• Nenhum resultado encontrado

Plant growth promoting rhizobacteria reduce aphid population and enhance the productivity of bread wheat

N/A
N/A
Protected

Academic year: 2021

Share "Plant growth promoting rhizobacteria reduce aphid population and enhance the productivity of bread wheat"

Copied!
6
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Environmental

Microbiology

Plant

growth

promoting

rhizobacteria

reduce

aphid

population

and

enhance

the

productivity

of

bread

wheat

Muhammad

Naeem

a,b

,

Zubair

Aslam

a

,

Abdul

Khaliq

a

,

Jam

Nazir

Ahmed

c

,

Ahmad

Nawaz

d

,

Mubshar

Hussain

b,

aUniversityofAgriculture,DepartmentofAgronomy,Faisalabad,Pakistan bBahauddinZakariyaUniversity,DepartmentofAgronomy,Multan,Pakistan cUniversityofAgriculture,DepartmentofEntomology,Faisalabad,Pakistan dBahadurSub-Campus,BZU,CollegeofAgriculture,Layyah,Pakistan

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received11April2017 Accepted14October2017 Availableonline24April2018 AssociateEditor:JerriZilli

Keywords: Pseudomonas Bacillus Aphid Breadwheat PGPR Eco-friendly

a

b

s

t

r

a

c

t

Plantgrowthpromotingrhizobacteriaincreaseplantgrowthandgiveprotectionagainst insectpestsandpathogens.Duetothenegativeimpactofchemicalpesticideson environ-ment,alternativestothesechemicalsareneeded.Inthisscenario,thebiologicalmethods ofpestcontrolofferaneco-friendlyandanattractiveoption.Inthisstudy,theeffectof twoplantgrowthpromotingrhizobacterialstrains(Bacillussp.strain6andPseudomonas

sp.strain6K)onaphidpopulationandwheatproductivitywasevaluatedinanaphid sus-ceptible(Pasban-90)andresistant(Inqlab-91)wheatcultivar. Theseedswereinoculated witheachPGPRstrain,separatelyorthecombinationofboth.Thelowestaphidpopulation (2.1tiller−1),andhighestplantheight(85.8cm),numberofspikeletsperspike(18),grainsper spike(44),productivetillers(320m−2),strawyield(8.6Mgha−1),andgrainyield(4.8Mgha−1) wereachievedwhenseedswereinoculatedwithBacillussp.strain6+Pseudomonassp.strain 6K.Thegrainyieldofbothvarietieswasenhancedby35.5–38.9%withseedinoculationwith bothbacterialstrains.Thus,thecombineuseofbothPGPRstrainsviz.Bacillussp.strain 6+Pseudomonassp.strain6Koffersanattractiveoptiontoreduceaphidpopulationtied withbetterwheatproductivity.

©2018SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Correspondingauthor.

E-mail:mubashiragr@gmail.com(M.Hussain).

Introduction

Breadwheat(TriticumaestivumL.)isthemostessentialcereal cropandstaplefoodforthemajorityofthemankind.1 Itis grownonanareaof>200millionhectaresallovertheworld andmeets21%ofglobalfoodrequirement.2Itisastaplefood

https://doi.org/10.1016/j.bjm.2017.10.005

1517-8382/©2018SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

ofPakistani people,andcontributes2.2%inGDPand10.3% towardvalueaddedinagriculture.In2015–16,itwascultivated onanareaof9.26millionhectareswiththeproductionof25.48 milliontons.3

Bioticandabioticstressesareseriousenvironmental con-straintswhichreducetheyieldofcerealsacrosstheglobe.4,5 Duringrecentyears,theRussianwheataphids(blackaphids) have emerged as a serious threat to wheat production in Pakistan.Itsattackismoresevereatreproductiveandgrain fillingstages,thuscausingaseveredeclineincropyieldand thequalityofproduce.Itsworstinfestationmaycauseyield declineof21–92%inaphidsusceptiblecultivarsofwheat.6 Indeed,theaphidsucksthecellsapfromleaves,whichaffects thephotosyntheticefficiencyandreproductivedevelopment ofplants. Italsoexcretessugarymaterialwhichfavorsthe growthoffungiontheleafsurface,7thusaffectingthewheat performancenegatively.

Although,variouspesticidesarebeingemployedto con-trol aphid.8 However, the use of pesticides in wheat may cause the health problems if the pesticide residues retain inthewheatgrain. Moreover,pesticidesare greaterrisk to the long term sustainabilityofour ecosystemdue totheir negativeimpactsonhumanbeingsandothersoilbiological community.9

Thegeneticresistanceofwheattoaphidhasbeenreported. For example,Elek etal.10 tested thediploid, tetraploidand hexaploidwheatlinesfortheirresistanceagainstaphid.They foundthatthesynthesisofhydroxamicacids[especially 2,4-dihidroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA)], was responsible for inducing resistance against aphid in these wheat lines. Another possible way to reduce the aphid populationinwheatistheuseofplant-growth-promoting rhi-zobacteria(PGPR).11 These PGPRsinduce resistanceagainst insectpests throughsynthesisofphytohormones,increase in phosphorus and nitrogen uptake and increase in iron and mineral solubility through chelation growth.12 Several PGPRstrainsespecially,Bacillusand Pseudomonasstrainsare alsobeing used as inoculant biofertilizers,13,14 which have directandindirecteffectsoninsectpestresistance.13,15,16The PGPR(especiallyBacillusandPseudomonasstrains)suppressthe soil-bornepathogensbysiderophoresproductionand antimi-crobial metabolites.16 Indirect effects include the induced systematicresistancethusenhancingtheresistanceagainst variouspathogensandpestsbythesynthesisofphysicaland chemicalbarriersinthehost.17–20Therhizobacteriamediated inducedsystemicresistanceresemblesthesystemicacquired resistancewhichisinducedinpathogensincludingthe nema-todes,insects,bacterial,fungalandviralpathogens.21,22This induced systemic resistance ispromoted byPGPR through signaling pathwaywhereas systemicacquired resistanceis the phenomenon used to explain salicylic acid dependent inducedresistanceactivatedbylocaldisease.23Severalstudies have reported that the spotted cucumber beetle

(Diabrot-ica undecimpunctata),24 green peach aphid (Myzus persicae Sulzer),25 andnymphpopulation ofwhitefly (Aleyrodidae),26 bluegreenaphid(AcyrthosiphonkondoiShinji)onMedicagoand white clover plants,27 and population size and population growthofcottonaphids(AphisgossypiiGlover)oncucumber,28 was significantly decreased by the application ofdifferent PGPRstrains.

However,tothebestofourknowledge,nostudyhasbeen conductedtochecktheinfluenceofPGPRstrainsontheaphid populationandproductivityofbreadwheat.Thus,thisstudy wasconductedtoevaluatetheinfluenceoftwoPGPRstrains (Bacillussp.strain6andPseudomonassp.strain6K)onbread wheatgrowthandaphidpopulation.

Materials

and

methods

Preparationofinoculumandseedinoculationprocedure

The Bacillus strain 6 and Pseudomonas strain 6K – used as positivecontrol–were obtainedfrom theSoilMicrobiology Laboratory,InstituteofSoilandEnvironmentalScience, Uni-versityofAgriculture,Faisalabad.TheBacillusstrainwasgram positive,rodshaped,aerobic,endosporeforming,fastgrowing withwhitishcolonies.ThePseudomonasstrainwasgram neg-ative,fastgrowing,rodshaped,withoff-whitecoloniesand motilecells.

TheInoculumwaspreparedbygrowingthetwoselected PGPR strains in a nutrient broth. It was incubated at 28◦C with 100revmin−1 shaking. Four days old inoculum (107–108CFUmL−1) was inserted into germ free peat at

100mLkg−1peatandincubatedat28◦Cfor24hproceeding towheatseedinoculation.Thepeatwasmadegermfreeby bakingpeatinanovenfor30minat180◦F.

Wheatseeds(Pasban-90andInqlab-91)wereinoculatedby incorporatingwithpeatand10%sugarsolution(100mLkg−1) onpeat;whereascontroltreatmentseedsweretreatedwith peatandsugarsolutionwithoutPGPR.Seedsweredriedup undershadowfor6–8h.

Experimentalsiteandtreatments

ThisexperimentwascarriedoutatStudent’sFarm,University ofAgricultureFaisalabad,Pakistanin2013.Theexperiment comprisedoftwowheatcultivars(Pasban-90andInqlab-91) and twoPGPRstrains(Bacillus sp.strain6andPseudomonas

sp.strain6K).Thebothbacterialstrainswereinoculatedon seeds alone orin combination.Non-inoculatedseeds were alsosownasacontroltreatment.Thewheatseedsofboth varietieswerecollectedfromWheatResearchInstitute,Ayub Agricultural ResearchInstitute, Faisalabad.Theexperiment was carriedout inrandomizedcompleteblockdesignwith factorialarrangementhavingthreereplications.Thenetplot sizewas1.8m×5m.Theseedsofbothvarietiesweresown withsinglerow handseeddrillbymaintaining rowtorow distanceof22.5cmonNovember25,2013,usingseedrateof 125kgha−1.

Onthebasisofsoilanalysis,thefertilizerwasappliedat therateof120–90–60kgN,P,Kha−1,usingurea,diammonium phosphate (DAP)and muriate ofpotash (MOP)as sources, respectively.Halfofthenitrogenandthefulldoseof potas-siumandphosphorouswasappliedatthetimeofsowing.The remaininghalfdoseofnitrogenwasappliedattilleringstage through broadcasting.Dataonaphidpopulation(aphid per tiller)wererecordedfromtwentytillersineachplotmanually andthenaveraged.Moreoverthedataregardingplantheight (cm),productivetillers(m2),spikelength(cm),spikeletsper

(3)

Table1–Effectofplantgrowthpromotingrhizobacteriaonplantheight,productivetillersandspikelengthoftwowheat varieties.

Treatment Plantheight(cm) Productivetillers(m−2) Spikelength(cm)

Pasban-90 Inqlab-91 Pasban-90 Inqlab-91 Pasban-90 Inqlab-91

T0 78.7f 82.0de 232d 263c 8.9f 9.04ef

T1 84.1bc 84.0bcd 277bc 273bc 9.8de 9.8de

T2 81.8e 82.3cde 289bc 288bc 10.5cd 11.9b

T3 85.2b 88.9a 300b 339a 11.1bc 13.7a

LSD(p≤0.05) 1.99 30 0.85

Figuresofinteractionsharingthesamecaseletterdonotdiffersignificantlyatp≤0.05;T0=noseedinoculation;T1=seedinoculationwith

Bacillussp.strain6;T2=seedinoculationwithPseudomonassp.strain6K;T3=seedinoculationwithBacillussp.strain6+Pseudomonassp.strain

6K.

Table2–Effectofplantgrowthpromotingrhizobacteriaonspikeletsperspike,grainsperspike,andbiologicalyieldof twowheatvarieties.

Treatment Spikeletsperspike Grainsperspike Biologicalyield(Mgha−1)

Pasban-90 Inqlab-91 Pasban-90 Inqlab-91 Pasban-90 Inqlab-91

T0 15.7e 16.9cd 37.2e 39.2d 14.1f 15.1d

T1 16.5d 17.5bc 40.3de 41.8c 14.5e 15.4b

T2 16.9cd 17.8ab 40.9cd 44.4b 14.6e 15.6b

T3 17.1c 18.4a 42.1c 46.7a 15.3c 15.9a

LSD(p≤0.05) 0.65 1.45 0.14

Figuresofinteractionsharingthesamecaseletterdonotdiffersignificantlyatp≤0.05;T0=noseedinoculation;T1=seedinoculationwith

Bacillussp.strain6;T2=seedinoculationwithPseudomonassp.strain6K;T3=seedinoculationwithBacillussp.strain6+Pseudomonassp.strain

6K.

Table3–Effectofplantgrowthpromotingrhizobacteriaonstrawyieldandgrainyieldoftwowheatvarieties.

Treatment Strawyield(Mgha−1) Grainyield(Mgha−1)

Pasban-90 Inqlab-91 Pasban-90 Inqlab-91

T0 6.0g 7.6e 3.6h 4.0g

T1 7.3f 8.1c 4.1f 4.2e

T2 7.9d 8.6b 4.4d 4.5c

T3 8.2c 9.0a 4.6b 5.0a

LSD(p≤0.05) 0.12 0.04

Figuresofinteractionsharingthesamecaseletterdonotdiffersignificantlyatp≤0.05;T0=noseedinoculation;T1=seedinoculationwith

Bacillussp.strain6;T2=seedinoculationwithPseudomonassp.strain6K;T3=seedinoculationwithBacillussp.strain6+Pseudomonassp.strain

6K. a d b f c g e g 0 2 4 6 8 10 12

Pasban Inqlab

A p hi d po pu la ti on (t ill er -1) Wheat varieties

Control Bacillus Pseudomonas combination

(4)

spike,straw yield(Mgha−1), andgrainyield(Mgha−1)were recordedfollowingFarooqetal.29

Statistical

analysis

Thedatacollectedduringtheexperimentwereanalyzedusing theFisher’sanalysisofvariancetechnique(twowayanova) andthetreatments’ meanswere comparedbyleast signifi-cancedifference(LSD)testat5%probabilitylevel.30Thedata analysiswasperformedusingrandomizedcomplete design infactorialarrangementwiththehelpofstatisticalsoftware ‘Statistics8.1’.

Results

Bothwheatcultivarsdiffersignificantlyforplantheight, pro-ductive tillers,spike length, spikelets per spike,grains per spike,biologicalyield,strawyield,grainyieldandaphid pop-ulation. Likewise, seed inoculation withboth PGPR strains significantlyaffectedtheplantheight,productivetillers,spike length,spikeletsperspike,grainsperspike,biologicalyield, strawyield,grainyieldandaphidpopulation.Theinteraction ofwheatcultivarswithPGPRswasalsosignificantforplant height, productivetillers, spike length,spikelets per spike, grainsperspike,biologicalyield,strawyield,grainyieldand aphidpopulation(Tables1–3).

The aphid population was significantly reduced by the application of PGPR strains. The minimum population of aphid (2.1 aphids per tiller) was recorded in Inqlab-90 whenitwasinoculatedwithmixtureofPGPRstrains

(Bacil-lus+Pseudomonas strains) as seed treatment, and that was statistically similar with Inqlab-90 inoculated with Pseu-domonasstrains.Themaximumaphidpopulation(8.2aphids pertiller)wasrecordedinPasban-90withoutinoculationwith anybacterialstrains(Fig.1).

The interaction of wheat cultivars with PGPR strains showedthatthehighestplantheight,productivetillers,spike length,spikeletsperspike,grainsperspike,biologicalyield, strawyieldandgrainyieldwererecordedinInqalab-91with seed inoculation with both of the bacterial strains

(Bacil-lus+Pseudomonasstrains).Seedinoculationwithbothbacterial strainsenhancedthegrainsperspikeby25.5%thancontrol inInqalab-91.Thegrainyieldwasalsoenhancedby38.9%in Inqalab-91withseedinoculationwithbothbacterialstrains. InPasban-90,thegrain yieldwas increasedby35.5%when seedswereinoculatedwithbothbacterialstrainsthancontrol

(Tables1–3).

Discussion

UseofbothPGPRstrainseitheraloneorincombinationwas veryusefulforthecontrolofaphidpopulation. Indeed,the PGPRincreasetheaccumulationofphenoliccompoundsand phytoalexins,theactivitiesofdefenseenzymes/genes (encod-ing glucanase, chitinase, and peroxidase), transcripts and pathogenesis-relatedproteins,increasethelignificationand

modulatetheethylene-modulatedsignaltransduction path-way,andinducethephysiologicalchangeswithinplants,31–36 whichimprovetheplantsdefenseagainstinsectpestattack. PGPRs alsoinhibitthe croppeststhroughrelease of differ-ent volatileand diffusiblemetabolites(e.g. pyoluteorinand pyrrolnitrin),37 which are toxicto insect pests thus reduc-ingtheirpopulationaswasobservedinthisstudy.Likewise, the improvementin aphid suppression and wheat growth mightbeattributedtotheproductionofsiderophores.16The indirect effectsofPGPRincludetheinductionofsystematic resistancethusenhancingtheresistanceagainstinsectpests by the synthesis of physical and chemical barriers in the host.17–20

Moreover,thePGPRshelpstoimprovethephosphorusand nitrogen uptake and enhance the activity of indole acetic acidwhichhelpsthewheatplanttouptakeandtranslocate themicroandmacronutrients(zinc,iron,nitrogenand man-ganese) ina better way.These nutrients playa significant roleinbiogeochemicalcyclingandincreasestheactivitiesof defenseenzymes againstpathogen.38,39 Several other stud-ies have reported that application ofvarious PGPR strains enhancedtheresistanceagainstinsectpestinfieldand veg-etablecrops.24–27

Better aphid controldue toseed inoculationwith PGPR resultedinbettercropgrowthwhichultimatelyenhancedthe plantgrowthandtheplantheight.Thebettergrowthdueto PGPRapplicationasaresultofaphidcontrolfinallyresulted inbettergrainpartitionwhichenhancedthenumberofgrains per spike. The highest grain yieldin both wheat varieties due toapplication ofthe PGPRmight beattributedto bet-ter grainsperspikeand productivetillers.Itiswell known that the productive tillersand grains per spike are impor-tant yieldcontributingtraitswhich resultedinbettergrain yieldinthisstudy.Inanotherstudy,Hilalietal.40speculated that plantheight and spikeletsper spike wasincreasedin manycropsbymicrobialinoculation.Rodriguezetal.41also observedsignificantincreaseinwheatyieldbythe applica-tion of P solubilizing and N2 fixing Bacillus sp. The better

grainyieldinwheatinthisstudymightbeattributedtothe directeffectofPGPRsonwheatandtheirindirecteffecton aphidsuppression.Besidesuppressingthepests,thePGPRs alsopromote theplant growththrough productionof vari-ousplanthormones(e.g.abscisicacid,ethylene,cytokinins, and auxins), indole-3-acetic acid, indole-3-ethanol and 1-aminocyclopropane-1-carboxylatewhichpromoteshootand root growth.42 Thereisdire needtoextend this study and understand the whole mechanism how the PGPRaffecting defensemechanismandenhancingyieldofbreadwheat.

Inconclusion,combineuseofbothPGPRstrainsviz. Bacil-lussp.strain6+Pseudomonassp.strain6Koffersanattractive optiontoreducetheaphidpopulationandenhancethe pro-ductivityofbreadwheat.

Conflicts

of

interest

(5)

r

e

f

e

r

e

n

c

e

s

1.FarooqM,HussainM,SiddiqueKHM.Droughtstressin

wheatduringfloweringandgrain-fillingperiods.CritRev

PlantSci.2014;33:331–349.

2.FAO.FoodandAgricultureOrganization(FAO),UnitedNations;

2010.

3.GovernmentofPakistan.PakistanEconomicSurvey2015–16.

Islamabad:FinanceDivision,EconomicAdvisor’sWing;

2016:28.

4.AfzalA,BanoA.Rhizobiumandphosphatesolubilizing

bacteriaimprovetheyieldandphosphorusuptakeinwheat

(Triticumaestivum).IntJAgricBiol.2008;10:85–88.

5.HussainM,Waqas-ul-HaqM,FarooqS,JabranK,FarooqM.

Theimpactofseedprimingandrowspacingonthe

productivityofdifferentcultivarsofirrigatedwheatunder

earlyseasondrought.ExpAgric.2016;52:477–490.

6.BaskyZ.Biotypicandpeststatusdifferencesbetween

HungarianandSouthAfricanpopulationsofRussianwheat

aphid,Diuraphisnoxia(Kurdjumov)(Homoptera:Aphididae).

PestManageSci.2003;59:1152–1158.

7.KhanAM,KhanAA,AfzalM,IqbalMS.Wheatcropyield

lossescausedbytheaphidsinfestation.JBiofertilBiopestic.

2012;3:122.

8.MicicS.InsecticidesfortheControlofCerealAphids;2017. Availablefrom:

https://www.agric.wa.gov.au/barley/insecticides-control-cereal-aphidsAccessed09.09.17.

9.AktarW,SenguptaD,ChowdhuryA.Impactofpesticidesuse

inagriculture:theirbenefitsandhazards.InterdisciplToxicol.

2009;2:1–12.

10.ElekH,WernerP,SmartL,Gordon-WeeksR,NádasyM,

PickettJ.Aphidresistanceinwheatvarieties.CommunAgric

ApplBiolSci.2009;74:233–241.

11.VejanP,AbdullahR,KhadiranT,IsmailS,NasrulhaqBoyceA.

Roleofplantgrowthpromotingrhizobacteriainagricultural

sustainability—areview.Molecules.2016;21:573.

12.BowenGD,RoviraAD.Therhizosphereanditsmanagement

toimproveplantgrowth.AdvAgron.1999;66:1–102.

13.KennedyIR,ChoudhuryA,KecskésML.Non-symbiotic

bacterialdiazotrophsincrop-farmingsystems:cantheir

potentialforplantgrowthpromotionbebetterexploited?

SoilBiolBiochem.2004;36:1229–1244.

14.HussainM,ZsgherA,TahirM,etal.Bacteriaincombination

withfertilizersimprovegrowth,productivityandnetreturns

ofwheat(TriticumaestivumL.).PakJAgricSci.2016;53:633–645.

15.Persello-CartieauxF,NussaumeL,RobagliaC.Talesfromthe

underground:molecular.PlantCellEnviron.2003;26:189–199.

16.NelsonLM.Plantgrowthpromotingrhizobacteria(PGPR):

prospectsfornewinoculants.CropManage.2004;3:301–305.

17.KloepperJW,RyuCM,ZhangS.Inducedsystemicresistance

andpromotionofplantgrowthbyBacillusspp.

Phytopathology.2004;94:1259–1266.

18.BostockRM.Signalcrosstalkandinducedresistance:

straddlingthelinebetweencostandbenefit.AnnuRev

Phytopathol.2005;43:545–580.

19.StoutMJ,ThalerJS,ThommaBP.Plant-mediatedinteractions

betweenpathogenicmicroorganismsandherbivorous

arthropods.AnnuRevEntomol.2006;51:663–689.

20.TuzunS,BentE.MultigenicandInducedSystemicResistancein

Plants.NewYork:SpringerScience+BusinessMedia,Inc; 2006.

21.BentE.Inducedsystemicresistancemediatedbyplant

growth-promotingrhizobacteria(PGPR)andfungi(PGPF).In:

TuzunS,BentE,eds.MultigenicandInducedSystemicResistance

inPlants.NewYork:SpringerScience;2006:225–259.

22.PozoMJ,Azcón-AguilarC.Unravelingmycorrhiza-induced

resistance.CurrOpinPlantBiol.2007;10:393–398.

23.VleesschauwerD,HöfteM.Rhizobacteria-inducedsystemic

resistance.AdvBotRes.2009;51:223–281.

24.ZehnderG,KloepperJ,TuzunS,etal.Insectfeedingon

cucumbermediatedbyrhizobacteria-inducedplant

resistance.EntomolExpAppl.1997;83:81–85.

25.BoughtonAJ,HooverK,FeltonGW.Impactofchemical

elicitorapplicationsongreenhousetomatoplantsand

populationgrowthofthegreenpeachaphid,Myzuspersicae.

EntomolExpAppl.2006;120:175–188.

26.MurphyJF,ZehnderGW,SchusterDJ,SikoraEJ,PolstonJE,

KloepperJW.Plantgrowth-promotingrhizobacterial

mediatedprotectionintomatoagainsttomatomottlevirus.

PlantDis.2000;84:779–784.

27.KempsterVN,ScottES,DaviesKA.Evidenceforsystemic,

cross-resistanceinwhiteclover(Trifoliumrepens)andannual

medic(Medicagotruncatulavar.truncatula)inducedby

biologicalandchemicalagents.BiocontrolSciTechnol.

2002;12:615–623.

28.StoutMJ,ZehnderGW,BaurME.Potentialfortheuseof

elicitorsofplantdefenseinarthropodmanagement

programs.ArchInsectBiochem.2002;51:222–235.

29.FarooqS,ShahidM,KhanMB,HussainM,FarooqM.

Improvingtheproductivityofbreadwheatbygood

managementpracticesunderterminaldrought.JAgronCrop

Sci.2015;201:173–188.

30.SteelRGD,TorrieJH,DickyDA.PrinciplesandProceduresof

Statistics:ABiometricalApproach.3rded.NY,USA:McGraw

Hill,Inc.BookCo.;1997:352–358.

31.MeenaB,RadhajeyalakshmiR,MarimuthuT,Vidhyasekaran

P,DoraiswamyS,VelazhahanR.Inductionof

pathogenesis-relatedproteins,phenolicsandphenylalanine

ammonia-lyaseingroundnutbyPseudomonasfluorescens.J

PlantDisProt.2000;107:514–527.

32.KavinoM,HarishS,KumarN,etal.Rhizosphereand

endophyticbacteriaforinductionofsystemicresistanceof

bananaplantletsagainstbunchytopvirus.SoilBiolBiochem.

2007;39:1087–1098.

33.RajendranL,SamiyappanR,RaguchanderT,Saravanakumar

D.Endophyticbacteriamediateplantresistanceagainst

cottonbollworm.JPlantInteract.2007;2:1–10.

34.SaravanakumarD,VijayakumarC,KumarN,SamiyappanR.

PGPR-induceddefenseresponsesintheteaplantagainst

blisterblightdisease.CropProt.2007;26:556–565.

35.HarishS,KavinoM,KumarN,SaravanakumarD,

SoorianathasundaramK,SamiyappanR.Biohardeningwith

plantgrowthpromotingrhizosphereandendophytic

bacteriainducessystemicresistanceagainstbananabunchy

topvirus.ApplSoilEcol.2008;39:187–200.

36.VleesschauwerD,DjavaheriM,BakkerPAHM,HofteM.

PseudomonasfluorescensWCS374r-Inducedsystemic

resistanceagainstMagnaportheoryzaeisbasedon

pseudobactin-mediatedprimingforasalicylic

acid-repressiblemultifaceteddefenseresponse.PlantPhysiol.

2008;148:1996–2012.

37.GuttersonN.Microbialfungicides:recentapproachesto

elucidatingmechanisms.CritRevBiotechnol.1990;10:

69–91.

38.RanaA,SaharanB,JoshiM,PrasannaR,KumarK,NainL.

IdentificationofmultitraitPGPRisolatesandevaluating

theirpotentialasinoculantsforwheat.AnnMicrobiol.

2011;61:893–900.

39.PinedaA,ZhengSJ,VanLoonJA,PieterseMJ,DickeM.

Helpingplantstodealwithinsects:theroleofbeneficial

soil-bornemicrobes.TrendsPlantSci.2010;15:

(6)

40.HilaliA,PrzvostD,BroughtonWJ,AntounH.Effectsde

I’inoculationavecdessouchesdeRhizobiumleguminosarum

bv.trifoliisurlacroissancedubl’edansdeuxsolsduMarco.

CanJMicrobiol.2001;47:590–593.

41.RodriguezCEA,GonzalesAG,LopezJR,DiCiaccoCA,Pacheco

BJC,ParadaJL.Responseoffield-grownwheattoinoculation

withAzospirillumbrasilenseandBacilluspolymyxainthe

semiaridregionofArgentina.SoilsFertil.1996;59:800.

42.HayatR,AliS,AmaraU,KhalidR,AhmedI.Soilbeneficial

bacteriaandtheirroleinplantgrowthpromotion:areview.

Referências

Documentos relacionados

5.1 Pensar pensar não penso apesar que quem trabalha nesta área tem de tar sempre preparado para emigrar ou porque surge uma melhor oportunidade ou pela falta delas em Portugal,

However, for spike length (COESP) and number of spikelets per spike (NESP), the cultivar BRS Gralha Azul was distinguished because it did not differ from the control when submitted

Nitrogen doses promotes significant increases in leaf N content, plant height, number of grains per spike, number of spikes per square meter and grain yield.. The conditions

The following traits were evaluated: plant height (cm), number of leaves per plant, marketable harvest point of spikes (d), number of florets per spike, spike length (cm),

The increase in the N rates positively affected spike length, number of spikelets and of grains per spike, number of spikes per meter, N accumulation in the straw, leaf

The total weight of grains (g), the thousand grain weight (g) and the number of grains per spike showed no significant differences, even with the highest photosynthetic rates of

 Changing the conventional nitrogen fertilization by applying composted sewage sludge increased averages of number of tillers per plant, spike length, number of spikelets

Positive effects of irrigation were observed for number of grains per spike, number of days to anthesis and plant height, while a negative effect was present for grain yield, number