• Nenhum resultado encontrado

Braz. J. Pharm. Sci. vol.51 número3

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Pharm. Sci. vol.51 número3"

Copied!
12
0
0

Texto

(1)

*Correspondence: Vera Lucia Borges Isaac. Laboratório de Cosmetologia- LaCos. Departamento de Fármacos e Medicamentos. Faculdade de Ciências Farmacêuticas. Universidade do Estado de São Paulo - UNESP. Av. Jabaquara--Jaú, Km 1, s/n - 14801-902 - Araraquara - SP, Brasil. E-mail: letisc82@yahoo. com.br; veraisaac@fcfar.com.br

A

vol. 51, n. 3, jul./sep., 2015 http://dx.doi.org/10.1590/S1984-82502015000300010

Development and evaluation of an emulsion containing lycopene

for combating acceleration of skin aging

Letícia Caramori Cefali, Tatiana Maria Souza-Moreira, Marcos Antônio Corrêa, Hérida Regina

Nunes Salgado, Vera Lucia Borges Isaac*

Cosmetology Laboratory, LacCos, Department of Drugs and Medicines, Faculty of Pharmaceutical Sciences, University of Sao Paulo State, UNESP, Araraquara, SP, Brazil

Lycopene, a carotenoid and potent antioxidant is found in large quantities in tomatoes. Lycopene combats diseases, such as cardiovascular disease and diferent types of cancer, including prostate cancer. However, its topical use in emulsion form for the combat of skin aging is under-explored. The aim of the present study was to develop an emulsion containing lycopene extracted from salad tomatoes and evaluate its cytotoxicity, stability, rheological behavior, antioxidant activity and phytocosmetic permeation. The developed cosmetic comprised an oil phase made up of shea derivatives and was evaluated in terms of its physiochemical stability, spreadability, thermal analysis, rheological behavior, microbiological quality, cytotoxicity, antioxidant activity, cutaneous permeation and retention. The results demonstrate that this phytocosmetic is stable, exhibits satisfactory rheological behavior for a topical formula and is a promising product for combating skin aging.

Uniterms: Carotenoid/antioxidant activity. Lycopene/emulsion form/cytotoxicity. Lycopene/emulsion form/permeation. Lycopene/emulsion form/rheology. Lycopene/emulsion form/thermal analyses. Phytocosmetics. Skin aging/treatment.

Licopeno é um carotenóide com potente atividade antioxidante encontrado em grande quantidade no tomate e usado no combate a diversas doenças como doenças cardiovasculares e diferentes tipos de cânceres, incluindo o câncer de próstata. O objetivo desse trabalho foi desenvolver uma emulsão contendo extrato de licopeno obtido do tomate salada e avaliar a citotoxicidade do extrato, a estabilidade, o comportamento reológico, atividade antioxidante e permeação do itocosmético. O cosmético foi desenvolvido utilizando fase oleosa contendo derivados de Karité e submetido à avaliação da estabilidade físico-química, espalhabilidade, análise térmica, comportamento reológico, qualidade microbiológica, citotoxicidade, atividade antioxidante e testes de permeação e retenção cutânea. Os resultados demonstraram que o itocosmético é estável, apresenta comportamento reológico desejável para uma formulação tópica e é um produto promissor para ser utilizado no combate à aceleração do envelhecimento cutâneo.

Unitermos: Carotenóide/atividade antioxidante. Licopeno/emulsão/citotoxicidade. Licopeno/emulsão/ permeação cutânea. Licopeno/emulsão/reologia. Licopeno/emulsão/análise térmica. Fitocosméticos. Envelhecimento cutâneo/tratamento.

INTRODUCTION

Lycopene is a natural carotenoid used to combat diseases, such as cardiovascular disease and different types of cancer, including prostate cancer (Shami, Moreira, 2004). It is mainly found in tomatoes but also presented

in papaya, guava and watermelon (Shami, Moreira, 2004; Sentanin, Amaya, 2007). It can also be consumed with

other active compounds for optimal function in humans (Kong et al., 2010).

The carotenoid lycopene is a potent antioxidant

with pro-vitamin A activity and it is most efective against singlet oxygen, which is potentially the most dangerous reactive oxygen species generated in the skin following

exposure to sunlight (Giacomoni, 2007).

(2)

many of these products contain at least one substance with

this purpose (Isaac, 1998; Giacomoni, 2007). In order to provide satisfactory anti-aging action through antioxidant

activity, the formula should be stable and allow for the

effective release of the active ingredient into the skin (Giacomoni, 2007).

Determination of the rheological behavior of a formula assists in the assessment of its physiochemical

nature and allows for the detection of early signs of physical instability as well as quality control of the components, test formulas and inal products (Barry, 1993). Cosmetic products may also undergo thermal analysis, which can be

applied to the measurement of physical properties, study of chemical reactions, assessment of thermal stability, determination of the chemical composition of the materials and development of an analytical methodology (Faria,

et al., 2002; Guillen, et al., 2006). Skin permeation tests can be carried out using in vitro methods. The Franz-cell

difusion system allows for the assessment of permeation

or retention of active compounds in a formula (Alencastre,

et al., 2006; Franz, 1975).

The aim of the present study was to develop an

emulsion containing lycopene extracted from salad tomatoes and assess its antioxidant activity for combating the

acceleration of skin aging. Formula stability was determined

through centrifugation assays, accelerated and preliminary tests for physicochemical stability, spreadability, and thermal analysis, and analyses of rheological behavior, microbiological quality, and cutaneous permeation and

retention. The lycopene extract also was submitted to

cytotoxicity testing to evaluate its safety.

MATERIAL AND METHODS

Material

Lycopene reference standard (assigned purity

90.0%) was supplied by Sigma-Aldrich. The emulsion was performed using raw materials (Shea butter, liquid shea butter, oleyl Sheabutterate, PEG-23 shea butterate and

PEG 75 shea butter glycerides) donated by Ion-Química

enterprise. Lycopene extract was obtained by salad

tomato (adapted to Nune, Mercadante, 2004). Butylated

hydroxytoluene (BHT), propylparaben, methylparaben,

ethylenediamine tetraacetic acid (EDTA), propylene glycol, xanthan gum, carbomer, triethanolamine,

1,1-diphenyl-2-picrylhydrazyl (DPPH), resazurin, trypsin, chloroform, isopropanol, phosphate bufer, polysorbate 80, thioglycolate

and Sabouraud agar, xylose-lysine-desoxycholate agar, bismuth sulfite agar, MacConkey agar, Vogel and

Johnson agar and cetrimide agar were supplied by Galena,

PharmaSpecial, Lubrizol, Sigma-Aldrich, Interlab and Synth enterprises. Vitamin C reference standard (assigned

purity 99.0%) was also supplied by Sigma-Aldrich. Ethyl acetate, acetonitrile and methanol presented HPLC grade and they were supplied by Merck enterprise.

Development of an emulsion containing lycopene extract

An oil-in-water (O/W) emulsion was developed with: shea butter (1.2%), oleyl sheabutterate (0.8%), PEG-23 shea butterate (1.5%), imidazolidinyl urea (0.1%), BHT (0.02%),

propylparaben (0.02%), methylparaben (0.18%), EDTA (0.02%), propylene glycol (4%), xanthan gum (0.15%),

carbomer (2% dispersion) (25%), triethanolamine (q.s pH 6.0) and Aqua (water) (q.s.p. 100%). The O/W emulsion was prepared using the standard method. At 75 °C the aqueous phase was transferred into the oil phase at 75 °C and manual agitation was performed until the emulsion had

cooled. The lycopene extract obtained from salad tomato

(35.6 µg/mL of lycopene in the extract) (adapted from Nunes, Mercadante, 2004) was incorporated directly into

the emulsion at a concentration of 0.1% using the geometric

dilution method. The phytocosmetic had a inal lycopene

concentration of 0.58 mg in 100 g of sample.

Stability tests

Before the stability tests, 5 g of formula were submitted to three centrifuge cycles at 3000 rpm for 30 minutes/cycle at 27±2 ºC (Brasil, 2004; Idson, 1993a,b). Following Brasil

(2004) and Isaac et al. (2008), the preparations were stored

at 5±2 ºC, 45±2 ºC, –5±2 ºC, at room temperature (27±2 ºC), exposed to indirect light, and submitted to macroscopic

assessment, pH, density and viscosity tests over 15

consecutive days (preliminary stability test) and over 90 days for the accelerated stability test (assays performed on days 1,

7, 14, 21, 30, 45, 60, 75 and 90). For the freezing and thawing cycles, the samples were submitted to extreme temperature conditions, alternating between 24 hours at a high temperature (45±2 ºC) and 24 hours at a low temperature (–5±2 ºC) over

12 consecutive days. The variation in the results should not

exceed 10% and the assays were performed in triplicate

(Brasil, 2004).

For the macroscopic assessment, color, fragrance,

appearance of the emulsion and separation were assessed. The pH was determined by preparing a 10% aqueous dispersion (p/p) of the sample in recently distilled water by using a digital pH meter. The electrode was inserted

directly into the aqueous dispersion (Davis, 1977). A

value compatible with skin pH (5.5 to 6.5) was deemed

acceptable in the stability tests and variations in the results

(3)

triplicate (Brasil, 2004). The density was determined

using a mass empty pycnometer and a pycnometer

containing 5 mL of the sample. Density was calculated as the difference between the masses of the full and

empty pycnometers, divided by the volume of the sample (Farmacopeia, 2010). The variation in the results should

not exceed 10%. The assays were performed in triplicate

(Brasil, 2004).

The test for the determination of the viscosity of

the emulsions submitted to the stress tests was performed using a rheological low curve assay, with the following

parameters: sheering rate ranging from 0 to 100 s-1 for the upward curve for 120 seconds and from 100 to 0 s-1 for the downward curve also for 120 seconds. The rheogram was assessed with regard to viscosity (Pa.s) in relation to the sheering rate. The test was performed in triplicate

at 25±1 ºC (Cefali, et al., 2009a) and the variation in the results should not exceed 10% (Brasil, 2004).

Determination of the amount lycopene incorporated into the emulsion

The amount of lycopene incorporated into the

emulsion was determined by dissolving 400 mg aliquots

of the phytocosmetic from the five stress conditions to

which it was submitted in a solvent system made up of chloroform and isopropanol (1:1, v/v) (Isaac, 1993) and transferring it to 5 mL dilution lasks for a inal lycopene concentration of 0.4 µg/mL. The values were analyzed using high-performance liquid chromatography (HPLC) (Waters 1525- Binary HPLC Pump), coupled with an absorbance detector (Waters 2487). The Empower software program was used. Lycopene was identiied using a reverse phase

column (C18) with the acetonitrile/methanol/ethyl acetate

mobile phase at a proportion of 48:26:26 (v/v/v) run for 5

minutes at low rate of 1.0 mL/min and the wavelength used was 472 nm (adapted from Nunes, Mercadante, 2004). The assays were performed in triplicate.

Determination of spreadability

D e t e r m i n a t i o n o f t h e s p r e a d a b i l i t y o f t h e

phytocosmetic was performed in triplicate by measuring

the change in diameter of the sample in millimeters after

one minute of being encompassed within two glass plates with a 200 g glass plate positioned on top. The procedure was repeated by introducing additional 200 g plates at

one-minute intervals (Knorst, 1991), reaching a maximum

weight of 800 g on the sample.

Determination of rheological behavior

The rheological behavior was assessed using a rheometer HAAKE, sensor cone/plate (C35/2º Ti) and

the data were analyzed with the Rheowin 3.5 program. The complete rheological behavior was determined using low curve assays with sheering rates ranging from 0 to 100 Pa/s for the upward slope for 120 seconds and from 100 to 0 Pa/s for the downward slope for 120 seconds.The

sheering tension at which the sample exhibited limited low (underwent deformation) was determined through the low limit tension ramp test with a tension range of

0 to 10 Pa for 120 seconds (Isaac et al., 2013a). Tension

and frequency scanning assays were performed to analyze the dynamic viscosity (η) and stocking module (G) of the

sample. For the tension scanning test, a sheering tension

range of 0 to 100 Pa and frequency of 1 Hz were used. The frequency scanning test was performed using a frequency range of 0.01 to 100 Hz at a tension of 1 Pa. Thus, the elastic module (G’) and viscous module (G”) were

determined (Chiari, et al., 2009; Isaac et al., 2013b). The

luency and relaxation assay was performed to determine

the viscoelasticity of the sample using a sheering tension

of 1 Pa for 300 seconds for luency and 300 seconds for

relaxation (Cefali, et al., 2009a; Isaac et al., 2013b). All

assays were performed in triplicate, at 25±0.5 ºC using

approximately 1 g of sample for each test.

Thermal analysis

The phytocosmetic underwent diferential scanning

calorimetry (DSC) and thermogravimetry (TG) analysis using the TA-4000 thermal analysis system in triplicate.

The mass of the sample was 7.4mg, and an aluminum straw with a perforated cap was used for the DSC analysis. The heating rate was 10 °C/min in a N2 atmosphere, using a temperature range of 30 to 600±1°C. The TG analysis required a platinum straw, sample mass of 6.31mg

and 10 ºC/min heating rate in a N2 atmosphere, with a

temperature range of 30 to 900±1°C (Faria, et al., 2002; Guillen, et al., 2006; Ribeiro, Morais, Eccleston, 2004).

Assessment of in vitro cytotoxic activity

The in vitro cytotoxicity test was performed

using aliquots of the extract containing lycopene. J774

macrophages and CCL-60 fibroblasts were added

to determine the cytotoxicity index or viability. The

concentration of the extract ranged from 200 to 1.56 μg/mL.

The method consisted of collecting macrophages by scraping and fibroblasts by trypsinization (0.25%

trypsin and 0.53 mM EDTA solution). The cells were

counted using Turk’s stain, adjusted to a concentration of 1 x 105 cells/mL of culture medium. The cells in each suspension were incubated on different 96-well microplates at 37±2 °C in a 5% CO2 atmosphere for 72 h

(4)

2008). Fifteen milligrams of aqueous resazurin solution

(0.1 mg/mL) was then added, and the microplates were incubated for 3 h at 37±2 °C in a 5% CO2 atmosphere. Twenty milligrams of DMSO/medium solution (1:5; v/v) without cells in a sequence of microplate wells were used

as the negative control. A solution containing only live cells

with no extract was used as the positive control. The results were determinated visually by diferentiating between the

colors blue (absence of live cells) and pink (presence of live cells) (O’brien et al., 2000) as well as with the aid of

a luorescence reader (Spectra Fluor Plus – Tecan) with 530 and 590 nm ilters, using the Magellin program for the analysis. The assays were performed in triplicate.

Microbiological control

One gram of sample was diluted in 9ml of phosphate buffer solution, pH 7.2. One mL of this solution was

pipetted, diluted and added to 20 mL of thioglycolate agar for bacteria and Sabouraud for yeasts in Petri dishes,

which were subsequently incubated at 35±2 °C for 24 hours and at 25±2 °C for seven days for the examination of bacteria and fungi growth, respectively. For the study

of Salmonella sp, Escherichia coli, Staphylococcus aureus

and Pseudomonas aeruginosa, the diluted samples were

spread into xylose-lysine-desoxycholate agar, bismuth

sulite agar, MacConkey agar, Vogel and Johnson agar and dishes containing cetrimide agar. The dishes were incubated at 35±2 ºC for 24 hours and the characteristics of the colonies were assessed (Farmacopéia, 2010; Pinto,

Kaneko, Ohara, 2003; USP 36, 2013). The assays were

performed in triplicate.

Skin permeation

For the release test, necessary to determine the release of lycopene from the emulsion (Alencastre et al., 2006; Sasson, 2006), synthetic cellulose membranes (Millipore, 0,45 μm) were placed on the difusion cells in

contact with the receiving medium (7 mL of phosphate bufer, pH 7.2 and containing 2 mM of polysorbate 80). Two-hundred milligrams of the sample was placed on the membranes. For the skin permeation test, pig ear skin was

obtained from the Olho D’agua fridge in Ipua city in São

Paulo state. The whole ears including hair were cleaned and dermatomized immediately following acquisition. The skins were kept at a temperature of -5±2 °C and used after 24 h. The dermatomized pig ear skin was placed on the difusion cells with the dermis in contact with the same receiving medium. Two hundred milligrams of the sample was placed on the stratum corneum. These experiments were conducted at 37±2 ºC and the receiving solution was constantly agitated at 300 rotations per minute (rpm). The

receiving medium was collected after 2, 4 and 8 hours, and the concentration of lycopene was determined through HPLC, using the same conditions as described previously.

At the end of experiment, the skin samples were removed from the difusion cells, the excess formula was removed with distilled water and the samples were dried with absorbent paper. The specimens were fixed on a lat surface and the retention area for the removal of the stratum corneum was delimited. The stratum corneum was removed using the tape stripping method, which consists of 12 strippings using adhesive tape (3M®). The first stripping removed the excess formula on the skin and was discarded. The remaining 11 strippings were transferred

to test tubes containing 4 mL of methanol and shaken on

an agitator for one minute. The tubes were then sonicated

for 15 minutes in an ultrasound bath. The supernatant

was analyzed using HPLC. The skin samples without the stratum corneum were cut with scissors and transferred

to conical tubes containing 4 mL of methanol, and then

sonicated for 30 minutes. The inal solution was analyzed

for the amount of lycopene retained in the epidermis and

dermis using HPLC. All the experiments were carried

out in quadruplicate using the base emulsion as the blank control.

In vitro antioxidant activity of lycopene incorporated

into the phytocosmetic

Diferent concentrations of the sample were placed in test tubes, followed by the addition of 1,1-diphenyl-2-picrylhydrazyl (DPPH) solution (concentration: 0.004%). The assay was performed with the phytocosmetic (0.5

g) dissolved in 5 mL of solvent solution composed of chloroform and isopropanol (1:1) (Isaac, 1998).

Absorbance was measured using a methanol and DPPH

solution as the negative control and methanol and emulsion

without lycopene as empty controls at 531 nm using UV/

VIS spectrophotometry. In the presence of lycopene,

the absorbance intensity at 531 nm diminished and the percentage of inhibition (%inhibition) was calculated using Equation I (adapted from Cuendet, Hostettmann,

Potterat, 1997). The experiment was performed in triplicate.

Equation I: %inhibition = ((A Max – A Test)/Amax). 100

A Max is the absorbance of the free radical in the absence of the sample, and A Test is the absorbance of the radical in the presence of the sample.

Statistical analysis

(5)

t-test (P<0.05) for independent variables and the program

used was the Microsoft Excel program, version 2000.

RESULTS AND DISCUSSION

Development of phytocosmetic

Since thickening agents provide a high degree of

stability to O/W emulsions, the concentrations of shea-based emollients and emulsiiers used were low, resulting

in a less-oily emulsion a non-greasy feel after being applied.

The base emulsion obtained had an even, odorless,

white, and shiny appearance and was chosen for

the subsequent tests. After being submitted to three centrifuge cycles , the base emulsion exhibited stability, as determined by the lack of separation of the phases even

24 hours after preparation, and was therefore chosen for

the development of the study.

The process for the preparation of the phytocosmetic

was carried out slowly, with care taken to avoid the loss of extract. The inal formula had an even, odorless, and shiny appearance and yellowish coloration owing to the

presence of the extract.

Stability test

During the preliminary stability tests no alterations

in the appearance were detected in the phytocosmetic. Coloration, however, changed when the emulsion was submitted to the oven, light and the freeze/thaw cycle.

This change in color may have occurred in the temperature range of –5 ºC to 45 ºC.

The phytocosmetic had a stable pH with a mean value of 5.85±0.21, which is compatible with that of skin. Under all conditions, the daily measurements of pH of the

phytocosmetic had a standard deviation value of less than

0.21, which represents a very small variation (less than

0.02) (P<0.05) and demonstrates stability of the formula. The maintenance of density is an important parameter that

inluences the stability of a formula. The phytocosmetic demonstrated stability with a measured density value of 1.0037±0.14 g/cm3, and under all conditions, the daily measurements of density had a standard deviation value of less than 0.01% (P<0.05).

Viscosity is one of the physiochemical parameters assessed during the stability test of cosmetic products and

involves the study of low properties of a liquid (Braseq,

2014; Brasil, 2004). In the present study, the viscosity

values increased signiicantly when the phytocosmetic was exposed to a temperature of 45±2 °C. The viscosity

ranged from 5394.3±0.22 Pa.s at ambient temperature to 6647.6±0.36 Pa.s (standard deviation equal to 20.44%)

(P>0.05) and to 6382.0±0.31 Pa.s (standard deviation

equal to 15.47%) (P>0.05) during the freeze/thaw cycle.

The increase in temperature led to the evaporation of water,

thereby increasing the viscosity. Thus, the phytocosmetic should not be stored at a high temperature. The viscosity

values presented were obtained when the phytocosmetic was submitted to the lowest shearing rate (0.005±5 s-1) and the least shearing tension (23±5 Pa) in order to determine

the viscosity of the emulsion at near resting conditions.

Similar to a material with non-Newtonian behavior, the viscosity of the sample diminished with an increase in

applied tension.

The consistency (KH) and low behavior (nH) values

were obtained using the Herschel-Bulkley rheological model, which was the most suitable model for styding viscosity curves, with a coeicient of variation of 0.99. The consistency of the emulsion increased when it was submitted to stress conditions and throughout the

evaluation period, leading to an increased viscosity,

which was pronounced at 45 ºC. The results of the low

behavior revealed values of less than 1, thereby classifying

the sample as having non-Newtonian and pseudoplastic

behavior, and the stress conditions did not alter this behavior.

The results of the preliminary stability test revealed that the incorporation of the lycopene extract changed the

color of the emulsion and its viscosity was afected by exposure to high temperatures. The sample also underwent a change in color when exposed to indirect light. It is therefore important that the phytocosmetic be stored away

from light and heat.

During the accelerated stability test, neither the appearance nor the aroma of the phytocosmetic altered.

However, in the preliminary test, the product had an intense yellow coloration. The pH of the phytocosmetic remained stable (5.90±0.32), with a standard deviation

<0.10 (P<0.05). Based on the results presented thus far, the phytocosmetic exhibited considerable stability, and

the presence of the extract did not signiicantly alter the pH of the formula.

The phytocosmetic exhibited stability with regard to density (1.0035±0.16 g/cm3) with little variation observed

between evaluation days and with standard deviation

values of less than 0.10% (P<0.05).

As in the preliminary test, the viscosity of the phytocosmetic during the accelerated stability test

increased significantly when exposed to 45±2 °C from 5477.0±0.35 Pa.s to 7396.3±0.22 Pa.s (standard

(6)

temperature led to the evaporation of the water, thereby

increasing the viscosity. The viscosity values presented

during the accelerated stability test were obtained when the phytocosmetic was submitted to the lowest shearing

rate (0.0052±5 s-1) and least shearing tension (22±5 Pa)

in order to determine the viscosity of the emulsion at near

resting conditions. As a material with non-Newtonian behavior, the viscosity diminished with the increase in

applied tension. The consistency (KH) and low behavior (nH) values had achieved a coeicient of variation of 0.99, as observed in the preliminary test.

The results of the accelerated stability test revealed that the incorporation of the lycopene extract changed

the color of the emulsion and its viscosity was afected

by exposure to high temperatures, as observed in the

preliminary test. The sample also underwent a change in color when exposed to indirect light. It is therefore important that the phytocosmetic be stored away from

light and heat.

Determination of lycopene content in emulsion

The lycopene concentration in the emulsion was 0.59±0.22 µg/mL, but when exposed to indirect light

and 45±2 ºC, the lycopene concentration diminished

signiicantly to 0.43±0.14 µg/mL and 0.39±0.18 µg/mL, respectively, with a variation of >10% (P>0.05) after day

90 (Figure 1). Lycopene contents were found to be similar

(P<0.05) in the other conditions. Lycopene may undergo oxidation because of exposure to light and heat, and the

phytocosmetic should be stored away from light and heat

in order to avoid degradation.

Determination of spreadabilty

Spreadability was assessed by submitting the phytocosmetic to successive increments of weight and distension was determined by measuring the resulting diameter of the sample. The area of the sample was 2521.94±0.33 mm2 when it was submitted to the irst 200 g of weight, and this value increased with increasing weight,

achieving a maximum area of 4819.17±0.28 mm2.The

spreadability values (r=0.99935) showed linearity, as the increase in weight or tension applied to the sample was

directly proportional to its spreadability. The analytical

curve obtained presented in Equation II, with an R2 value

of 0.9987.

Equation II: y = 757.31x + 1788.5

This study was also performed with the base emulsion, which had an area of 2642.01±0.32 mm2 when submitted to 200 g, with an increase in area accompanying the increase in weight, reaching a maximal area of

4860.27±0.45 mm2 (Cefali et al., 2009a). These values are similar to those obtained with the phytocosmetic, with no signiicant diferences (P<0.05), indicating that the extract

did not afect the spreadability of the emulsion.

Determination of rheological behavior

The rheological behavior analysis determines

whether a sample exhibits Newtonian or non-Newtonian behavior, whether the luid is plastic, pseudoplastic, or dilatant, whether it exhibits thixotropy and whether it has

viscoelastic behavior.

The flow curve revealed that the phytocosmetic exhibited non-Newtonian characteristics, since the sample underwent deformation when submitted to the shearing

tension test and did not exhibit constant viscosity. The

emulsion was also characterized as thixotropic, as the sample underwent a reduction in viscosity with shearing

and had a hysteresis area of 658.7±0.11 Pa/s (Figure 2).

Thixotropy is related to the deformation of a sample when submitted to tension, with greater thixotropy indicating

greater deformation of the sample and greater spreadability

of the product when applied to the skin. After application,

a thixotropic emulsion recovers its viscosity, thereby

FIGURE 1 - Determination of lycopene content in emulsion submitted to stress conditions on 90 days.

(7)

avoiding dripping. Moreover, a thixotropic product tends to have a longer shelf life, as it exhibits constant viscosity

during storage, which hinders the separation of the components of the formula (Martin, 1993).

The flow limit assay is a test that determines the tension necessary for a sample to begin to flow. The phytocosmetic exhibited deformation when the shearing tension was 0.04919±0.52 Pa after 5.91±0.11 seconds

from the onset of the test, thereby demonstrating that the product deforms rapidly after being submitted to tension

(Figure 3) (Isaac et al., 2013a).

The elastic and viscous behavior of the sample

was also assessed to determine whether the sample was more viscous or elastic and to what extent it recovers its elasticity after the shearing tension ceases (Ribeiro,

Morais, Eccleston, 2004). The tension scanning test was

performed prior to the viscoelasticity tests in order to

determine the shearing tension values at which the sample did not undergo deformation within a range of linearity.

In the range from 0 to 5 Pa, the sample did not undergo

deformation, as the G’, G” and viscosity (η) values

remained linear in this shearing tension range (Figure 4).

This range of values was then used in the frequency scanning and luency/relaxation tests.

Studies carried out by Chiari et al. (2009) and Zambon et al. (2009) demonstrated that emulsions with

the thickener carbomer (2% dispersion) at a concentration higher of greater than 20% exhibited linearity in G’, G”

and viscosity with values of about 1Pa, which are similar

to those observed for the phytocosmetic analyzed in the present study.

Frequency scanning determines the G’ (storage module) and G” (loss module) of a formula. The phytocosmetic had a higher G’ than G’’ value and

viscosity diminished with the increase in shearing tension

(Figure 5), which is the typical behavior of viscoelastic samples. When a viscoelastic material exhibits a storage

or elastic module greater than the viscous or loss module, the tension energy is temporarily stored during the test

and may be recovered later. This generally occurs in O/W

emulsion systems. The test also revealed that the frequency

range in which the G’ and G” cross, shown in Figure 5, which is known as the crossover range, had two points, demonstrating that there was no change in the behavior of

the formula during the shearing test.

The last test performed was the luency/relaxation text, which determines the viscoelasticity of a sample.

Viscoelastic behavior is characterized by deformation

when a sample is submitted to a given tension and the recovery of its elastic structure when the tension ceases,

thereby facilitating spreading during topical application.

This behavior was observed in the phytocosmetic analyzed since the sample resisted the tension required for low and recovered its elasticity when the shearing tension ceased

(Figure 6).

The complete rheological behavior of the base

emulsion was assessed in the same way as that of the

phytocosmetic (Cefali, et al., 2009b) and similar results

were achieved. Thus, the presence of the lycopene extract

did not alter the rheological behavior of the formula.

Thermal analysis

Thermal analysis assays were carried out, as FIGURE 4 - The tension scanning test of emulsion with lycopene extract. Plots of G’ (◊), G” (■) and viscosity (▲) with stress.

FIGURE 3 - Yield stress curve of emulsion with lycopene extract.

FIGURE 5 - The frequency scanning test of emulsion with lycopene extract. Plots of G’ (◊), G” (■) and viscosity (▲) with

(8)

calorimetric methods, allowing for measurements of

alterations in the chemical and/or physical properties of

a sample as a function of temperature. DSC and TG were

performed. The former is a thermal analysis method that

records the heat energy low associated with transitions

in materials as a function of temperature and the latter measures the variation in mass during the heating of a sample (Casimiro, et al., 2005).

DSC revealed an endothermic peak at 109±0.25 ºC,

which is attributed to the fusion and evaporation of the components of the formula (Figure 7). When submitted to TG, the phytocosmetic underwent thermal decomposition

in three steps – the first at 95.5±0.15 ºC, the second at

536±0.12 ºC and the third at 804±0.09 ºC, with sample

losses of 85.55%, 97.78% and 98.16% respectively (Figure 8).

Thus, the thermal analysis revealed that both the

lycopene and the other components of the emulsion were

stable up to a temperature of 109 ºC. The preparation of this product and other emulsions should be performed at

temperatures below 100 ºC in order to avoid evaporation

and the consequent degradation of the compounds.

According to Almeida, et al. (2010), the TG/ DTG and DSC analyses are important tools used for

characterizing the thermal proile of materials, such as

vitamins and creams, and can be used for routine analysis in quality control laboratories in cosmetic industries.

Microbiological control

Microbiological control is of extreme importance

when developing cosmetics. In the phytocosmetic, there was no growth of speciic pathogenic microorganisms,

such as Salmonella sp, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus (Farmacopeia,

2010; Pinto, Kaneko, Ohara, 2003; USP 36, 2013). The total count of these microorganisms was less than 10 CFU

of bacteria, fungi and yeasts in each gram of the sample (Table I), thereby demonstrating the absence of pathogenic

microorganisms (Farmacopeia, 2010; Usp 36, 2013).

Assessment of in vitro cytotoxic activity

For the determination of cytotoxicity of the

lycopene extract, the resazurin stain was used to identify

the existence of live cells (pink color) and dead cells

(blue color). All wells containing the extract exhibited

a pink color, demonstrating the presence of live cells.

Thus, the extract did not exhibit cytotoxicity toward the

macrophage and fibroblast lineages analyzed, and the

highest concentration tested (200 µg/mL) did not achieve

50% on the cytotoxicity index.

Permeation test

Following the release test, the receiving liquid was collected and analyzed by HPLC for the determination and quantiication of lycopene released from the formula. The presence of lycopene was not identiied at any of the times in which aliquots were collected (2, 4 and

8 h). Some substances may be impeded from being

FIGURE 8 - Thermogravimetry (TG) analysis of emulsion with lycopene.

FIGURE 6 - The fluency/relaxation test of emulsion with lycopene.

FIGURE 7 - Differential scanning calorimetry (DSC) of

(9)

released from a formula due to the incompatibility or

low solubility of the receiving liquid (bufer, pH 7.2). However, positive results were achieved with regard to

the skin retention tests that demonstrate that the lycopene

was released, as the bufer solution solubilized the active ingredient when in contact with the pig skin. Synthetic

membranes are used in the release test because it is possible to detect only the release of the active ingredient

rather than its retention, which would occur using any

type of skin, human or animal (Alencastre et al., 2006; Sato, Sugibayashi, Morimoto, 1991). Thus, although the release test gave negative results, tests of skin permeation and retention in the stratum corneum and epidermis/

dermis were performed.

Pig ear skin is largely used in permeation and retention tests because it simulates human skin (Sato, Sugibayashi, Morimoto, 1991), and Klang, et.al. (2012)

conirmed that the porcine ear is an excellent in vitro model for tape stripping experiments compared to in vivo testing

on human skin, using diferent topical formulations. According to Schueller, Romanowski (2000),

emulsion is the most frequently used pharmaceutical

topical release system, since it allows quickand convenient

transport of several substances. The type of emulsion

[oil-in-water (O/W) or water-in-oil (W/O)] should be considered, since it may inluence the release, permeation,

and retention of active substances in the skin. Alencastre et al. (2006) found that the W/O emulsion provided enhanced

penetration of vitamin E in both the free and encapsulated forms in pig’s skin. Paleco et al. (2014) investigated the

potential use of microneedles and their combination with lipid microparticles (LMs) loaded with quercetin, as a

system to improve flavonoid permeability through the skin, using the in vitro release and permeation tests with

pig ears and concluded that the proposed combination of

microneedles with LMs could be an effective delivery

strategy for topical administration of quercetin.

In the present study, aliquots of the receiving solution and supernatant from the tests of retention in the

stratum corneum and epidermis/dermis were collected

automatically after 2, 4 and 8h and analyzed using

HPLC. The lycopene incorporated into the O/W emulsion did not permeate the pig skin, but was retained in the epidermis/dermis after 4 (0.0131±0.32μg/ml) and 8h (0.0373±0.41μg/ml). This result is desirable, since a large

number of oxidative reactions caused by UV radiation occur in the viable epidermis and dermis, and it is in this region that lycopene could remove free radicals and reduce

the formation of wrinkles.

The present study demonstrates that the frequent application of this phytocosmetic may increase the concentration of lycopene in the skin and provide

desired anti-aging efect. The contribution of this in vitro

permeation study to the assessment of pharmacokinetic properties of the formula and pharmacotechnical development is clear, since it is practical, fast, and

inexpensive. However, caution must be exercised when

extrapolating the results to in vivo situations, since the

in vitro methodology constitutes a preliminary selection of formulae prior to carrying out clinical tests (Sato, Sugibayashi, Morimoto, 1991).

In vitro antioxidant activity of lycopene in cosmetic

In the antioxidant activity test, the phytocosmetic

exhibited free radicals removal, as the absorbance was 0.755±0.005 for DPPH in contact with the emulsion alone (without lycopene) and 0.607±0.02 for DPPH in contact with the phytocosmetic, corresponding to 19.51%

inhibition.

The phytocosmetic-induced inhibition of free

radicals was not signiicant, but demonstrates the in vitro

action of lycopene incorporated in the cosmetic formula.

With daily use of the phytocosmetic, the lycopene content

may increase if it is retained in the skin and may reach

a suicient concentration to inhibit or avoid the action

of free radicals. Thus, the phytocosmetic developed is a promising formula to combat of aging of the skin. No

data were found in the literature on the in vitro antioxidant

TABLE I - Microbiological control of phytocosmetic

Microorganisms Recommendation (Farmacopéia, 2010) Results*

Aerobic bacteria 103 a 5x103 CFU/g Not exceed to 10 CFU/g

Fungi and yeasts 103 a 5x103 CFU/g Not exceed to 10 CFU/g

Pseudomonas aeruginosa Absence Absence

Salmonella sp Absence Absence

Staphylococcus aureus Absence Absence

Escherichia coli Absence Absence

(10)

activity of substances incorporated into emulsions that

could be compared with the results of the present study.

CONCLUSION

T h e p r e s e n t s t u d y d e m o n s t r a t e s t h a t t h e phytocosmetic is stable, exhibits satisfactory rheological behavior for a topical formula, and that the lycopene extract is no citotoxic. The phytocosmetic has antioxidant

activity and allows for the retention of the active ingredient

in the skin. Thus, the phytocosmetic is a promising product for combating the aging of the skin.

ACKNOWLEDGEMENTS

The authors are grateful to the Brazilian fostering

agency CNPq for the inancial support and Ionquímica for

the donation of the shea-based emollient and consistency

agents and Richard Boike, native of English language, and

Editage enterprise for checking the manuscript.

REFERENCES

ALENCASTRE, J. B.; BENTLEY, M. V. L. B.; GARCIA, F. S.; MORAGAS, M.; VILADOT, J. L.; MARCHETTI, J.

M. A study of the characteristics and in vitro permeation properties of CMC/chitosan micro particles as a skin delivery system for vitamin E. Rev. Bras. Cienc. Farm.,

v.42, n.1, p.69-76, 2006.

ALMEIDA, M. M.; LIMA, C. R. R. C.; QENCA-GUILLEN, J. S.; MOSCARDINI FILHO, E.; MERCURI, L. P.; SANTORO, M. I. R. M.; KEDOR-HACKMANN, E. R.

M. Stability evaluation of tocopheryl acetate and ascorbyl tetraisopalmitate in isolation and incorporated in cosmetic formulations using thermal analysis. Braz. J. Pharm. Sci.,v.46, n.1, p.129-134, 2010.

BARRY, B.W. Rheology of dermatological vehicles. In:

Dermatological formulations.1.ed.New York: Marcel

Dekker, 1993. p.351-439.

BRASEQ. Noções básicas de reologia e viscosidade. Available

at: <http://www.braseq.com.br/pdf/brookfield.pdf>.

Accessed on: 08 Dec 2014.

BRASIL, Guia de estabilidade de produtos cosméticos. Brasília:

Núcleo de Assessoramento em Comunicação Social e Institucional. Poder Executivo, 2004. p.12-19, 26,27.

CASIMIRO, M. H.; LEAL, J. P.; GIL, M. H.; CASTRO, C. A. N. Análise calorimétrica aplicada a polímeros biológicos. Parte I: Fundamentos teóricos. Bol. Soc. Port. Quím., v.98, n.1, p.29-35, 2005.

CEFALI, L. C., CHIARI, B. G.; MORAES, J. D. D.; ZAMBON, A. P. L. B.; CORRÊA, M. A.; ISAAC, V. L. B. Estabilidade

preliminar de emulsões contendo fase oleosa a base de karité, veriicação da formação de cristais líquidos com a

adição de Behenyl alcohol, poliglyceryl-10 pentastearate,

sodium stearoyl lactylate e avaliação da sua inluência na

estabilidade da formulação. In: COSMETIC BRAZILIAN

CONGRESs, 23., São Paulo, 2009. Annals. São Paulo: ABC, 2009a. p.85.

CEFALI, L. C.; CORRÊA, M. A.; SALGADO, H. R. N.;

ISAAC, V. L. B. Estudo do comportamento reológico e da espalhabilidade de emulsão contendo fase oleosa constituída de karité. In: PHARMACEUTICAL MEETING, 56., Araraquara, 2009. Annals. São Paulo: UNESP, 2009b. p.18.

CHIARI, B.G.; CEFALI, L.C.; ZAMBON, A.P.L.B.; MORAES,

J.D.D.; CORRÊA, M.A.; ISAAC, V.L.B. Formação de

cristais líquidos e caracterização reológica de formulações cosméticas.In: COSMETIC BRAZILIAN CONGRESS,

23., São Paulo, 2009. Annals. São Paulo: ABC, 2009. p.86.

CUENDET, M.; HOSTETTMANN, K.; POTTERAT, O. Iridoid glucosides with free radical scavenging properties from Fagraea blumei. Helv. Chim. Acta, v.80, n.1, p.1144-1152, 1997.

DAVIS, H. M. Analysis of creams and lotions. In: SENZEL,

A. J. (Ed.). Newburger’s manual of cosmetic analysis. Washington: Association of oicial analytical chemists, 1977. chap.4, p.32.

FARIA, E. A.; LELES, M. I. G.; IONASHIRO, M.; ZUPPA,

T. O. Estudos da estabilidade térmica de óleo e gorduras vegetais por TG/DTG e DTA. Eclet. Quím., v.27, n.1, p.111-119, 2002.

FARMACOPÉIA BRASILEIRA. 5.ed. São Paulo: Atheneu,

2010. 545 p.

FRANZ, T. J. Percutaneus absorption on relevance of in vitro

data. J. Invest. Dermatol., v.64, n.1, p.190, 1975.

GIACOMONI, P. U. Understanding reactive oxygen species.

(11)

GUILLEN, J. S. Q.; BATISTA, I. A. S. A.; MATOS, J. R. M.

Contribuição da análise térmica na avaliação do DMAE e seus sais correspondentes e do ácido ascórbico e derivados.

In: THERMAL ANALYSIS AND CALORIMETRY

BRAZILIAN CONGRESS. Poços de Caldas, 2006.

Annals. Poços de Caldas: ABRATEC, 2006. p.390.

IDSON, B. Stability testing of emulsions. Drug Cosmet. Ind., v.151, n.1, p.28-30, 1993a.

IDSON, B. Stability testing of emulsions. Drug Cosm. Ind., v.151, n.2, p.38-43, 1993b.

ISAAC, V. L. B. Veriicação da estabilidade do ácido retinóico

em uma preparação dermatológica emulsionada (O/A), contendo butilhidroxitolueno, em diferentes concentrações,

como agente anti-oxidante. 1993. São Paulo, 1993. 74 f. [Master of Pharmaceutical Sciences. Faculty of

Pharmaceutical Sciences. University of São Paulo].

ISAAC, V. L. B. Desenvolvimento, estabilidade e liberação in vitro de preparações lipolíticas. 1998. São Paulo, 1998. 85 f. [Thesis of Ph.D degree. Faculty of Pharmaceutical

Sciences. University of São Paulo].

ISAAC, V. L. B.; CEFALI L, C.; CHIARI, B. G.; OLIVEIRA, C. C. L. G.; SALGADO, H. R. N.; CORRÊA, M. A.

Protocolo para ensaios físico-químicos de estabilidade de

itocosméticos. Rev. Ciênc. Farm. Básica Apl., v.29, n.1, p.81-96, 2008.

ISAAC, V. L. B.; CEFALI, L.C.; CHIARI, B. G; ALMEIDA, M. G.; RIBEIRO, H. M.; CORRÊA, M. A. Efect of various

thickening agents on the rheological properties of

oil-in-water emulsions containing nonionic emulsiier. J. Disper. Sci. Technol., v.34, n.6, p.880-885, 2013a.

ISAAC, V. L. B.; MORAES, J. D. D.; CHIARI, B. G; GUGLIELMI, D. A. S.; CEFALI, L. C.; RISSI, N. C.; CORRÊA, M. A. Determination of the real influence of

the addition of four thickening agents in creams using rheological measurements. J. Disper. Sci. Technol., v.34,

n.4, p.532-538, 2013b.

KLANG, V.; SCHWARZ, J. C.; LENOBEL, B.; NADJ, M.; AUBOCK, J. WOLZT, M.; VALENTA, C. In vitro vs. in

vivo tape stripping: Validation of the porcine ear model and penetration assessment of novel sucrose stearate emulsions.

Eur. J. Pharm. Biopharm., v.80, n.3, p.604-614, 2012.

KNORST, M. T. Desenvolvimento tecnológico de forma farmacêutica plástica contendo extrato concentrado de

Achyrocline satureioides. Lam. DC. Compositae. (Marcela). Porto Alegre, 1991. 65f. [Dissertion of Master degree.

Faculty of Pharmacy, Federal University of Rio Grande do Sul].

KONG, K.; KHOO, H.; PRASAD, K. N.; ISMAIL, A.; TAN, C.; RAJAB, N. F. Revealing the power of the natural red

pigment lycopene. Molecules, v.15, n.2, p.959-987, 2010.

MARTIN, A. Physical pharmacy, 4.ed. Philadelphia:Lea &

Febiger, 1993. 153 p.

NUNES, I. L.; MERCADANTE, A. Z. Production of lycopene

crystals from tomato paste. Cienc. Tecnol. Aliment., v.24,

n.3, p.440-447, 2004.

O’BRIEN, J.; WILSON, I.; ORTON, T.; POGNAN, F. Investigation of the Alamar Blue (resazurin) luorescent dye

for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem., v.267, n.17, p.5421-5426, 2000.

OHNO, Y.; MIYAJIMA, A.; SUNOUCHI, M. Alternative

methods for mechanistic studies in toxicology. Screening of hepatotoxicity of pesticides using freshly isolated and primary cultured hepatocytes and non-liver-derived cells,

SIRC cells. Toxicol. Lett., v.102, n.1, p.569-573, 1998.

PALECO, R.; VUCEN, S.R.; CREAN, A.M.; MOORE, A.;

SCALIA, S. Enhancement of the in vitro penetration of quercetin through pig skin by combined microneedles and lipid microparticles. Int. J. Pharm. v.472, n.1-2, p.

206-213, 2014.

PINTO, T.J.A.; KANEKO, T.M.; OHARA, M.T. Controle

biológico de qualidade de produtos farmacêuticos,

correlatos e cosméticos. 2.ed. São Paulo: Atheneu, 2003.

325 p.

RIBEIRO, H. M.; MORAIS, J. A.; ECCLESTON, G. M. Structure and rheology of semisolid O/W creams containing cetyl alcohol/ non-ionic surfactant mixed emulsiier and diferent polymers. Int. J. Cosmet. Sci., v.26, n.2, p.47-59, 2004.

SASSON, C. S. Influência dos veículos cosméticos na

permeação cutânea da associação de filtros solares e

acetato de tocoferol. Curitiba, 2006. 67 f. [Dissertion of Master degree. Faculty of Pharmaceutical Science. Federal

(12)

SATO, K.; SUGIBAYASHI, K.; MORIMOTO, Y. Species

differences in percutaneous absorption of nicorandil. J. Pharm. Sci., v.80, n.1, p.104-107, 1991.

SCHUELLER, R.; ROMANOWSKI, P. Emulsões. Cosmet. Toil., v.12, n.1, p.71-74, 2000.

SENTANIN, M. A.; AMAYA, D. B. R. Teores de carotenóides

em mamão e pêssego determinados por cromatografia

líquida de alta eiciência. Cienc. Tecnol. Aliment., v.27, n.1,

p.13-19, 2007.

SHAMI, N. J. I. E.; MOREIRA, E. A. M. Licopeno como agente

antioxidante. Rev. Nutr., v.17, n.2, p.227-236, 2004.

TAKAHASHI, Y.; KOIKE, M.; HONDA, H.; ITO, Y.; SAKAGUCHI, H.; SUZUKI, H.; NISHIYAMA, N.

Development of the short time exposure (STE) test: an in vitro eye irritation test using SIRC cells. Toxicol. In Vitro, v.22, n.1, p.760-770, 2008.

UNITED STATES PHARMACOPEIA. USP 36. 36.ed. Rockville: The United States Pharmacopeial Convention, 2013. 1722 p.

ZAMBON, A. P. L. B.; CHIARI, B. G.; MORAES, J. D. D.; CEFALI, L. C.; CORRÊA, M. A.; ISAAC, V. L. B.; PECCININI, R. G.Influência do alpha lipoic acid na

estabilidade de emulsões O/A contendo iltros solares.In:

COSMETIC BRAZILIAN CONGRESS, 23., São Paulo,

2009. Annals. São Paulo: ABC, 2009. p.86.

Received for publication on 25th June 2014

Imagem

FIGURE 1 -  Determination of lycopene content in emulsion  submitted to stress conditions on 90 days.
FIGURE 5 -  The frequency scanning test of emulsion with  lycopene extract. Plots of G’ (◊), G” (■) and viscosity (▲) with  frequency.
FIGURE 7 -  Differential scanning calorimetry (DSC) of  emulsion with lycopene.

Referências

Documentos relacionados

The aim of this study was to determine the rheological characterization and stability of a W/O emulsion formulated using ω 3 fatty acids as part of the oil phase and butter milk

The aim of this study was to evaluate for the cytotoxicity, genotoxicity and antioxidant/oxidant activity of GYZ on human peripheral blood lymphocytes (PBLs).. Cytotoxicity

The presence of a pharmacist gave the patients a better understanding of the occurrence of RAM related to the use of docetaxel, especially those RAM that occur outside the

The selectivity of the method was evaluated in four diferent solutions: unloaded nanoparticle solution, nanostructured NFOH sample, mobile phase and standard NFOH..

Granisetron Hydrochloride tablets were evaluated for post compression parameters like hardness, weight variation, thickness, friability, disintegration time, drug content and

Thus, enteric coated HPMC capsules plugged with 5-FU loaded microsponges and calcium pectinate beads proved to be promising dosage form for colon targeted drug delivery to

The objective of the present study was to enhance its dissolution proile and to attain sustained release by designing a novel delivery system based on niosomes.. Five

The aim of this study was to evaluate the cytotoxicity of root canal irrigating solutions containing calcium hydroxide and sodium lauryl sulphate on ibroblasts derived from L929