• Nenhum resultado encontrado

HPLC-FLD methods to quantify chloroaluminum phthalocyanine in nanoparticles, plasma and tissue : application in pharmacokinetic and biodistribution studies.

N/A
N/A
Protected

Academic year: 2021

Share "HPLC-FLD methods to quantify chloroaluminum phthalocyanine in nanoparticles, plasma and tissue : application in pharmacokinetic and biodistribution studies."

Copied!
8
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Journal

of

Pharmaceutical

and

Biomedical

Analysis

jo u r n al h om epag e :w w w . e l s e v i e r . c o m / l o c a t e / j p b a

HPLC-FLD

methods

to

quantify

chloroaluminum

phthalocyanine

in

nanoparticles,

plasma

and

tissue:

application

in

pharmacokinetic

and

biodistribution

studies

Líliam

Teixeira

Oliveira

a

,

Giani

Martins

Garcia

a

,

Eunice

Kazue

Kano

a,1

,

Antônio

Cláudio

Tedesco

b

,

Vanessa

Carla

Furtado

Mosqueira

a,∗

aCiPharma-ProgramadePós-graduac¸ãoemCiênciasFarmacêuticas,EscoladeFarmácia,UniversidadeFederaldeOuroPreto,RuaCostaSena,171-Centro,OuroPreto35400-000,

MinasGerais,MG,Brazil

bDepartamentodeQuímica,FFCL-RP,UniversidadedeSãoPaulo,Av.Bandeirantes,3900-MonteAlegre,RibeirãoPreto14040-901,SãoPaulo,SP,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received22December2010 Receivedinrevisedform12April2011 Accepted16April2011

Available online 22 April 2011 Keywords: Chloroaluminumphthalocyanine High-performanceliquid chromatography-fluorescencedetection Nanocapsules Photodynamictherapy Fluorescentdye

a

b

s

t

r

a

c

t

Analyticalandbioanalyticalmethodsofhigh-performanceliquidchromatographywithfluorescence

detection(HPLC-FLD)weredevelopedandvalidatedforthedeterminationofchloroaluminum

phthalo-cyanineindifferentformulationsofpolymericnanocapsules,plasmaandliversofmice.Plasmaand

homogenizedliversampleswereextractedwithethylacetate,andzincphthalocyaninewasusedas

inter-nalstandard.Theresultsindicatedthatthemethodswerelinearandselectiveforallmatricesstudied.

Analysisofaccuracyandprecisionshowedadequatevalues,withvariationslowerthan10%inbiological

samplesandlowerthan2%inanalyticalsamples.Therecoverieswereashighas96%and99%intheplasma

andlivers,respectively.Thequantificationlimitoftheanalyticalmethodwas1.12ng/ml,andthelimits

ofquantificationofthebioanalyticalmethodwere15ng/mland75ng/gforplasmaandliversamples,

respectively.Thebioanalyticalmethoddevelopedwassensitiveintherangesof15–100ng/mlinplasma

and75–500ng/ginliversamplesandwasappliedtostudiesofbiodistributionandpharmacokineticsof

AlClPc.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Phthalocyanine(Pc)derivativeshaveattractedmuchattention becauseoftheirparticularpropertiesandhavebeenusedas pho-tosensitizersandasfluorescentdyes.Theyhavebeeninvestigated inseveralapplicablematerials,suchaschemical sensors,liquid crystalsand nonlinear optics. They have alsobeen usedin the pharmaceuticalfield asphotosensitizersforphotodynamic ther-apy(PDT)[1–4].PDTisabimodaltherapeuticstrategybasedon aphotosensitizeractivatedbyvisiblelight[2].Thistechniquehas beenproposedasanalternativeorasacomplementtoconventional protocolsinthetreatmentofmalignanttumors[3].Currently,PDT basedonclassicalphotosensitizers,hematoporphyrinorsynthetic porphyrinderivativesisinpreclinicalandclinicaluse[5–8].

PDTbasedonphthalocyanineshasremarkablemedical poten-tial because of improved selectivity and efficiency against tumorcellsand microorganismproliferation[9,10]. Phthalocya-ninesexhibit a highabsorptioncoefficientin thevisibleregion

∗ Correspondingauthor.Tel.:+553135591032;fax:+553135591628. E-mailaddresses:vamosqueira@gmail.com,mosqueira@ef.ufop.br

(V.C.F.Mosqueira).

1 Presentaddress:FaculdadedeCiênciasFarmacêuticasdaUniversidadedeSão

Paulo,Brazil.

of the spectrum, primarily in the phototherapeutic window (600–800nm),andhavealonglifetimeofthetripletexcitedstate inphotosensitizers,whichisnecessarytoproduce1O

2(thetoxic species)efficiently[11].Thesefeatureshaveledtoproposalsfor their development for clinical use. However, some drawbacks related tophthalocyaninesolubilityand bioavailabilitymust be addressedfor ittobesuitablefor clinicaluse,particularlywith chloroaluminumphthalocyanine(AlClPc),whichisvery hydropho-bic[12].AlClPcpresentsoptimalcharacteristicsforuseinPDT,such aslong-livedexcitedsingletandtripletstates[11].Furthermore, despitethegrowingknowledgeinthephotophysicaland photo-chemicalaspectsofAlClPcandinitsmedicalapplications,thereis aslowevolutionintheanalyticalmethodologiesforits determi-nationinbiologicalsamples.Themethodspreviouslyreportedto determineAlClPcconcentrationsinbiologicalsamplesarebasedon spectrophotometricandspectrofluorimetricassays[13,14].Optical quantificationmethodsinbulktissuesorhomogenatesare gener-allyrestrictedintheirdetectionlimitandaccuracy.Thesemethods havenotbeenvalidatedingeneralfortheAlClPcassayinbiological matricestoprovidetherequiredselectivity,sensitivity,precision, accuracy,stabilityandrecovery.Thus,asuitableliquid chromato-graphicmethodthatwillallowanalysisofAlClPcinpre-clinicaland clinicalstudiesisstilllacking.

Additionally, intravenous administration of the hydrophobic AlClPcisgreatlyhamperedbyitslowsolubility.Thus,thisspecific

0731-7085/$–seefrontmatter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.jpba.2011.04.016

(2)

N N N N N N N N Al Cl N N N N N N N N Zn

Fig.1. ChemicalstructuresofAlClPcandZnPc.

physicochemicalcharacteristicofAlClPcrequiresadvanced tech-nologiestoformulatenanometricdeliverysystems,toimproveits dispersioninwater,enhancethespecificuptakebytargetedtissues andimprovePDTefficiency[15,16].Recently,Siqueira-Mouraet al.describedvalidatedspectrophotometricandspectrofluorimetric methodsforAlClPcquantificationinnanocarriersintherangesof 0.50–3.00and0.05–1.00␮g/ml,respectively[17].However,AlClPc wasnotdeterminedinbiologicalsamplesandnoextraction pro-cedure was described. A literature survey indicated that there wasnoreportofavalidatedmethodofhigh-performanceliquid chromatographywithfluorescencedetection(HPLC-FLD)forthe determinationofAlClPcinbiologicalsamplesandnanocarriers.

Inthisstudy,asuitableanalyticalmethodforthequantitative analysisofAlClPcinthreedifferentnanocapsuleformulationsas wellasinbiologicalsamplesofmiceplasmaandliverwas devel-opedandvalidatedusingHPLC-FLD.Thetissueconcentrationsof AlClPcintheliversandplasmaofmice20minafterintravenous administrationweremeasured.Furthermore,thepharmacokinetic profileoffreeAlClPcsolutionandAlClPcloadedinPLA-NCwere determinedtoillustratetheapplicationofthemethoddescribed.

2. Experimental

2.1. Chemicals

AlClPc (chloro(29H,31H-phthalocyaninato)aluminum) and ZnPc (zinc(II)phthalocyanine) were purchased from Sigma (Sigma–AldrichCo., St.Louis,MO,USA).Theacetone,methanol, anddimethylformamide usedfortheHPLCanalyseswereHPLC gradeandwerepurchasedfromTedia(Brazil).Milli-Qwaterwas purifiedusingaSymplicity®System(Millipore,Bedford,USA)and wasusedtoprepareallthesolutions.Soylecithin(Epikuron170) wasagiftfromLucasMeyer(France).Thepurifiedmedium-chain triglyceride (MCT) waspurchased from Hulls(Germany). Ethyl acetate,polyethyleneglycol300anddimethylsulfoxide (analyt-icalgrade) were purchased fromVetec (Rio de Janeiro, Brazil). PLA [poly(d,l-lactide), Mw 75,000–120,000g/mol], low molec-ular weight chitosan (CS) and Poloxamer 188 were purchased from Sigma–Aldrich (Brazil). PLA-PEG [poly(d,l-lactide)-co-polyethylenoglycolaverageMw66,000g/mol]withaPEGblock ofMn5000g/molwasagiftfromAlkermes(Cambridge,USA)and wasusedwithoutfurtherpurification.

2.2. Nanocapsulespreparation

AlClPc loaded-nanocapsules, 0.1mg/ml of PLA and PLA-PEG werepreparedaccordingtoFessietal.[18]andMosqueiraetal.

[19],respectively.Briefly,thepolymer(0.6%,w/v),oil(0.75%,w/v),

soy lecithin(0.75%,w/v) andAlClPc (0.1mg/ml)were dissolved inacetone(15ml).Theorganicphasewaspouredintothe aque-ous phase (30ml) containing poloxamer 188 (0.75%,w/v), and thesolutionwasstirredfor10min.Thesolventswereevaporated underreducedpressureupto10ml(HeidolphRotaryEvaporator, Germany).PLA-CSnanocapsules(NC)werepreparedbythesame procedureabove,replacingpoloxamerbythechitosan(0.25%,w/v) intheaqueousphase.Thesizeoftheparticleswasdeterminedby photoncorrelationspectroscopy(PCS)(NanosizerN5 Plus Beck-mannCounter,USA)afteranappropriatedilutionofthesamplesin ultra-pureMilli-Qwater.

2.3. Calibrationstandards

Astocksolution(100␮g/ml)ofAlClPcwaspreparedinethanol, andZnPcwasusedasinternalstandard(I.S.)becauseofits solubil-ityprofileinethanol,itschemicalstabilityandchemicalsimilarity toAlClPc(Fig.1).Furthermore,itwaspreviouslyusedasanI.S.in quantitativeassaysinbiologicalsamples[20].Stocksolutionsof AlClPcandZnPc(I.S.)inethanolatconcentrationsof1␮g/mland 5␮g/ml,respectively,werepreparedasstandardsandquality con-trolsamples(QC)forAlClPcquantificationinbiologicalmatrices. CalibrationcurveswereconstructedusingAlClPcconcentrationsof 150ng/ml,200ng/ml,400ng/ml,500ng/ml,800ng/ml,900ng/ml and1000ng/ml(workingsolutions).Theworkingsolutionswere preparedviatheserialdilutionmethodfromthestocksolutionand allsolutionswerestoredat−20◦C.

2.4. Chromatographicconditions

The HPLC system employed consisted of a Waters Alliance 2695 separation module composed of an autosampler, pump, columnovenandfluorescencedetector(Waters2475).The sep-aration was performed on a 150mm×4.6mm, 4-␮m particle size C18 Gemini Phenomenex column protected by a Phe-nomemexsecurityguardAJO-7597C18column(2mm×4.6mm, 3␮m). The isocratic mobile phase consisted of a mixture of methanol/acetone/dimethylformamide(90:5:15,v/v/v).Itwas pre-pareddaily, degassedbeforeuseand pumped at1ml/min. The analysiswasperformedat30◦C.Theinjectionvolumewas30␮l forbiologicalsamplesand10␮lfortheothersamples.Thecolumn eluentwasmonitoredwithafluorescencedetectoratwavelengths of610nmand675nm,forexcitationandemission,respectively.

2.5. Analyticalmethod

Thenanocapsuleswereanalyzedbyananalyticalmethod,which was validated in accordance with International Conference on

(3)

prepared by diluting thestock solution (100␮g/ml) in ethanol toobtainconcentrationsof0.025,0.05,0.1,0.5,1.0,2.0,4.0and 5.0␮g/ml.Thecalibrationcurvewasconstructedbylinear regres-sion of theplot of AlClPc peak area against thecorresponding concentration. Quality-control samples were prepared at con-centrationsof 0.5, 2.0 and 4.0␮g/mlAlClPc todeterminatethe precisionandaccuracyoftheanalyticalmethod.Theselectivityin thepresenceofpolymersandexcipientsusedintheNC formula-tionswasinvestigatedbypreparingamobilephasespikedwith drug-freePLA,PLA-PEGandPLA-CSnanocapsules.The nanocap-suleformulationswerecompletelydisruptedanddissolvedinthe mobilephasebeforethechromatographicanalysis.

ThequantificationofAlClPcinthepolymericnanocapsulesof PLA,PLA-PEGandPLA-CSwasperformedasdescribedbelow.The percentageofencapsulation(%drugloading)ofAlClPcin nanocap-suleswascalculatedasthedifferencebetweenthetotaldruginthe finalcolloidalsuspensionandthefreedrugintheexternalaqueous phase.TheAlClPcnotencapsulatedcanbefounddissolvedinthe externalaqueousphaseorprecipitated.Todeterminetheamount ofdrugthatprecipitatedinthecolloidalNCsuspension(not encap-sulated),thesolutionwasfilteredusinga0.8␮mfiltertoremove AlClPc crystals.Thefraction of AlClPcdissolved inthe external phase(ultrafiltrate)wasassessedbycentrifuging400␮lsamples ofNC(afterfiltration)in anAMICOMdevice(Microcon Ultrafil-ter,MWCO50,000Da,Millipore®)at500×gfor15min.TheAlClPc associatedwiththeNCwasretainedintheuppercompartmentof thedevice.

TheamountofAlClPcloadedontheNCwasdeterminedfrom Eq.(1)andtheencapsulationefficiencyofAlClPcintotheNCwas determinedbyEq.(2),whereA=concentration:

(%) = A

totalAultrafiltrate

Atotal ×100 (1)

(%) = Atotal−Aultrafiltrate

Aweighed ×100 (2) FortotalAlClPcdeterminationintheNC,100␮loftheNC sus-pension wasaddedto 2.5ml ofacetonitrile,vortexedfor 5min (VortexInstrument,IKA,Germany),andcentrifuged;25␮lofthe supernatant wasthen injectedinto theHPLC system.Thisstep disruptedthenanocapsulesandreleasedthedrug.For quantifi-cationoftheunencapsulateddrug,50␮loftheultrafiltratewas mixedwith200␮lacetonitrile.Themixturewascentrifugedand thesupernatantassayedusingtheHPLC.Allsamplesanalyzedby HPLCwerefilteredusinga0.45␮mfilter(4mm)beforeinjection (25␮l)intotheHPLCsystem.Theanalysiswasperformedin tripli-cate.

2.6. Animals

Thein vivo experimentswere approved bythe Ethics Com-mitteeonAnimal Experimentation of the UniversidadeFederal deOuroPreto,Brazil(protocolno.2009/29)and arein compli-ancewiththeGuidefortheCareandUseofLaboratoryAnimals recommendedbytheInstituteofLaboratoryAnimalsResources

[22].FemaleSwissmicewereusedinthisstudy.Theyweighed 23.5–24.5gandweremaintainedatthefollowingenvironmental conditions:12hday/nightcycle,temperature22±2◦C,standard dietandwateradlibitum.

2.7. Biologicalsamplepreparation

Plasmaandliversamplesfrom drug-freeanimalswereused asblanks for method validation. Bloodfromanesthetized mice (ketamine 60mg/kg and xylazine 7.5mg/kg) was collected in

separatedby centrifugationat 400×gfor 10minand wasthen aliquotedandstoredat−80◦Cuntilanalyzed.Afteranimalswere euthanized,thetissueswereremoved,washedwithcoldsalineand blottedontofilterpaper.Piecesofliver(200mg)werecut,weighed andstoredat−80◦Cuntilneeded.

For the quantification of AlClPc in plasma, plasma samples (80␮l)wereplacedintoEppendorfmicrocentrifugetubes;AlClPc standards(10␮l)ofeachworkingsolutionand10␮lofI.S.(ZnPc 5␮g/ml)wereaddedtoeach tube.Thesolutionsweremixedin avortexandextractedwith1mlofethylacetate.Then,the sam-pleswereshakenonavortexfor10minatthesamespeedforall samples.Afterwards,tubeswerecentrifugedat9300×gfor10min andtheresultingupperorganiclayerswerepooled.Foreach sam-ple,this procedurewasrepeated3timesand theorganiclayers werepooled,filteredusing0.45-␮mfilters (Millipore,USA)and evaporatedtodrynessinanitrogen-stream.Aftertheextraction procedure,eachsamplewasreconstitutedin100␮lofthemobile phase.

For quantification in the liver samples, thawed pieces liver (200mg)werehomogenizedfor1mininaround-bottomplastic tubewith1mlsodiumphosphatebuffer(pH6.5)atroom temper-atureinanultrasonicprocessor(VibracellTMVC750)withametal rodtitaniumprobeat300W.Thetissuehomogenateswerestored at−80◦Cuntiltheextraction.AlClPcwasextractedfrom80␮lof thehomogenatetissueusingthesameproceduredescribedabove forplasmasamples.

2.8. Assayperformance

The method was validated according to FDA guidelines for validationofbioanalytical methods[23].Theassayperformance wasevaluatedthroughthedeterminationofselectivity,limitsof detection(LOD),limitsofquantification(LOQ),thelinearityover thetestedconcentrationrange(from15 to100ng/mland 75to 500ng/gformiceplasmaandliversamples,respectively),recovery, accuracy,precision,andthestabilityofthebioanalyticalmethod. Because ofthelight-absorbing propertiesof AlClPc,all samples wereprotectedfromlight;preparationsandextractionswere per-formedindarkenedrooms.

2.8.1. Selectivity

Theselectivityofabioanalyticalmethodisgenerallydefinedas thelackofinterferingpeaksattheretentiontimesoftheassayed drugand theinternalstandard inthechromatograms[23].The selectivityoftheassaywasinvestigatedbyprocessingand ana-lyzingblankspreparedfromsixindependentlotsofplasmaand liversamplescontrols.

2.8.2. Limitofdetectionandlimitofquantification

Thelimitofdetection(LOD)ofthebioanalyticalmethodswas definedasthelowestconcentrationlevelgivingapeakareaofthree timesthenoise.TheLOQwasdeterminedasthelowest concentra-tiononthestandardcalibrationcurve,whichcanbequantitatively determinedwithaprecisionof20%andaccuracyof80–120%[23].

2.8.3. Linearity

Thelinearity of ananalytical procedureis itsability (within a given range) to obtain test results that are directly propor-tional to the concentration (amount) of analyte in the sample

[21]. The linearity of the bioanalytical assay for the test com-poundswasevaluatedwithatotalofsevencalibrationsstandards over the concentration range of 15–100ng/ml for plasma and 75–500ng/gforliver.Calibrationcurveswereconstructedbythe linearleast-squaresregressionanalysisbyplottingthepeak-area ratios(AlClPc/I.S.)versusthedrugconcentrations.Thecalibration

(4)

modelwasacceptedif(a)thecoefficientofcorrelationwasgreater thanorequalto0.98and/or(b)residualswerewithin±20%atthe lowerlimitofquantificationandwithin±15%atallother calibra-tionlevels[23].Fivecalibrationcurveswerepreparedfromablank sample(matricessamplesprocessedwiththeinternalstandard), includingtheLOQ.

2.8.4. Recovery

Thetruenessofananalyticalprocedurereferstothecloseness ofagreementbetweenaconventionallyacceptedvalueandamean experimentalvalue.Thetruenesswasexpressedasthepercentage recoveryofthetargetvalueassessedbythevalidationstandards intheplasmaandliveratthreeindependentconcentrationlevels: low,mediumandhigh[23].Recoverywascalculatedbycomparing themeanpeakareaobtainedfromanextractedsample(recovered %)tothepeakareaobtainedafterthedirectinjectionofa solu-tionofthesamedrugconcentrationdilutedinthemobilephase (100%).The%recoverywasdeterminedbycomparingthe concen-trationsofthreequalitycontrolsamples(n=6,20,40and80ng/ml forplasmasamplesand100,200and400ng/gforliversamples) withunextractedreferencestandardscontainingthesameamount ofthe analyte.The sampleswere preparedfrom blankplasma, whichwasextractedthreetimesusingethylacetate,vortexedfor 10minandcentrifugedfor10minat9300×g.Thesupernatants weredrawnandthestandardsolutionsandinternalstandard solu-tionswereaddedtoprovidethereferencestandardsthatweredried andreconstitutedwiththemobilephaseforanalysis.

2.8.5. Accuracyandprecision

Theintra-batch accuracy and precision weredetermined by theanalysisofsixreplicatesoflow(20ng/ml),medium(40ng/ml) andhigh(80ng/ml)concentrationsoftheanalyteinmiceplasma andlow(100ng/g),medium(200ng/g)andhigh(400ng/g) con-centrationsinmiceliver.Inter-batchaccuracyandprecisionwere determinedbytheanalysisofthesequalitycontrol(QC)sampleson threeseparateoccasions.Theoverallprecisionofthemethodwas expressedasrelativestandarddeviation(RSD)andtheaccuracyof themethodwasexpressedintermsofrelativeerror.Theaccuracy andprecisiondeterminedateachconcentrationlevelofthecurve pointsmustbewithin±15%oftherespectivenominalvalue. 2.8.6. Stability

Thedrugstabilityinbiologicalmatricesisafunctionofthe stor-ageconditions,thechemicalpropertiesofthedrugandthematrix

[23].Forallstabilitystudies,low,mediumandhighplasmaquality control(QC)sampleswereusedintriplicate.Thestabilityat24h (aftertheplasmasampleextractshadbeenexposedtothesame temperatureastheautosamplerenvironment)wasdeterminedfor theanalytesandfortheI.S.Thefreeze–thawstabilityofthe sam-pleswasobtainedoverthreefreeze–thawcycles,bythawingthe QCsamplesunassistedatroomtemperatureandthenrefreezing for12–24hfollowedbyanalysis.Thebench-topstabilitywas eval-uatedbykeepingtheQCsamplesatroomtemperaturefor4hand thenthesampleswereprocessedandanalyzed.TheAlClPc stabil-itywasevaluatedat−80◦Cfor30days.TheconcentrationofAlClPc aftereachtestconditionwascomparedtotheinitialconcentration addedtothesample.TheworkingsolutionsofAlClPc(40ng/ml) andtheI.S.(500ng/ml)wereanalyzedimmediatelyafter prepara-tionandafterbeingstoredfor30daysat−20◦C.Subsequently,the concentrations(20,40and80ng/mlinplasmasamplesand100, 200and400ng/ginliversamples)werecompared.

2.9. Applicationofthemethod

To test the validated methods with real samples, experi-ments were undertaken to determineAlClPc in three types of

nanocapsulesof differentchemical constitutionsusing the ana-lyticalmethoddeveloped.Thebioanalyticalmethodwasusedto determineAlClPcconcentrationsinplasmaand liversamplesof healthymice(n=4).Themicereceivedsingleintravenousdosesof 50,100,200or300␮lof0.1mg/mlAlClPc-loaded,PLA nanocap-sules.Thebloodsamples(approximately500␮l)werecollected inheparinized tubes20minafteradministration.Sampleswere immediatelycentrifugedfor10minat400×g,andtheplasmawas thenfrozenat−80◦Cuntilanalysis.Aftereuthanasiaofthemice, theliverswereexcised,washedwithcoldsalineandblottedwith filterpaper.ThequantificationofAlClPcinbiologicalsampleswas undertakenwithin12–24hpost-collectionofsamplesusingthe methoddescribedinSection2.7.TheQCsampleswereincorporated intotheseriesonthesamedayoftheanalysis.

ThepharmacokineticstudywasperformedwithfreeAlClPcand AlClPcloadedinPLA-NC.ThefreeAlClPcsolutionwasprepared dis-solving400␮gofthedrugin400␮lofDMSOand600␮lofPEG 300. Afterwardthis solutionwasdiluted in5%glucosesolution upto0.1mg/mlofAlClPcfinalconcentration.TheAlClPcsolution and AlClPc PLA-NC suspension were filtered ona 0.8␮m ster-ilefilterand150␮lwereadministeredintravenouslyinmice.At theindicatedtimeintervals,5,20,60minand 3,6,12,24,48h post-injection,blood(200␮l)wascollectedinheparinizedtubes, centrifugedfor15minat800× gandplasmawascollected.At50␮l ofplasmasamples10␮lofI.S.solutionwereadded.Thesamples werethen extractedby themethoddescribed above.To deter-minetheamountoftotalfluorescentdye(AlClPc)inplasma,atotal plasmavolumepermouseof4.9%ofbodyweightwasassumed

[24].Theresultswereexpressedasa percentageoftheinjected doseand are themean±standard errors (n=6 mice). To com-parethedifferentformulations,theareaunderthecurve(AUC) (concentration×time)offreeAlClPcandAlClPcloadedinPLA-NC were calculated by the trapezoidal method during the experi-mentalperiod(AUC[0–48]).Theextrapolatedarea(AUC[t−ω])was calculatedbydividingthelastexperimentalconcentration(Ct)by therateconstantofelimination(K)becausethisarearepresented approximately1%oftheexperimentalAUC,itwasneglectedinour calculations.ThestatisticalanalysiswasperformedusingPrisma® 5.0software.Thedifferenceslowerthanp<0.01wereconsidered significant.Thus,theoverestimatedplasmaclearance(Cl)was cal-culatedfromthefollowingequation:Cl=Doseiv/AUC0–48.

3. Resultsanddiscussion

Using the HPLC-FLDanalytical method developed, AlClPc in nanocapsulesexhibitedaretentiontimeof1.97mininthe experi-mentalconditionsutilizedandthecalibrationplotwaslinearinthe concentrationrange investigated (0.025–5.0␮g/ml). Theslopes, interceptsandthecoefficientsofdeterminationwerefoundtobe 13979031(a),356534(b)and0.9997(r2),respectively.Thelimitsof detection(LOD)werecalculatedbytheequationLOD=3.3/Sand thelimitofquantification(LOQ)wascalculatedbytheequation LOQ=10/S,whereisthestandarddeviationofy-interceptsof regressionlinesandSistheslopeofthecalibrationcurve.TheLOD andLOQvalueswere1.12ng/mland3.39ng/ml,respectively.The HPLC-FLDmethodshowedmoresensitivitythanthe spectrofluori-metricmethodsdescribedbySiqueira-Mouraetal.whichshowed LODandLOQvaluesof10and40ng/ml,respectively[17].The chro-matogramofAlClPcwasnotalteredinthepresenceofpolymers andotherchemicalconstituentsusedinPLA,PLA-PEGandPLA-CS NCformulations,suchaspolymers,surfactantsandoilsin accor-dancewithpreviouslyobserveddata(Fig.2)[17].Todetermine intra-assayaccuracyandprecision,sixreplicateanalyseswere per-formedateachofthethreeconcentrations(0.5,2.0and4.0␮g/ml). ThemeansforquantificationofAlClPcwithqualitycontrol

(5)

sam-Accuracyandprecisiondeterminedbyanalyticalmethod.

Concentration (␮g/ml)

Precision(RSD%) Accuracy(%)

Intra-daya Inter-daya Intra-daya Inter-daya

0.5 1.00 1.35 101.43 101.84

2.0 1.80 1.67 99.77 101.88

4.0 0.50 1.48 101.90 100.59

RSD,relativestandarddeviation.

an=6.

plesin thenanocapsulesaresummarized in Table1.Themean intra-dayprecisionvaluesforallsampleswerefoundtobewithin 0.50–1.80%,andtheinter-dayprecisionvalueswerebetween1.35% and1.67%.Theintra-dayaccuracywasfoundtorangefrom99.77 to101.90%and100.59to101.88%fortheinter-dayaccuracy. More-over,therelativestandarddeviation(RSD)obtainedwithin-dayand between-dayexperimentswerebelow2%ineachcase.

During the development and validation of the bioanalytical methodofquantificationforAlClPcinmiceplasmaandliver,five setsofcalibrationstandardswerepreparedforeachmatrix.The retentiontimesfor AlClPcandfor theI.S.atthis pointofstudy were2.036and4.816min,respectively(Fig.2).Theassayswere linearbetween15ng/ml and100ng/mlinplasma and between 75ng/gand500ng/ginliversamples.Themeanregression equa-tionoffive standardcurves was:y=(0.0235)x+(0.0207)forthe plasmaand y=(0.0221)x+(0.1650) forthe liversamples,where yisthepeakarearatioofAlClPc/I.S.andxistheconcentration ofAlClPc.Thecalibrationcurvesgeneratedshowedagood rela-tionshipbetweentheareaofthepeakofAlClPc/I.S.(y)andthe respectiveAlClPcconcentration(x),withr2=0.9873fortheplasma andr2=0.9913fortheliversamples.TheLOQandLODwerefound tobe15ng/mland5ng/mland75ng/gand25ng/g,respectively forplasma and liversamples.Thelimit ofquantification inthe liversamples(LOQ=75ng/g)ofthemethoddevelopedhereinwas

[24].

The selectivity of the method was evaluated by processing drug-freeplasmaandliversamplesobtainedfromsixmice(Swiss, female) in a similar manner to the calibration standards and unknowns.Chromatogramswerecomparedtodetermineifthere wasanyinterferencefromthematrix orfromanyof theassay reagents.Themethodwasselectiveinbothmatrices.Therewere noendogenousinterferencesinplasmaandliverfromthemicein thedeterminationoftheAlClPcandtheI.S.(Fig.2).Toquantify theAlClPcextractedfrombiologicalmatrices,theinherenthigh fluorescencequantumyieldsofthePcswereexploited.Atthis spec-tralrange(600–700nm),theintrinsicbiomolecules,suchasNADH, porphyrinsandcollagendisplayedminimalexcitability,hencehad lowautofluorescence,whichresultedinlowinterference.Inthe method developed here,good chromatographic resolution was achievedbetweentheanalyte(AlClPc)andtheI.S.(ZnPc).

Theprecisionofananalyticalprocedureexpressesaclose agree-mentbetweenaseriesofmeasurementsobtainedfrommultiple samplingofthesamehomogeneoussample,whereastheaccuracy ofananalyticalmethoddescribesaclosetestresultsobtainedbythe methodtothetrue(nominal)valueoftheanalyte.Forplasma sam-ples,intra-dayprecisionandaccuracyrangedfrom0.99%to5.50% and98.27%to107.31%,respectively.Forliversamples,intra-day precisionandaccuracyrangedfrom10.06%to12.71%and90.95% to103.15%,respectively.Inter-dayprecisionandaccuracyranged from6.24%to9.40%and93.81%to104.02%respectivelyforplasma samplesandrangedfrom11.44%to13.87%and99.48%to104.48%, respectively for theliversamples (Table 2).Theseresults were withinthelimitsestablishedbyFDAguidelinesforthevalidation ofbioanalyticalmethods[23].

Therecoveryvaluesobtainedforeachmatrixarepresentedin

Table3.Therecoverywasveryefficientforthestandardandthe I.S.inplasmaandliversamples.Themeanpercentagesrecovered were96.11%and99.27%forAlClPcand96.68%and95.76%forthe I.S.inplasmaandliversamples,respectively.Theextraction

proce-EU 0,00 20,00 Minutes 0,00 2,00 4,00 EU 0,00 20,00 Minutes 0,00 2,00 4,00 EU 0,00 5,00 10,00 Minutes 0,00 2,00 4,00 EU 0,00 50,00 100,00 Minutes 0,00 2,00 4,00 EU 0,00 50,00 100,00 Minutes 0,00 2,00 4,00 EU 0,00 50,00 100,00 Minutes 0,00 2,00 4,00 AlClPc AlClPc AlClPc AlClPc AlClPc AlClPc I.S. I.S. I.S. I.S.

A

B

C

E

F

D

Fig.2.Chromatogramsofsamplesof0.1mg/mlAlClPcloaded-PLANC(A)andAlClPcloaded-PLA-PEGNC(B).MiceplasmasamplesobtainedafterivadministrationofAlClPc loadedPLANC,5min(C)and12h(D).Miceliversamplesobtained20minafteradministrationof50␮l(E)and100␮l(F)of0.1mg/mlAlClPcPLANC.

(6)

Table2

Intra-andinter-dayprecisionandaccuracyofAlClPcdeterminedbybioanalyticalmethod.

Concentration Precision(RSD%)a Accuracy(%)a

Intra-day Inter-day Intra-day Inter-day

Plasma(ng/ml) 20 5.50 8.23 107.31 96.14 40 8.77 9.40 98.27 93.81 80 0.99 6.24 101.32 104.02 Liver(ng/g) 100 12.71 11.52 90.95 99.48 200 12.44 13.87 99.95 104.48 400 10.06 11.44 103.15 103.45

RSD,relativestandarddeviation.

an=6

durewasthesamefortheliverandplasmasamplesandexhibited highpercentagesof extractionof AlClPc fromthesamples.The extractionmethodologywassimple,fastandcost-effectivebecause onlyonesolventwasneededinlow volumesandthere wasno needforfurtherpurification.Furthermore,oneimportant advan-tageofthisbioanalyticaltechniquewasthatonly100␮lofplasma or200mgoftissueweresufficientforobtainingresultsinawide rangeofconcentrationsapplicabletobiodistribution,toxicology andpharmacokineticsstudies,whichwouldrequiresmall labora-toryanimalsorsamples,suchasbiopsies[14].TheZnPcwasfound tobeasuitableinternalstandardbecauseofitschemicalstability

[12,20],itssimilaritytoAlClPc’sstructureandisthefactthatitis easilyrecoveredfromplasmaandliversamples(>95%),asshown inTable3.

Table4listsdataforstabilitytests.Threesetsofplasma sam-plesatlow,mediumandhighconcentrationsofQCwereanalyzed inallstabilitytests,andtheresultsindicatedthattheAlClPcwas stable.Processedplasmaandliversampleswerestableforatleast 24hatroomtemperatureintheautosampler.Thesampleswere stableafterthethreefreeze–thawcycles.Theseresultssuggested thatplasmaandliversamplescouldbethawedandrefrozen with-outcompromisingtheintegrityandaccuracyofthesamples.The workingsolutions of AlClPcand I.S. were stablefor 30 days at −20◦C.The bench-topstability wasinvestigated toensurethat AlClPcremainedstableinplasmaandliversamplesatroom tem-peraturefor4h.TheAlClPcconcentrations(n=5)foundinplasma andtissuefrozenat−80◦Cwerenotstatisticallydifferent(p>0.05) fromtheconcentrationmeasuredatthebeginningofstudy.This ensembleofresultsconfirmedAlClPc’slong-termstabilityandits suitabilityasafluorescentdyeinNCformulationsandin biologi-calsamples.Theresultsobtainedonthestabilitystudiesindicated thatsamplescanbestoredat−80◦Cforthirtydayswithoutlossof theanalyte.ThefluorescenceresponseaftercontactofAlClPcwith

Table3

AbsoluterecoveryofAlClPcandZnPcfromplasmaandlivermatrices.

Concentrationa Recovery(%) AlClPc ZnPc(I.S.)b Plasma(ng/ml) 20 94.10 96.58 40 95.67 95.33 80 98.56 98.13 Mean 96.11 96.68 RSDc 1.92 1.18 Liver(ng/g) 100 96.32 89.96 200 101.53 96.34 400 99.96 100.97 Mean 99.27 95.76 RSDc 2.69 5.77 an=5. b ZnPcisinternalstandard. c Relativestandarddeviation.

solventwastime-independentbecauseofthesolventusedinthe method;incomparison,inapreviouslyreportedmethod,the con-tacttimebetweenthebiologicalsampleandsolventaffectedthe fluorescenceresponse[14].

Directchromatographicanalysisofthemajorityofthe phthalo-cyaninederivatives was difficultbecause of thepoor solubility ofthesecompoundsinthemobilephase, exceptforthemobile phases containing concentrated H2SO4 and dimethyl sulfoxide

[26].PhthalocyaninederivativeswereproblematicHPLCanalytes becauseof thepresenceof anextended ␲regionthat is prone toadsorptionand␲-stackingphenomena.Theirchromatographic separationwaspossibleundertheconditionsofnormal-phaseand reversed-phaseHPLCbecauseofpolarandnonpolargroupsonthe molecule[25,26].Dimethylformamidewasmixedwithmethanol andacetonetoconstitutetheeluentphase.Itwassuccessfulin sol-ubilizingtheAlClPcandreducingtheadsorptiononthestationary phase,probablybyimprovinginteractionbetweentheanalyteand solvents.

3.1. Application

Nanocapsules with different superficial characteristics were preparedbythenanoprecipitationmethod[18,19]withmeansizes ofbetween155and256nm.TheAlClPccontentinPLA,PLA-PEGand PLA-CSNCwasdeterminedusingthevalidatedanalyticalmethod describedherein.

TheprecipitationofAlClPcwassometimesobservedafter prepa-ration of the NC; thus, the colloidal suspensions were filtered usinga0.8␮mmembranebeforetheAlClPcdeterminationineach nanocapsuleformulation.TheAlClPcpayloadinthenanocapsules rangedfrom35.3%to86.4%(Table5),asdeterminedpreviously forotherdrugs[19].ThehighertheAlClPcprecipitationinthe for-mulation,thelowertheefficiencyoftheencapsulationprocess.It wasinfluencedbytheNCcoatingcomposition.Chitosanreduces AlClPcassociationwithNC.However,drugloadingwasnot influ-encedbythecompositionoftheexternalsurfaceofnanocapsules at0.1mg/ml,indicatingthatAlClPcwasprobablyentrappedinthe oilycore.

Arecentlypublishedstudyreportedthevalidated spectropho-tometricandspectrofluorimetricmethodsforAlClPcquantification innanocarriers[17].However,themethoddescribedhereinalso allowedthequantificationoftheAlClPcwiththesamesensitivity andwithbetterselectivityinbiologicalsamples.Thebioanalytical method applied herein was able to determine AlClPc concen-trations in plasma and liver samples 20min after PLA NC was intravenouslyadministeredinmice.Abiodistributionstudywas usedtoinvestigatetheeffectofincreasingdosesofparticlesonthe miceplasmaandliversconcentrationsofAlClPc(Fig.3).Thedoses ofnanoparticlesadministeredtotheanimalswereparticularlyhigh tosaturateparticleuptakeby themononuclear phagocytic sys-tem(MPS).Itwasnecessarytodilutethesamplesofplasmafrom treatedmice5–10foldwithblankmiceplasmabeforethe

(7)

extrac-StabilitydataofAlClPcinplasmaandliversamples. Stability Nominal concentration Measured concentration (ng/ml) Precision (RSDa%) Accuracy(%) Plasma Benchtop4h 20ng/ml 20.95 7.05 104.27 40ng/ml 20.44 0.97 101.09 80ng/ml 75.51 2.42 94.38 Autosampler24h 20ng/ml 20.93 5.08 103.23 40ng/ml 43.22 7.46 108.05 80ng/ml 81.46 7.94 101.83

Freeze–thawthreecycles

20ng/ml 18.40 2.32 92.02 40ng/ml 38.36 2.36 95.89 80ng/ml 81.45 12.53 101.82 Liver Benchtop4h 100ng/g 101.15 1.55 101.15 200ng/g 198.76 6.30 99.38 400ng/g 402.64 8.25 100.66 Autosampler24h 100ng/g 100.75 8.10 100.75 200ng/g 209.05 9.48 104.52 400ng/g 428.8 9.91 107.20

Freeze–thawthreecycles

100ng/g 104.95 9.31 104.95

200ng/g 211.15 6.34 105.59

400ng/g 408.55 0.05 102.14

aRelativestandarddeviation.

tiontofittheAlClPcconcentrationinthebiologicalsampleswithin thecalibrationcurves.Thesametechniquewasusedfortheliver samples.Fig.3showsthatAlClPcconcentrationsintheplasmaand liversamplesareveryhighcomparedwiththeadministereddoses,

Fig.3.ConcentrationofAlClPcinmiceplasmaandliver20minafteradministration ofdifferentdosesofAlClPcinPLAformulation(n=4),*p<0.05.

0.1 0.2 0.4 0.8 1.6 AlClPc FREE AlClPc NC 48 42 36 30 24 18 12 6 3 0 Time (h) % of injected dose *** *** **

Fig.4.PlasmaAlClPcconcentration–timeprofilesafterintravenousadministration of150␮lof0.1mg/mlsolutionofAlClPcfreeand0.1mg/mlAlClPcinPLA-NC sus-pensioninmice(mean±SE,n=6).***p<0.001,**p<0.01,usingtwo-wayANOVA.

Table5

AlClPcassociationwithdifferentnanocapsuleformulationsdeterminedbythe ana-lyticalmethod. AlClPc nanocapsules (0.1mg/ml) Encapsulation efficiency(%) Drug loadinga(%) AlClPcb precipitated(%) PLA 71.9 100 9.2 PLA-PEG 86.4 100 7.1 PLA-CS 35.3 100 17.3

aDrugloadingwasdeterminedafterNCsuspensionfiltrationin0.8␮mfilter. bPrecipitaterecoveryafterfiltrationofNCsuspensionin0.8␮mfilter.

indicatingthatnanocapsulesconcentratethedyeintheplasmaand liver.Atthehigherdoses(30␮g/animal),asaturationofMPSseems tobereachedbecausetheAlClPcconcentrationinplasmaexhibited anexponentialincrease.TheplasmaandliverAlClPcconcentrations werefoundtobedose-dependent(Fig.3).

Thepharmacokineticprofilesobtainedafterintravenous admin-istrationofAlClPcsolutionandAlClPcloadedinPLA-NCareshown inFig.4.TheplasmaticconcentrationofAlClPcwassignificantly higher(p<0.001)thantheconcentrationsofthefreeAlClPcafter5, 20and60minofinjection.After3h,theplasmaticconcentration declinedsharplyuntil6h.After3hAlClPcconcentrationofboth formulationsweresimilarindicatingthattheAlClPcwasprobably releasedfromtheNC.Itcanbenotedthatnanocapsulesmodified theplasmaticprofileofAlClPc,suchasshowninTable6.TheAUC wasincreasedapproximately1.5timesandclearancewasreduced byencapsulatingthisdruginthesepolymericnanocarriers.

Table6

PharmacokineticparametersofAlClPcindifferentformulationsafterintravenous administration.

Parameter AlClPcfree AlClPcloaded inPLA-NC AUC0–48(ngmin/ml) 429.9*** 627.8

Clearance(ml/(minkg)) 1237.56*** 761.46

AUC,areaundercurve;NC,nanocapsules.Administereddoses:478␮g/kg free AlClPc,570␮g/kgAlClPcNC.

(8)

Inthepresentwork,onlyliverandplasmaassaysarereported; however,preliminaryresultsindicatedthatthismethodcouldalso beusedwithothertissues,suchasbrain,lungs,muscle,spleen, kidneysandtumortissueswiththesimilarLOQandrecovery(data notshown).

4. Conclusion

New, specific, accurate, and precise isocratic reverse-phase HPLCmethodswithfluorescencedetectionweredescribedforthe determinationofAlClPcindifferentpolymericnanocapsule formu-lationsandinbiologicalsamples.Themethodwasdevelopedto assessdataonthepre-clinicalevaluationofAlClPcasaPDT sen-sitizingagent.Themethodwassensitiveandrobustandcouldbe usedinfurtherbiodistributionandpharmacokineticstudiesand inroutineanalysisofPDTtherapywiththisphotosensitizer.Itis suggestedthatthismethodcouldbeusefulinAlClPcclinicaltrials.

Acknowledgements

TheauthorsthankUFOPforpersonalfinancialsupporttothe firstauthorandtheCNPq-BrazilresearchergrantprovidedtoVCF Mosqueira.ThisworkwasalsosupportedbyFAPEMIG (APQ-4403-07project)andbytheNANOBIOMGNetwork,MinasGerais,Brazil.

References

[1]Z.Z.Öztürk,N.kilinc¸,D.Atilla,A.G.Gürek,V.Ahsen,Recentstudiesin chem-icalsensorsbasedonphthalocyanines,J.Porphir.Phthalocyanines13(2009) 1179–1187.

[2] A.P.Castano, T.N.Deminova,M.R. Hamblin,Mechanisminphotodynamic therapy:partthree.Photosensitizerpharmacokinetics,biodistribution,tumor localizationandmodesoftumordestruction,Photodiag.Photodyn.Ther.2 (2005)91–106.

[3] M.Triesscheijn,P.Baas,J.H.Schellens,F.A.Stewart,Photodynamictherapyin oncology,Oncologist11(2006)1034–1044.

[4]M.M.Zuk,K.Tyczkowska,E.Ben-Hur,H.C.Newman,I.Rosenthal,S.W.Crane, Reversed-phaseliquidchromatographicdeterminationofchloroaluminum phthalocyaninetetrasulfonateincaninetissuesandfluids,J.Chromatogr.433 (1988)367–372.

[5]T.J.Dougherty,C.J.Gomer,B.W.Henderson,G.Jori,D.Kessel,M.Korbelik,J. Moan,Q.Peng,Photodynamictherapy,J.Natl.CancerInst.90(1998)889–905. [6] A.Juarrans,P.Jaén,F.Sanz-Rodriguez,J.Cuevas,S.González,Photodynamic therapyofcancer,basicprinciplesandapplications,Clin.Transl.Oncol.3(2008) 148–154.

[7]E.Aisling,O‘Connor,W.M.Gallaher,A.T.Byrne,Porphyrinandnonporphyrin photosensitizerinoncology:preclinicalandclinicaladvancesinphotodynamic therapy,Photochem.Photobiol.85(2009)1053–1074.

[8]Y. Sadzuk,F.Iwasaki,I.Sugiyamaa,K.Horiuchi,T.Hiranod,H.Ozawa, N. Kanayam,N.Okub,Phototoxicityofcoproporphyrinasanovelphotodynamic therapywasenhancedbyliposomalization,Toxicol.Lett.182(2008)110–114. [9]C.M.Cassidy,M.M.Tunney,P.A.McCarron,R.F.Donnelly,Drugdelivery strate-giesforphotodynamicantimicrobialchemotherapy:frombenchtoptoclinical practice,J.Photochem.Photobiol.B.95(2009)71–80.

[10]K.O‘Riordan,O.E.Akilov,T.Hassan,Thepotentialforphotodynamictherapy inthetreatmentoflocalizedinfections,Photodiag.Photodyn.Ther.2(2005) 246–262.

[11] P.Klusona,M.Drobeka,A.Kalaji,S.Zarubova,J.Krysa,J.Rakusan,Singlet oxy-genphotogenerationefficienciesofaseriesofphthalocyaninesinwell-defined spectralregions,J.Photochem.Photobiol.AChem.199(2008)267–273. [12]S.M.T.Nunes,F.S.Sguilla,A.C.Tedesco,Photophysicalstudiesofzinc

phthalo-cyanineandchloroaluminumphthalocyanineincorporatedintoliposomein thepresenceofadditives,Braz.J.Med.Biol.Res.37(2004)273–284. [13] M.Kyriazi,E.Alexandratou,D.Yova,M.Rallis,T.Trebst,Topical

photody-namictherapyofmurinenon-melanonaskincarcinomaswithchloroaluminum phthalocyanineandadiodolaser:pharmacokinetics,tumorresponseand cos-meticoutcomes,Photodermatol.Photoimmunol.Photomed.24(2008)87–94. [14] L.Lilge,C.O’Carrol,B.C.Wilson,Asolubilizationtechniqueforphotosensitizer quantificationinexvivotissuesamples,J.Photochem.Photobiol.B.39(1997) 229–235.

[15]D.K.Chatterjee,L.S.Fong,Y.Zhang,Nanoparticlesinphotodynamictherapy:an emergingparadigm,Adv.DrugDeliv.Rev.60(2008)1627–1637.

[16]D.Bechet,P.Couleaud,C.Frochot,M.-L.Viriot,F.Guillemin,M.Barberi-Heyob, Nanoparticlesasvehiclesfordeliveryofphotodynamictherapyagents,Trends Biotechnol.26(2008)612–621.

[17]M.P.Siqueira-Moura, F.L.Primo,A.P.F. Peti,A.C.Tedesco, Validated spec-trophotometric and espectrofluorimetric methods for determination of chloroaluminumphthalocyanineinnanocarriers,Pharmazie65(2010)9–14. [18]H.Fessi,F.Pusieux,J.P.Devissaguet,N.Ammoury,S.Benita,Nanocapsule

for-mationbyinterfacialpolymerdepositionfollowingsolventdisplacement,Int. J.Pharm.55(1989)R1–R4.

[19]V.C.F.Mosqueira,P.Legrand,G.Barrat,Surface-modifiedandconventional nanocapsulesasnovelformulationsforparenteraldeliveryofhalofantrine,J. Nanosci.Nanotechnol.6(2006)3193–3202.

[20]T.Bohn,T.Walczyk,Determinationofchlorophyllinplantsamplesbyliquid chromatographyusingzinc-phthalocyanineasaninternalstandard,J. Chro-matogr.A.1024(2004)123–128.

[21] ICHHarmonisedTripartiteguideline,InternationalConferenceon Harmonisa-tionofTechnicalRequirementsforRegistrationofPharmaceuticalsforHuman Use,ValidationofAnalyticalProcedures:TextandmethodologyQ29(R1),ICH SteeringCommittee,Geneva,Switzerland,2005,pp.1–13.

[22] CommitteeonCareandUseofLaboratoryAnimals,GuidefortheCareandUse ofLaboratoryAnimals,Natl.Inst.Health,Bethesda,DHHS,1985,Publ.No.(NIH), pp.86–123.

[23]USFoodandDrugAdministration,GuidanceforIndustry,BioanalyticalMethod Validation,CentreforDrugEvaluationandResearch(CDER),Rockville,2001. [24] C.S.Auletta,Acutesubchronicandchronictoxicology,in:M.J.Derelanko,M.A.

Hollinger(Eds.),CRCHandbookofToxicology,CRCPress,BocaRaton,1995,pp. 51–103.

[25] M.I.Uvarova,G.D.Brykina,O.A.Shpigun,Porphyrinsandphthalocyaninesin high-performanceliquidchromatography,J.Anal.Chem.55(2000)910–925. [26]M.Sommerauer,C.Rager,M.Hanack,Separationof

2(3),9(10),16(17),23(24)-tetrasubstitutedphthalocyanineswithnewlydevelopedHPLCphases,J.Am. Chem.Soc.118(1996)10085–10095.

Referências

Documentos relacionados

After establishing the best conditions for obtaining the dose-response curve, the method was validated by assessing selectivity, linearity, linear range, limits of detection

Saliente-se que apenas será estudado todo o espólio exumado das fossas que correspondem a cronologias pré-históricas (4º e 3º milénio a.n.e). O Monte da Laje está inserido na

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Peça de mão de alta rotação pneumática com sistema Push Button (botão para remoção de broca), podendo apresentar passagem dupla de ar e acoplamento para engate rápido

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Importante é que o serviço prestado pelo táxi não é ser- viço público – trata-se de atividade econômica em sentido es- trito, que resplandece uma utilidade pública; o

The method showed linearity, precision, accuracy and limits of quantification and detection acceptable for INMETRO protocol validation of analytical methods.. Therefore, the