X

s

P

P

 

  

 

1

2

1

1

1 1

2 1

m

n

k n

r

r r r n

r n k

n

X

s

P

P

 

  

 

1

2

1

1

1 2

2 1

m

n

k n

r

r r r r r n

r n k

n

X

s

p

P

P

p

,by(3.2)

 

  

  

1

2

1

1

1 2

2

1

1

m

n

k n

r

r r r r n

r n k

n

r

s

p

P

P

p

, by(3.1)

 

  

  

1

2

1

1

1 2

2 1

m

n

k n

r r

r r r r r r n

r n k

n

P

p

X

s

p

P

P

p

,as

n n n

np

P

X

 

1 1

1 2

2 1

2

1

1

1 2

2 1

 

 

  

  

  

k n

r n r n m

n

n

r

k r k r k r n

r n k

n

P

p

X

s

P

p

 

 

  

 





1

1 2

2 1

1 1

)

1

(

m

r

n n

r n k n m

r

k r k r

P

p

X

O

(

1

)

,

1

1 1

r r r r m

r

k r k r

rp

P

P

p

X

O

 

as

n n n

np

P

X

and by(3.3)

(

1

)

,

1

1 1

 

m

r

k r k r

X

r

O

O

(

1

)

as

m

,

by (3.4). This completes the proof of the Lemma.

5. PROOF OF THE THEOREM

Since the behavior of the Fourier series, as far as convergence is concerned , for a particular value of x depends on the behavior of the function in the immediate neighborhood of this point only, hence the truth of the theorem is necessary consequence of the Lemma.

REFERENCES

[1]. H.Bor., 1992, On the Local Property of

k n

p

Referências

Documentos relacionados

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Na hepatite B, as enzimas hepáticas têm valores menores tanto para quem toma quanto para os que não tomam café comparados ao vírus C, porém os dados foram estatisticamente

The knowledge of the Basic Infiltration Rate (TIB) of water in the soil is a way to assist in the management and conservation of the soil and allows greater control of

H„ autores que preferem excluir dos estudos de prevalˆncia lesŽes associadas a dentes restaurados para evitar confus‚o de diagn€stico com lesŽes de

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

Abstract: As in ancient architecture of Greece and Rome there was an interconnection between picturesque and monumental forms of arts, in antique period in the architecture