• Nenhum resultado encontrado

Lactoferrin, chitosan and Melaleuca alternifolia-natural products that show promise in candidiasis treatment

N/A
N/A
Protected

Academic year: 2021

Share "Lactoferrin, chitosan and Melaleuca alternifolia-natural products that show promise in candidiasis treatment"

Copied!
8
0
0

Texto

(1)

h ttp : / / w w w . b j m i c r o b i o l . c o m . b r /

Review

Lactoferrin,

chitosan

and

Melaleuca

alternifolia—natural

products

that

show

promise

in

candidiasis

treatment

Lorena

de

Oliveira

Felipe

,

Willer

Ferreira

da

Silva

Júnior,

Katialaine

Corrêa

de

Araújo,

Daniela

Leite

Fabrino

UniversidadeFederaldeSãoJoãodel-Rei/CampusAltoParaopeba,MinasGerais,MG,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received18August2016 Accepted26May2017

Availableonline11November2017 AssociateEditor:LuisHenrique Guimarães Keywords: Candida Lactoferrin Melaleucaalternifolia Chitosan Naturalproducts

a

b

s

t

r

a

c

t

Theevolutionofmicroorganismsresistanttomanymedicineshasbecomeamajor chal-lengeforthescientificcommunityaroundtheworld.Motivatedbythegravityofsucha situation,theWorldHealthOrganizationreleasedareportin2014withtheaimofproviding updatedinformationonthiscriticalscenario.Amongthemostworryingmicroorganisms, speciesfromthegenusCandidahaveexhibitedahighrateofresistancetoantifungaldrugs. Therefore,theobjectiveofthisreviewistoshowthattheuseofnaturalproducts(extractsor isolatedbiomolecules),alongwithconventionalantifungaltherapy,canbeaverypromising strategytoovercomemicrobialmultiresistance.Somepromisingalternativesareessential oilsofMelaleucaalternifolia(mainlycomposedofterpinen-4-ol,atypeofmonoterpene), lacto-ferrin(apeptideisolatedfrommilk)andchitosan(acopolymerfromchitin).Suchproducts havegreatpotentialtoincreaseantifungaltherapyefficacy,mitigatesideeffectsandprovide awiderangeofactioninantifungaltherapy.

©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Introduction

Fungalinfectionsareresponsibleformanydeathsaroundthe world,inadditiontocontributingtosignificantexpensesin publichealth.1Amongthepossibleetiologicagents,Candida

spp.arenotedduetotheirrelevanceandprevalence. Accord-ingtoMcCartyandPappas(2015),15–20microorganismsfrom thegenusCandidaaredescribedascertaintocauseinfection.2

Correspondingauthor.

E-mail:lorenaob@gmail.com(L.O.Felipe).

However, fourspecies cause 96%ofthe infections:Candida albicansisthemainetiologicagent,responsiblefor42.5%of infections,followedbyCandidatropicalis(27.3%),Candida para-psilosis(21.9%)andCandidaglabrata(4.4%).3

InfectionsoriginatingfromC.albicanshavebeenobserved since the time of Hippocrates,who described Candida dis-eases indebilitatedpatientsin337B.C.4 Now,Candidaspp.

areresponsibleforthemajorityofbloodinfectionsin inten-sivetherapyunitsaroundtheworld,impactinghospitalization timesandcosts.5In2005,forexample,theCentersforDisease

ControlandPrevention(CDC)showedthatforeach diagno-sis of Candida spp. infection, the period of hospitalization

https://doi.org/10.1016/j.bjm.2017.05.008

1517-8382/©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

islengthened from 3to13 days. Financially speaking,this additionalperiodleads toexpenses from $6000 to$29,000. Furthermore,eachyear,thesevaluesareestimatedtoreach approximately$8billion.6,7

Advances in medicine have enabled people who are immunesuppressed(suchasthosewhohavereceivedorgan transplantsorareHIVpositive)tolivelongerlives.8The

great-estvulnerabilityofsuchindividualsistometabolicallyflexible microorganismsofthegenusCandida,whichhaveincreased therateofmorbidityand mortalityto35% inthis groupof people.9 In addition, parallel to the increasing number of

casesoffungal infection causedbyCandidaspp., the resis-tanceofCandidaspp.toantimicrobialdrugshasprogressively increased.Thelatter facthas sparkedthe attention ofthe WorldHealthOrganization(WHO)duetoitsrelevanceandled tothereleaseofthereportAntimicrobialResistance:GlobalReport Surveillance.10

ThedevelopmentofresistanceinCandidaspp.,from ther-apywithamphotericinB,againstdrugsfromtheazolegroup, echinocandinandfluconazolewasamongthekey informa-tion providedinthis report,along withreports ofcasesof multiresistancefromdifferentregionsoftheworldsuchas AsiaandtheMiddleEastandsomeareasofSouthAmerica.10

Thesedataarealarmingbecausesuchresistancehas devel-opedagainstantifungaldrugswidelyusedtocombatfungal diseasesworldwide.AmphotericinB,forexample,isaclassical antifungaldrug,andinmanycountries,itistheonlymedicine availableforthetreatmentoffungalinfections.

The azoles have been administered in formulations that combine different groups of chemotherapeutic drugs, attempting to overcome the increase in microbial resis-tance. This fact impacts both the cost and the success of treatmentsagainstthattypeofinfection.Finally, the devel-opment of resistance to fluconazole—the most commonly usedantifungal—drasticallyvariesaccordingtotheCandida spp. and from country to country.For example,the inten-sityofthemultiresistance inCandidaspp.tofluconazoleis higherinDenmark(33%)and lowerinthe KoreanRepublic (0.9%).10Therefore,theaimofthispaperistodiscussthemost

promisingsubstancesavailableforcandidiasistreatment.In addition,thisworkreinforcestheimportanceofusingnatural productsalongwiththosemedicinestraditionallyemployed inthetreatmentofsuchinfections.

Natural

products

Natural products have been widely used in society since 3500B.C.11 Medicinalmethodsrangefrom folkmedicine to

validated treatments.12ThedoctorParacelsusisconsidered

thefounderofplant-basedmedicineduetohisgreat contrib-utionsinthefield.13 Hisfindings,alongwiththoseofother

researchers,ledtoaconsolidationofknowledgeinthefieldof naturalproductsandcreatedotherdomainssuchas pharma-cognosy.Amongthemedicinalpropertiesofnaturalproducts, one canfind anti-inflammatory,antispasmodic, anticancer, antimutagenic,antibacterial,antifungal,antiviraland vermi-cidalproperties.14

Essential oils compose the most utilized group of sub-stances.Isolatedfromplants,essential oilsare compounds largely described in the scientific literature as versatile in thetreatmentofmanyinfirmities.15Theiractiveingredients

are usuallyvariousterpenes, whichare secondary metabo-lites excreted byvegetables to expelpredators or harmful agents.16Oneexampleofabioactiveessentialoilistheone

obtainedfromMelaleucaalternifolialeaves;theactivityofthis oilisattributedtoterpinen-4-ol,amonoterpene.17

Theisolationofbioactivemoleculesisalsoperformedon naturalsourcesotherthanvegetablecells.Somemetabolites produced bymicroorganismsare alsoimportantsourcesof new bioactive substances.18 In Table 1, therapeutic agents

obtainedthroughbioprospectionarepresented;theseagents areresponsibleforsignificantimpactonthemedicinal treat-mentsthathavebeenofferedinrecentyears.

InadditiontothecompoundslistedinTable1,lactoferrin(a peptideisolatedfrommilk)andchitosan(acopolymerderived from chitin) also show distinct biological activity, includ-ingantioxidant,anti-allergyandantimicrobialactions.19The

associationofsuchnaturalproductswithotherantimicrobial drugshasbeenrecentlyinvestigatedtoidentifyapossible syn-ergisticeffect.Thiscanprovidealternativetreatmentsagainst multiresistantmicroorganisms,therebyreducingtheamount ofdrugsusedintreatments,whichcanimpactdrug-resistance phenomena.

However, as noted by Harvey et al. (2015), due to the environmental legislation that protects biodiversity, bioprospection,amongotherpursuits,hassuffereda consid-erableslowdowninthelast20years.20Thereductioninthe

rate ofdrugdiscovery and newmedicines provided bythe pharmaceuticalindustryreflectssuchconstraints.

Bioprospection is a feasible way to discover new biomolecules.Oneexampleofsuchadiscoveryisteixobactin, whichwasisolatedfromsoilsamplesbyLingetal.(2015).21

Thismoleculeprovedtobeverypromisingasanewantibiotic class because its administration in mice was able to suc-cessfullyeliminateinfectionscausedbyStaphylococcusaureus superbacteriastrains.Therefore,afternearly30years with-out anew drugdiscovery, this promisingmolecule—found

Table1–Conventionalmedicinesoriginallyobtainedfromnaturalsources.

Activecompound Source Type Indication/Use

Artemisinin Artemisiaannua Plant Antimalarial

Lovastatindiseases Aspergillusterreus Microbial Hypercholesterolemia/cardiovascular

Micafungin Coleophomaempetri Microbial Antifungal

Paclitaxel Taxusbrevifolia Plant Anti-tumor

(3)

Table2–Typesofinfectiondescribedforcandidiasisanditsrespectiveplacesofoccurrence.

Typeofcandidiasis Locationofoccurrence

Mucocutaneous Oral,vaginal,penile(balanitis).32–34

Cutaneous Moisturizedpartsofbody:areasclosetobreast,armpits,foldofgroinandunderthenails.35

Systemic(candidemia) Visceraldissemination:lungs,meninges,kidney,bladder,joints,liver,heartandeyes.5

Table3–Differentclassesofantifungalsthatare availableonthemarket.

Azoles Echinocandins Pyrimidines Polienics Cetoconazole Anidulafungin Flucytosine Amphotericin-B Fluconazole Caspofungin Nystatin Itraconazole Micafungin

Pozaconazole

through bioprospection—may revolutionize the current

antibacterialtreatments.21

Findingbioactivecompoundsisnotaneasytask. There-fore,naturalproductshavebeen usedalongwithsynthetic drugstoovercome,mainly,resistancetoantimicrobialdrugs or to alleviate the side effects associated with specific therapies.

Candidiasis

Microorganisms from the genus Candida are described as yeastsandincludemorethan160species.22Intermsof

mor-phology,thegenusischaracterizedasbeingthick,curd-like (cheesy),andyellowish-white.Candidaalbicansisfound exten-sivelyinhumans,and theseyeastsareeasilyisolatedfrom theskinandgastrointestinaltract.23 Therefore,thistypeof

microorganismlivescommensally,co-inhabitingandexisting inequilibriumwithhumanmicrobiota.24Nonetheless,under

specificconditions,thesemicroorganismsarefavored,which usuallyenablestheactivation ofthevirulencefactor, mak-ingsuchorganismspathogenicandharmfultothehealthof thehost.25,26 Thus,C.albicansisknownasanopportunistic

microorganism.27

Peoplewithimmunodeficiencycomposethegroupwiththe highesttendencytodevelopcandidiasis.Amongthemost vul-nerablepeople areelderlypeople andbabies;patientswith cancer, AIDS or with transplants; people whose treatment usescatheters(inparenteralnutritionorinhemodialysis);and peoplesubmittedtotherapiesbasedonantimicrobialdrugsof largespectrum/corticoids.28–30Thetypeandtheintensityof

theinfection(Table2)aredirectlyrelatedtotheimmunological responseofthepatient.31

WhenCandidaspp.takeadvantageofahost’s immunosen-sitivity,themajormechanismsofvirulenceandtheinvasive capacityoftheCandidaspp.aremainlyrelatedto(i)theability toformbiofilmreinforcedbyamechanismofquorumsensing and (ii) phenotypic switching,that is, when yeastschange tothe filamentous form,which is a determinantof tissue invasion.36,37

Manyclasses ofdrugsare availableforthe treatmentof thistypeofinfection,asshowninTable3.However, consider-ingthatfungi,aswellashumancells,areeukaryotic,patients may suffer from several side effects that arise from such

drugs.Nephrotoxicity(especiallyinamphotericin administra-tion),nausea/vomitingandstomachacheareamongthemain effects.

Inadditiontosideeffects,anothermajorchallengeinthe campaignagainstCandidaspp.infectionsistherefractoriness tothose medicines that aretraditionally used.38 Thelatter

problemarosefromtheindiscriminateuseofantifungaldrugs or long antifungal therapies,favoring the naturalselection ofCandidaspp.-resistantstrains.Someexamplesofresistant strainsareC.albicans,C.glabatra,C.kruseiandC.auris.39

Can-dida lusitaniae hasalsobeen reportedtodevelopresistance duringtherapywithAmphotericin-B.40

Therefore,differentstudieshaveindicatedthatthe asso-ciation oftraditionalmedicineswithalternativetreatments (herein, natural products or biomolecules) as a promis-ing option for therapeutic success against Candida spp. infection.41Amongthealternatives,themostprominentare

lactoferrin,chitosanandMalaleucaalternifoliaextracts. Promis-ingbiomoleculesinthetreatmentofcandidiasis

Lactoferrin

Antimicrobialpeptides(AMPs)havebeendescribedinthe sci-entificliteratureandcorrespondtoagroupofapproximately 1200 molecules.42,43 They can be isolated from different

sources suchasbacteria, insects,plantsand vertebrates.44

Lactoferrin(LF)isanexampleofanAMP.

LFwasinitiallyidentifiedincowmilkin1939.45Inhuman milk,LF wasnotisolated until1960.46,47 Then,thispeptide

beganbeingrecognizedasoneoftheessentialcomponentsin thedefensesystemforcombattinginfectionscausedby differ-entetiologicagents—bacteria,fungi,parasitesandviruses.48

Inadditiontobeinginmilk,LFisalsowidelyfoundon der-malmucosa,inneutrophils(whereresponsestoinflammatory stimuliarereleased)andinexternalsecretions—tears,saliva, vaginalmucus and seminalplasma.49,50 Inbodyfluids, the

concentrationofLFdependsonwheretheLFisfound:inthe colostrum,theconcentrationisfrom5to7mgL−1,whereas intears,theconcentrationisapproximately2mgL−1.51,52 In

blood,dependingontheinflammatoryprocess,the concentra-tionofLFalsovariesfrom10−3to200␮gmL−1.53Incontrast,

accordingtoCohenetal.(1987),theconcentrationofLFin vagi-nalmucusvariesasafunctionofthemenstrualcycle:before menstruation,theconcentrationis3.8–11.4␮gmg−1,whereas aftermenstruation,thisvalueincreasesto62.9–218␮gmg−1.54

Cohen et al. (1987) also showed that womensubmitted to continuous contraceptive-based treatment have drastically affectedLFconcentrationsinthevaginalmucus,with concen-trationsremainingstableduringtheentiremenstrualcycleat approximately19.8␮gmg−1.54

(4)

Structurally, LF is one glycoprotein bound to an iron nucleus,withareddish-pinkcolor,madeupof692aminoacids andwithamolecularweightof80kDa.Fifty-fivepercentof theseaminoacidsaresimilartotheonesfoundintransferrin (theproteinresponsibleforirontransportinplasma). Lacto-ferrinexistsintwodifferentforms:halo-lactoferrin(richin iron)andapo-lactoferrin(freeofiron).Itisalsodescribedas beingabletobindtoothermetals(aluminum,copper,gallium, manganeseandzinc)betterthaniron.55

Regarding the antimicrobialactivity ofLF, the following mechanisms are described in the literature: (i) microbial growth is inhibited by iron deprivation because LF takes iron away from the pathogen or the media where the microorganismispresent56;(ii) theproteinpresents

differ-entenzymatic activitiesinitspurifiedsub-fractions,which includeATPase,DNase,RNase,phosphatase andhydrolysis of malto-oligosaccharide57; (iii) LF increases cell wall

per-meability, leading to the leakage of cytoplasmatic content and microorganism deathbecause lactoferrin’sN-terminus regionhasastrongpositivechargethateasilyinteractswith lipopolysaccharides,whichhaveanegativecharge58;and(iv)

incontrast,assuggestedbyUlvatneetal.(2001),LFisnotable toinducecellularlysesinunscathedbacteriabutleadsto vesi-cleformationthroughaplasmaticmembranedepolarization mechanism.59 Considering the facts mentioned previously,

lactoferrin has been recently explored in several scientific investigationswithdifferentaims,especiallyincombination withantifungaldrugs.60Inthelattercase,asynergisticeffect isthefocuswithregardtofightingagainstresistantand non-resistantmicroorganismstrainsinthegenusCandida.61

Lactoferrin:

antifungal

drugs

with

a

synergistic

effect

Candidemiainnewbornsisacriticalproblemthathas con-tinuouslysparkedtheattentionofthescientificcommunity. Venkateshand Rong (2008) evaluatedthe combined use of humanrecombinantlactoferrin(talactoferrin,TLF)with flu-conazoleandAmphotericin-BagainstthreestrainsofCandida spp.;twostrainswereisolatedfromnewbornsdiagnosedwith septicemia caused by C. albicans. The results showed that eithertheinteractionofTLFwithfluconazoleand/orTLFwith Amphotericin-Bpresentedasynergisticeffect.62

Thereafter,Venkateshetal.(2009)studiedthepreventionof biofilmformation(oneofthevirulencemechanismsobserved inCandida)bytheassociationofTLFwithantifungaldrugs; C.albicansATCCMYA4441wasthestrainusedinthisstudy. Asynergisticeffectwasobservedinthemixturecontaining bothTLFandAmphotericin-BandTLFandfluconazole.This studyisespeciallyimportantbecauseCandidabiofilm forma-tion isextremelycritical inintensivetherapy unitsaround the world, leading to high rates ofmortality and morbid-ityfrom infectionsofthe bloodstreamrelatedtocatheters. Otherstudieshavefocusedontheinteraction oflactoferrin withfluconazole,showingthatLFprobablyinteractswiththe microorganism’scellwall,raisingitspermeabilityandthereby increasingtherateofdrugpenetrationintothecell.63

Inaninvivostudy,Tanidaetal.(2001)carriedoutassays withrodentstoinvestigate thesynergistic effectofLF and

other elements. However, in that study, the LF that was used was synthesized inthe laboratory (knownas peptide 2).Anothersimilarsyntheticmolecule(peptide2)wasalso tested. Mice were inoculated with 5.0×108 cells of

Can-dida (considereda lethaldose).Furthermore,the micethat did not receive treatment or were treated with peptide 2 died after 8 and 7 days, respectively. On the other hand, micesubmitted tointravenousadministration ofpeptide2 (5 and 100␮gday−1) over 5days lived longer (8.4±2.9 and 22.4±3.6days,respectively).Additionally,instudiescarried outbythesameauthors,amousethatreceived1.0×109

Can-dida cells (above the lethal dose) had its life extendedfor 8.2±2.4 days (treated with 10␮gday−1 ofpeptide 2) com-paredwiththe control(lived foraperiodof3.2±1.3days). When peptide 2was administered (10␮gday−1)along with Amphotericin-B (0.1␮gday−1) and granulocyte macrophage colony-stimulatingfactor(GM-CSF)(0.1␮gday−1),60%ofthe micelivedformorethan22days,evenwhenreceiving Can-didadoseshigherthanthelethalamount.Whenpeptide2was administeredalongwithGM-CSF,thephagocyticactivitywas raised1.5timesduetoanimmunesystemstimulus.64

A few years later, Okamoto et al. (2004) confirmed the resultsofTanidaetal.(2011).Inthiscase,thesame method-ologywasadopted.

However,anothergroupofmicewasalsoinoculatedwith 1.0×108Aspergillusfumigatuscells.Forbothmicroorganisms,

thecombinationoflactoferrin,Amphotericin-BandGM-CSF increasedthesurvivaltimeoftherodentsfor35days.65

Melaleuca

alternifolia

Melaleuca alternifoliabelongs tothe Myrtaceaefamily.66 This

plantisdescribedasascrublandspeciesandcanbefound pri-marilyinSouthAmerica,westernIndiaandAustralia.Inthe lattercountry,theplantisknownasteatreeandhasbeenused infolkmedicinelearnedfromaboriginalpeople.Some biolog-icalactivitiesofM.alternifoliaincludeantibacterial,antiviral andantifungalaction.67

Teatreeoil(TTO)canbeobtainedfromthehydrodistillation ofM.alternifolialeaves,andthechemicalcompositionvaries withtheextractionmethodandcropregion.Generally,thisoil isacomplexmixtureofmonoterpenesandterpenoids(50% oxygenated and 50% hydrocarbons)and approximately 100 othersubstances.68Amongthesesubstances,terpinen-4-olis

theprimarycompound(≈30%TTOcomposition)andis indi-catedastheactiveingredientresponsibleforthetherapeutic propertiesofTTO.However,studiessuchtheoneperformed byMiller(1984),whereTTO’santimicrobialactivitywashigher thantheactivityoftheisolatedterpinen-4-ol,haveshownthe synergyamongthecompoundsoftheplant.69

AccordingtoCaloetal.(2015),theantimicrobialactivityof theM.alternifoliaterpenesisassociatedwithhydrophobicity inwhichthe terpenesinteractwiththepathogen’scellular membranelipids,changingthemembrane’spermeability.70,71 Amongthemainresultsofmembranepermeabilityarethe(i) modificationofproton-motiveforce,leadingtoadeficitinthe productionofcellularenergycausedbythedecreaseinATP generationand(ii)cellularlysesduetoleakageorcoagulation ofthecytoplasm.72,73

(5)

Melaleuca

alternifolia

(tea

tree

oil):

studies

in

the

treatment

of

candidiasis

Melaleucaalternifoliahasbeenconsideredapromising alterna-tiveinthetreatmentofstomatitiscausedbydentures,which is a recurrent problem in the elderly. de Campos Rasteiro etal.(2014)determinedboththeMICandminimumbiofilm eradication concentration (MBEC) ofTTO inin vivo experi-ments.Theresultsshoweda0.195% MICand 12.5%MBEC. Thelatterconcentrationwasusedintopicalapplication in animalexperiments.Morphologicanalysisthroughscanning electronmicroscopy (SEM)of mouse tonguetissueshowed considerablewoundareareduction,whereascolony-forming unitswerereducedby5.33log,whichhighlightsthepotential ofM.alternifolia.74

Pachavaetal.(2015)foundcolony-formingunitsof approx-imately30,43and19%ofthecontrolwhendiscsimpregnated withTTOweresubmergedinaC.albicanssuspension.That resultindicatesthatTTOcouldbeusedtocoatdenturesand reducethewoundscausedbyCandida.75SharmaandHegde

(2014) alsoinvestigatedthe impregnation ofdentures with TTOandfluconazole.TTO’sMICwasequalto30%m/m,while fluconazole’sMICwas5%m/m.Atthesameconcentrations, fluconazolelostitsantifungalactivity after7days,whereas TTOdidnot.76SimilarresultswereobtainedbyDalwaietal.

(2014),wherebothchlorhexidinegluconateandTTOretained theirbioactivityafter14daysofincubation,whereas flucona-zolebecameinactive.77Ontheotherhand,VanVuurenetal.

(2009)evaluatedtheassociationofTTOwith amphotericin-B(AMP-B)againstC.albicans(ATCC10231),throughMICand fractionaryinhibitoryconcentrationindex(FICI)calculation.78

Thefollowingantimicrobialagentratioresultedina syner-gisticinteraction(FICI<1):6:4AMP-B:TTO(FICI0.93)and1:9 AMP-B:TTO(FICI0.95).79 Similarly,Rosatoetal.(2009)

com-binedTTOandnystatinandusedthemtochallengeC.albicans, C.kruseiandC.tropicalis.ThisresultedinFICIs>0.5,also indi-catingasynergisticeffect.80

Recently,inastudypublishedbyDiVitoetal.(2015),the combination of Amphotericin-B and TTOshowed a syner-gisticeffectagainstdifferentspeciesofCandida.Thatstudy focusedonthedevelopmentofavaginalsuppositoryfor vul-vovaginalcandidiasistreatment.Candidastrainswereisolated from patients who had vaginitis. A synergistic effect was obtainedforconcentrationsequalto0.25␮gmL−1 ofAMP-B and0.08␮gmL−1ofTTO.Inthesamestudy,TTOwasshown nottokillvaginalmicrobiotaatconcentrationsbelow2%v/v (Bifidobacteriumanimalisremainedalive)andonly concentra-tionsabove4%v/vwerebactericidal.81

Nonetheless,asdescribedbyKonandRai(2013),alargegap remainsinthedevelopmentofinvivostudiestoevaluatethe biologicalactivityofM.alternifoliacombinedornotwith anti-fungaldrugs.Therefore,suchstudiesshouldbeencouraged toobtainmoreconsistentresultsaboutthecommercialuseof TTOforthetreatmentofcandidiasis.82

Chitosan

Chitinisdefinedasanaturalpolymer,andaftercellulose,itis themostwidespreadandabundantpolysaccharidefoundin

nature.Ithasstructuralandprotectivefunctionsandisfound mainlyinarthropods,thecarapacesofshrimp,insects,and thecellwallsofsomefungi.

Thecationiccopolymerchitosancanbeobtainedfromthe deacetylationofchitin.Inthisprocess,chitin’sacetylgroups (COCH3)arereplacedbyaminegroups(–NH2).Thisprocesscan

bedonethroughthreedifferentmechanisms:(i)thealkaline hydrolysisofthechitinathightemperatures,(ii)the employ-ment of the enzymechitinase, and (iii)through the direct actionofmicroorganisms.Dependingonthedegreeof acet-ylation, chitosan may have several byproducts of different composition, whichwillaffect themolecule’ssolubility.For example,whilechitinisinsolubleinmostsolvents,chitosan issolubleinorganicandinorganicacids.Structurally,chitosan isdefinedasacopolymerthatiscomposedofd-glucosamine monomersandN-acetyl-d-glucosamineresiduesboundwith glycoside␤(1→4).83

Chitosanisfunctional,nontoxic,biocompatible, biodegrad-able,andbioactive,withchelatingcapacity,selective perme-ability and polyelectrolytes.All of thesecharacteristics are dependent on chitosan’s purity, viscosity, degree of acety-lationandmolecularweight.Anotherpropertyofchitosanis its antimicrobialcharacteristics.Themechanismsofaction seemtobethrough(i)chitosan’sinteractionwiththe phospho-lipids’sialicacid(anionicgroup)becausechitosanispositively charged, leading to cell agglutination and preventing cells fromexchangingsubstanceswithexternalmedia,and(ii)the penetrationofchitosanintothecell,wherethechitosanblocks DNAandRNAtranscriptionandinhibitscellgrowth.Generally, chitosan’saminegroupsareresponsibleforitsantimicrobial activity.84

Chitosan:

potential

in

candidiasis

treatment

Thecombinationofchitosanwithantifungaldrugshasshown promising results.Soliman et al. (2015), forexample, inoc-ulated 0.1mL of C. albicans suspension into 80 mice with induced neutropenia. Twenty-four hours later, 20 animals were treated with saline solution (control group), 20 with chitosanextract(CE),20withAmphotericin-B(150mgkg−1) (AMB),andthelast20withchitosanandamphotericin simul-taneously(150mgkg−1)(CE+AMB)for72h.Whencompared tothecontrolgroup,theanimalsthatreceivedCE,AMBand CE+AMBshowedareductioninfungaldensityof73%,87%and 90%,respectively.Inaddition,oxidativestressmarkers,such asmalondialdehyde(MDA),reducedglutathione(GSH), super-oxidedismutase(SOD),catalase(CAT)andnitricoxide(NO), wereanalyzedfromthemouselungtissue.Theresultsshowed that the groups that were treated with CE and CE+AMB showedasignificantreductioninthelevelsofMDA,SOD,CAT andNOcomparedtothecontrolgroup.Ontheotherhand, thelevelsofGSHincreased,whichclearlyindicatesthat chi-tosancanmitigateoxidativestressorlungwoundscausedby systemiccandidiasis.85

Alternatively,Senyi ˘gitetal.(2014)evaluatedthe formula-tion ofchitosangel forvulvovaginalcandidiasis treatment. Suchagelwasproducedwithchitosanofdifferent viscosi-ties (20,000, 200,000 and 800,000mPas)and two antifungal drugs:miconazolenitrateandeconazolenitrate.Invivostudies

(6)

showedthatchitosanof200,000mPasledtothebestresults withbothantifungaldrugs.Thisconclusionwasbasedonthe followinggelproperties:mucosaladhesion,mechanical prop-ertiesandadequatedrugrelease.86

Chhonkeret al. (2015) investigatedthe potential of chi-tosan,incombinationwithAmphotericin-B,asatreatment forfungalkeratitis.Theactivecompoundswereusedtocoat 161.9–230.5-nm nanoparticles to extend the drug delivery time.Thenanocarrierscontainingchitosanandamphotericin were found to bemore active againstC. albicans than the commercial formulation (Fungizone®). In addition, in vivo studieswerecarriedoutinrabbitsforpharmacokinetic stud-ies, where it was observed that the bioavailability of the medicinewasincreased2.04times,whereas theprecorneal residence time was increased 3.36 times. Finally, the best results were achieved with chitosan of average molecular weight.87Suchresultsarerelevantbecausefungalkeratitisis

aneyesdiseasethatisresponsibleforblindnessofmany peo-plearoundtheworld,andmedicinescurrentlyavailableforits treatmenthavestrongsideeffects.

Parker et al. (2016) investigated the role of chitosan in associationwithAmphotericin-Bandpolyethyleneglycolin the local treatment of muscle wounds. Sponges were uti-lizedasameans ofdelivering theformulation.Theresults ofinvivotestsledtotheconclusionthatspongescoatedwith Amphotericin-Breleasedtheformulation(atconcentrations above0.25␮gmL−1)formorethan72h.88

Final

remarks

The prospection of biomolecules and natural products is clearly an important strategy for discovering and making availablenewdrugsforthetreatmentofdifferentdiseases, aswellasforuseinincreasingtheactivityofcommondrugs throughsynergism,whichcanbeseenasapromisingstrategy toovercomethealarmingcurrentdrugmultiresistance sce-nario.Inthiscontext,M.alternifolia,lactoferrinandchitosan havebeendemonstratedtobeviableoptionsinthetreatment offungalinfections,mainlyagainstCandidaspp.,whenused inassociation ornotwithantimicrobialdugs.Thisis espe-ciallyimportantbecauseCandidahasledtoahighmortality rateworldwide.Therefore,studieshaveindicatedthe feasi-bilityofusingsyntheticandnaturalproductsincombination toimprovetheiractivitythoughsynergismandovercomethe problemofmicrobialmultiresistance.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest

r

e

f

e

r

e

n

c

e

s

1.MatthaiouDK,ChristodoulopoulouT,DimopoulosG.Howto

treatfungalinfectionsinICUpatients.BMCInfectDis.

2015;15:205.

2.McCartyTP,PappasPG.Invasivecandidiasis.InfectDisClin

NorthAm.2015;30:103–124.

3.LiuS,HouY,ChenX,GaoY,LiH,SunS.Combinationof

fluconazolewithnon-antifungalagents:apromising

approachtocopewithresistantCandidaalbicansinfections

andinsightintonewantifungalagentdiscovery.IntJ

AntimicrobAgents.2014;43:395–402.

4.McCoolL.

TheDiscoveryandNamingofCandidaalbicans;2016.Availableat:

http://antimicrobe.org/h04c.files/history/DiscoveryNamingof

CandidaAlbicans.pdfAccessed17.08.16.

5.QuindósG.Epidemiologyofcandidaemiaandinvasive

candidiasis.Achangingface.RevIberoamMicol.

2014;31:42–48.

6.ArnoldHM,MicekST,ShorrAF,etal.Hospitalresource

utilizationandcostsofinappropriatetreatmentof

candidemia.Pharmacotherapy.2010;30:361–368.

7.MorganJ,MeltzerMI,PlikaytisBD,etal.Excessmortality,

hospitalstay,andcostduetocandidemia:acase-control

studyusingdatafrompopulation-basedcandidemia

surveillance.InfectControlHospEpidemiol.2005;26:540–547.

8.JacobsDM,BeydaND,AsuphonO,AlamMJ,GareyKW.Host

factorsandclinicaloutcomesofCandidacolonizationin

criticallyillpatients.Mycopathologia.2015;179:87–93.

9.FridkinSK.Candidemiaiscostly—plainandsimple.Clin

InfectDis.2005;41:1240–1241.

10.WHO.AntimicrobialResistance:GlobalReportSurveillance;2014. Availableat:

http://apps.who.int/iris/bitstream/10665/112642/1/

9789241564748eng.pdf?ua=1Accessed17.08.16.

11.ScottRPW.Essentialoils.In:EncyclopediaofAnalyticalScience.

2nded.Elsevier;2005:554–561.

12.KoehnFE,CarterGT.Theevolvingroleofnaturalproductsin

drugdiscovery.NatRevDrugDiscov.2005;4:206–220.

13.FerreiraTS,MoreiraCZ,CáriaNZ,VictorianoG,SilvaWFJr,

MagalhãesJC.Phytotherapy:anintroductiontoitshistory,

useandapplication.RevBrasPlantMed.2014;162:290–298.

14.MogosanuGD,GrumezescuA,HuangK-S,BejenaruL,

BejenaruC.Preventionofmicrobialcommunities:novel

approachesbasednaturalproducts.CurrPharmBiotechnol.

2015;16:94–111.

15.NegriM,SalciTP,Shinobu-MesquitaCS,CapociIRG,

SvidzinskiTIE,KioshimaES.Earlystateresearchon

antifungalnaturalproducts.Molecules.2014;19:2925–2956.

16.MartinsN,BarrosL,HenriquesM,SilvaS,FerreiraICFR.

Activityofphenoliccompoundsfromplantoriginagainst

Candidaspecies.IndCropsProd.2015;74:648–670.

17.HomeyerDC,SanchezCJ,MendeK,etal.Invitroactivityof

Melaleucaalternifolia(teatree)oilonfilamentousfungiand

toxicitytohumancells.MedMycol.2015;53:285–294.

18.BluntJW,CoppBR,KeyzersRA,MunroMHG,PrinsepMR.

Marinenaturalproducts.NatProdRep.2013;30:237–323.

19.NgoD-H,VoT-S,NgoD-N,etal.Biologicaleffectsofchitosan

anditsderivatives.FoodHydrocoll.2015;51:200–216.

20.HarveyAL,Edrada-EbelR,QuinnRJ.There-emergenceof

naturalproductsfordrugdiscoveryinthegenomicsera.Nat

RevDrugDiscov.2015;14:111–129.

21.LingLL,SchneiderT,PeoplesAJ,etal.Anewantibiotickills

pathogenswithoutdetectableresistance.Nature.

2015;517:455–459.

22.Blaschke-HellmessenR.HabitatsforCandidainmedicaland

hygienicrespects.Mycoses.1999;42(suppl1):22–29.

23.HuffnagleGB,NoverrMC.Theemergingworldofthefungal

microbiome.TrendsMicrobiol.2013;21:334–341.

24.UnderhillDM,IlievID.Themycobiota:interactionsbetween

commensalfungiandthehostimmunesystem.NatRev

Immunol.2014;14:405–416.

25.KiyouraY,TamaiR.InnateimmunitytoCandidaalbicans.Jpn

(7)

26.TagliaferriE,MenichettiF.Treatmentofinvasivecandidiasis:

betweenguidelinesanddailyclinicalpractice.ExpertRevAnti

InfectTher.2015.

27.NeteaMG,JoostenLAB,vanderMeerJWM,KullbergB-J,van

deVeerdonkFL.ImmunedefenceagainstCandidafungal

infections.NatRevImmunol.2015;15:630–642.

28.ManzoniP,MostertM,CastagnolaE.Updateonthe

managementofCandidainfectionsinpretermneonates.Arch

DisChildFetalNeonatalEd.2015;100:F454–F459.

29.TangH-J,LiuW-L,LinH-L,LaiC-C.Epidemiologyand

prognosticfactorsofcandidemiaincancerpatients.PLOS

ONE.2014;9:e99103.

30.SeeligMS.Theroleofantibioticsinthepathogenesisof

Candidainfections.AmJMed.1966;40:887–917.

31.NavarathnaDH,RobertsDD,MunasingheJ,LizakMJ.Imaging

Candidainfectionsinthehost.MethodsMolBiol.

2016;1356:69–78.

32.SinghA,VermaR,MurariA,AgrawalA.Oralcandidiasis:an

overview.JOralMaxillofacPathol.2014;18:S81–S85.

33.SobelJD.Genitalcandidiasis.Medicine(Baltimore).

2014;42:364–368.

34.SobelJD.Recurrentvulvovaginalcandidiasis.AmJObstet

Gynecol.2015.

35.RamosLS,BarbedoLS,Braga-SilvaLA,dosSantosALS,Pinto

MR,SgarbiDBG.Proteaseandphospholipaseactivitiesof

Candidaspp.isolatedfromcutaneouscandidiasis.Rev IberoamMicol.2015;32:122–125.

36.NobileCJ,JohnsonAD.Candidaalbicansbiofilmsandhuman

disease.AnnuRevMicrobiol.2015;69:71–92.

37.BennettRJ.TheparasexuallifestyleofCandidaalbicans.Curr

OpinMicrobiol.2015;28:10–17.

38.WhibleyN,GaffenSL.BeyondCandidaalbicans:mechanisms

ofimmunitytonon-albicansCandidaspecies.Cytokine.

2015;76:42–52.

39.RossoniRD,BarbosaJO,VilelaSFG,etal.Competitive

interactionsbetweenC.albicans,C.glabrataandC.krusei

duringbiofilmformationanddevelopmentofexperimental

candidiasis.PLOSONE.2015;10:e0131700.

40.AsnerSA,GiulieriS,DieziM,MarchettiO,SanglardD.

AcquiredmultidrugantifungalresistanceinCandida

lusitaniaeduringtherapy.AntimicrobAgentsChemother.

2015;59:7715–7722.

41.SzwedaP,GucwaK,KurzykE,etal.Essentialoils,silver

nanoparticlesandpropolisasalternativeagentsagainst

fluconazoleresistantCandidaalbicans,Candidaglabrataand

Candidakruseiclinicalisolates.IndianJMicrobiol.

2015;55:175–183.

42.DuncanVMS,O’NeilDA.Commercializationofantifungal

peptides.FungalBiolRev.2013;26:156–165.

43.NakatsujiT,GalloRL.Antimicrobialpeptides:oldmolecules

withnewideas.JInvestDermatol.2012;132:887–895.

44.ZasloffM.Antimicrobialpeptidesofmulticellularorganisms.

Nature.2002;415:389–395.

45.SorensenM,SorensenSPL.Theproteinsinwhey.Compte

rendudesTravduLabCarlsberg,SerChim.1940;23:55–99.

46.JohansonB.Isolationofaniron-containingredproteinfrom

humanmilk.ActaChemScand.1960;14:510–512.

47.MassonPL,HeremansJF.Lactoferrininmilkfromdifferent

species.CompBiochemPhysiolPartBCompBiochem.

1971;39:119–213.

48.PawlikA,SenderG,Korwin-KossakowskaA,OprzadekJ.

Immunomodulatoryandantimicrobialactivityoflactoferrin.

MedWeter.2014;70:209–213.

49.KanwarJR,RoyK,PatelY,etal.Multifunctionalironbound

lactoferrinandnanomedicinalapproachestoenhanceits

bioactivefunctions.Molecules.2015;20:9703–9731.

50.TauberPF,ZaneveldLJ,ProppingD,SchumacherGF.

Componentsofhumansplitejaculates.I.Spermatozoa,

fructose,immunoglobulins,albumin,lactoferrin,transferrin

andotherplasmaproteins.JReprodFertil.1975;43:249–267.

51.LevayPF,ViljoenM.Lactoferrin:ageneralreview.

Haematologica.1995;80:252–267.

52.KijlstraA,JeurissenSH,KoningKM.Lactoferrinlevelsin

normalhumantears.BrJOphthalmol.1983;67:

199–202.

53.FarnaudS,EvansRW.Lactoferrin—amultifunctionalprotein

withantimicrobialproperties.MolImmunol.2003;40:395–405.

54.CohenMS,BritiganBE,FrenchM,BeanK.Preliminary

observationsonlactoferrinsecretioninhumanvaginal

mucus:variationduringthemenstrualcycle,evidenceof

hormonalregulation,andimplicationsforinfectionwith

Neisseriagonorrhoeae.AmJObstetGynecol.

1987;157:1122–1125.

55.González-ChávezSA,Arévalo-GallegosS,Rascón-CruzQ.

Lactoferrin:structure,functionandapplications.IntJ

AntimicrobAgents.2009;33,301.e1–8.

56.EmeryT.Irondeprivationasabiologicaldefence

mechanism.Nature.1980;287:776–777.

57.KanyshkovaTG,BabinaSE,SemenovDV,etal.Multiple

enzymicactivitiesofhumanmilklactoferrin.EurJBiochem.

2003;270:3353–3361.

58.García-MontoyaIA,CendónTS,Arévalo-GallegosS,

Rascón-CruzQ.Lactoferrinamultiplebioactiveprotein:an

overview.BiochimBiophysActa.2012;1820:226–236.

59.UlvatneH,HauklandHH,OlsvikO,VorlandLH,Lactoferricin

B.LactoferricinBcausesdepolarizationofthecytoplasmic

membraneofEscherichiacoliATCC25922andfusionof

negativelychargedliposomes.FEBSLett.2001;492:62–65.

60.YemetsAI,TanasienkoIV,KrasylenkoYA,BlumeYB.

Plant-basedbiopharmingofrecombinanthumanlactoferrin.

CellBiolInt.2014;38:989–1002.

61.BrouwerCPJM,RahmanM,WellingMM.Discoveryand

developmentofasyntheticpeptidederivedfromlactoferrin

forclinicaluse.Peptides.2011;32:1953–1963.

62.VenkateshMP,RongL.Humanrecombinantlactoferrinacts

synergisticallywithantimicrobialscommonlyusedin

neonatalpracticeagainstcoagulase-negativestaphylococci

andCandidaalbicanscausingneonatalsepsis.JMedMicrobiol.

2008;57:1113–1121.

63.VenkateshM,RongL,RaadI,VersalovicJ.Novelsynergistic

antibiofilmcombinationsforsalvageofinfectedcatheters.J

MedMicrobiol.2009;58:936–944.

64.TanidaT,RaoF,HamadaT,UetaE,OsakiT.Lactoferrin

peptideincreasesthesurvivalofCandidaalbicans-inoculated

micebyupregulatingneutrophilandmacrophagefunctions,

especiallyincombinationwithamphotericinBand

granulocyte-macrophagecolony-stimulatingfactor.Infect

Immun.2001;69:3883–3890.

65.OkamotoT,TanidaT,WeiB,UetaE,YamamotoT,OsakiT.

Regulationoffungalinfectionbyacombinationof

amphotericinBandpeptide2,alactoferrinpeptidethat

activatesneutrophils.ClinDiagnLabImmunol.

2004;11:1111–1119.

66.SiddiqueS,PerveenZ,NawazS,ShahzadK,AliZ.Chemical

compositionandantimicrobialactivitiesofessentialoilsof

sixspeciesfromfamilyMyrtaceae.JEssentOilBearPlants.

2015;18:950–956.

67.GeY,GeM.DistributionofMelaleucaalternifoliaessentialoil

inliposomeswithTween80additionandenhancementof

invitroantimicrobialeffect.JExpNanosci.2015;1:14.

68.Bustos-SeguraC,KülheimC,FoleyW.Effectsofterpene

chemotypesofMelaleucaalternifoliaontwospecialistleaf

beetlesandsusceptibilitytomyrtlerust.JChemEcol.

2015;41:937–947.

69.MillerC.Pouringahealingoilovertroubledwaters.AustDr.

(8)

70.CaloJR,CrandallPG,O’BryanCA,RickeSC.Essentialoilsas

antimicrobialsinfoodsystems—areview.FoodControl.

2015;54:111–119.

71.MartínezA,RojasN,GarcíaL,GonzálezF,DomínguezM,

CatalánA.InvitroactivityofterpenesagainstCandida

albicansandultrastructuralalterations.OralSurgOralMed OralPatholOralRadiol.2014;118:553–559.

72.ZoreGB,ThakreAD,JadhavS,KaruppayilSM.Terpenoids

inhibitCandidaalbicansgrowthbyaffectingmembrane

integrityandarrestofcellcycle.Phytomedicine.

2011;18:1181–1190.

73.KhanMSA,MalikA,AhmadI.Anti-candidalactivityof

essentialoilsaloneandincombinationwithamphotericinB

orfluconazoleagainstmulti-drugresistantisolatesof

Candidaalbicans.MedMycol.2012;50:33–42.

74.deCamposRasteiroVM,daCostaACBP,AraújoCF,etal.

EssentialoilofMelaleucaalternifoliaforthetreatmentoforal

candidiasisinducedinanimmunosuppressedmousemodel.

BMCComplementAlternMed.2014;14:489.

75.PachavaKR,NadendlaLK,AlluriLSC,TahseenH,SajjaNP.

Invitroantifungalevaluationofdenturesoftliner

incorporatedwithteatreeoil:anewtherapeuticapproach

towardsdenturestomatitis.JClinDiagnRes.

2015;9:ZC62–ZC64.

76.SharmaS,HegdeV.Comparativeevaluationofantifungal

activityofmelaleucaoilandfluconazolewhenincorporated

intissueconditioner:aninvitrostudy.JProsthodont.

2014;23:367–373.

77.DalwaiS,RodriguesSJ,BaligaS,etal.Comparative

evaluationofantifungalactionofteatreeoil,chlorhexidine

gluconateandfluconazoleonheatpolymerizedacrylic

denturebaseresin—aninvitrostudy.Gerodontology.2014.

78.BerenbaumMC.Amethodfortestingforsynergywithany

numberofagents.JInfectDis.1978;137:122–130.

79.vanVuurenSF,SulimanS,ViljoenAM.Theantimicrobial

activityoffourcommercialessentialoilsincombination

withconventionalantimicrobials.LettApplMicrobiol.

2009;48:440–446.

80.RosatoA,VitaliC,PiarulliM,MazzottaM,ArgentieriMP,

MallamaciR.Invitrosynergicefficacyofthecombinationof

NystatinwiththeessentialoilsofOriganumvulgareand

PelargoniumgraveolensagainstsomeCandidaspecies.

Phytomedicine.2009;16:972–975.

81.DiVitoM,MattarelliP,ModestoM,etal.Invitroactivityof

teatreeoilvaginalsuppositoriesagainstCandidaspp.and

probioticvaginalmicrobiota.PhytotherRes.

2015;29:1628–1633.

82.KonK,RaiM.Combiningplantessentialoilsand

antimycoticsincopingwithantimycotic-resistantCandida

species.In:Razzaghi-AbyanehM,RaiM,eds.Antifungal

MetabolitesfromPlants.SpringerBerlinHeidelberg; 2013:263–281.

83.HamedI,ÖzogulF,RegensteinJM.Industrialapplicationsof

crustaceanby-products(chitin,chitosan,and

chitooligosaccharides):areview.TrendsFoodSciTechnol.

2016;48:40–50.

84.PedroHSS,FrancinalvaDM,MartinaGOP,etal.Antimicrobial

potentialofchitosan.AfricanJMicrobiolRes.2015;9:

147–154.

85.SolimanAM,FahmySR,MohamedWA.Therapeuticefficacy

ofchitosanagainstinvasivecandidiasisinmice.JBasicAppl

Zool.2015;72:163–172.

86.Senyi ˘gitZA,KaravanaSY,Erac¸B,GürselO,LimoncuMH,

Balo ˘gluE.Evaluationofchitosanbasedvaginalbioadhesive

gelformulationsforantifungaldrugs.ActaPharm.

2014;64:139–156.

87.ChhonkerYS,PrasadYD,ChandasanaH,etal.

Amphotericin-Bentrappedlecithin/chitosannanoparticles

forprolongedocularapplication.IntJBiolMacromol.

2015;72:1451–1458.

88.ParkerAC,RhodesC,JenningsJA,etal.Preliminary

evaluationoflocaldrugdeliveryofamphotericinBand

invivodegradationofchitosanandpolyethyleneglycol

blendedsponges.JBiomedMaterResBApplBiomater.

Referências

Documentos relacionados

O principal objetivo por parte da galeria seria entender como as abordagens (em contexto expositivo), podem ser diferentes noutros países e, fundamentalmente, através das

In this study, positive prior, current and future health perceptions were found to be associated with higher levels of PGWBI, and negative prior, current and future health

The aim of this study was to evaluate the in vitro bioactivity of tea tree ( Melaleuca alternifolia ) essential oil against larvae and adult forms of lesser mealworms (

In this context, the development of these compounds will be discussed herein to illustrate, with successful examples provided by cytarabine, trabectedin, eribulin and

The micrographs showed that chitosans caused mycelial aggregation and structural changes as excessive branching, swelling of the cell wall and hyphae size

This study aimed to evaluate in vitro the antimicrobial effect of a bioadhesive chitosan- based oral membrane with chlorhexidine for local treatment of infections in the oral

Cavitary lesions can be observed in various fungal infections, such as angioinvasive disease (aspergillosis, mucormycosis, and candidiasis), as well as in the semi-