• Nenhum resultado encontrado

Braz. J. Phys. vol.31 número1

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.31 número1"

Copied!
6
0
0

Texto

(1)

Appliations of the Shwinger Multihannel Method

with Pseudopotentials to Eletron Sattering from

Polyatomi Moleules I. Elasti Cross Setions

Alexandra P. P. Natalense,Mario T. doN. Varella,

InstitutodeFsiaGlebWataghin,

UniversidadeEstadual deCampinas,UNICAMP,

13083-970Campinas,S~aoPaulo,Brazil

Mario H. F. Bettega,

Departamento deFsia,UniversidadeFederaldoParana,

Universidade FederaldoParana

CaixaPostal19044, 81531-990Curitiba,Parana, Brazil

Luiz G. Ferreira,and Maro A. P. Lima

InstitutodeFsiaGlebWataghin,

UniversidadeEstadual deCampinas,UNICAMP,

13083-970Campinas,S~aoPaulo,Brazil

Reeivedon14Marh,2000

Thispaperis adatabasis whihinludes tables ofintegral, dierential,and momentumtransfer

rosssetionsforelastieletronsatteringfromCF

4 ,CCl

4 ,SiCl

4 ,SiBr

4 ,SiI

4 ,CH

3 FCH

2 F

2 ,CHF

3 ,

CH3Cl, CH2Cl2, CHCl3,CF3Cl, CF2Cl2,CFCl3,CH3Br,CH3I,SiH3Cl, SiH3Br, SiH3I,GeH3Cl,

GeH

3

Br, SnH

3 Br, C

2 H

6 , Si

2 H

6 , Ge

2 H

6 , B

2 H

6 , Ga

2 H

6 , H

2 O, H

2 S, H

2 Se, H

2

Te, trimethylarsine

(TMAs), N2O, and O3. These tables show our new results, along with some of our previously

publishedross setions, andan easilybeomparedto futureexperimentaldata andothernew

theoretial results. Our sattering amplitudes werealulated usingthe Shwinger multihannel

method with norm-onserving pseudopotentials. Our results are in good agreement with other

theoretialdataandexperimentalresultswhenavailable.

All tables are available in the eletroni version of the paper only [on the world wide web at

http://www.sbf.if.usp.br/bjp/Vol31/Num1/.℄

I Introdution

In this paper we show appliations of the Shwinger

multihannel methodwith norm-onserving

pseudopo-tentials[1℄toeletronsatteringfromCF

4 ,CCl

4 ,SiCl

4 ,

SiBr

4 , SiI

4 , CH

3 F CH

2 F

2 , CHF

3 , CH

3

Cl, CH

2 Cl

2 ,

CHCl

3 ,CF

3 Cl,CF

2 Cl

2 ,CFCl

3 ,CH

3 Br,CH

3 I,SiH

3 Cl,

SiH

3

Br, SiH

3

I, GeH

3

Cl, GeH

3

Br, SnH

3 Br, C

2 H

6 ,

Si

2 H

6 , Ge

2 H

6 , B

2 H

6 , Ga

2 H

6 , H

2 O, H

2 S, H

2 Se, H

2 Te,

trimethylarsine(TMAs),N

2

O,andO

3

. Manyofthese

moleules are plasmaproessing gases[2, 3℄and some

arealsoofenvironmental interestforbeinggreenhouse

gases or stratospheri ozonedepleting gases [3℄.

De-spite their industrial and environmental importane,

areverysare. Toourknowledge,thisistherst

ol-letion of eletron sattering ross setions for many

ofthe moleules ited above. We intend to presentin

this paper aomplete data base of our results, whih

aneasilybeomparedtofutureexperimentaldataand

othernewtheoretialresults.

InsetionIIwepresentabriefreviewofthetheory

anddesribethemain approximationsusedin our

al-ulations. In Setion III we present our results and

disussion. This setion is divided as follows:

Sub-setion III-1 shows our elasti dierential ross

se-tions(DCS)forCF

4 ,CCl

4 ,SiCl

4 ,SiBr

4

andSiI

4 from

Ref. [4℄, in addition to results for other impat

(2)

se-setions (MTCS) for these moleules. Subsetion

III-2 inludes tables with elasti DCS from Ref. [5℄ for

CH 3 FCH 2 F 2 ,CHF 3 , CH 3 Cl,CH 2 Cl 2 ,CHCl 3 ,CF 3 Cl, CF 2 Cl 2

, and CFCl

3

along with our results for other

eletron impat energies. Subsetion III-3 shows our

newresultsonelastidierentialandmomentum

trans-ferrosssetionsforthemoleulesXH

3

Y,withX=C,

Si, Ge, Sn; Y = F, Cl, Br, I. Results of our previous

studies[6℄onX

2 H

6

(X=C,Si,Ge)arepresentedin

Sub-setion III-4. In Subsetion III-5 we presentour new

elastieletronsatteringresultsforGa

2 H

6

andtables

withourDCSandourICSforB

2 H

6

fromRef.[6℄. Our

MTCSforB

2 H

6

,whihwerenotinludedinRef.[6℄are

alsoshown. SubsetionIII-6presentsourDCSforH

2 X

(X=O,S,Se,Te)fromRef. [7℄. InSubsetionIII-7we

showourresultsfortrimethylarsine(TMAs)[8℄.

Elas-tirosssetionsforN

2

O[9℄andO

3

[10℄arepresented

inSubsetionIII-8.

II Theory

The implementation of pseudopotentials in the

Shwinger multihannel method allows alulationsof

low-energyeletronsatteringbymoleulesontaining

atomswithmanyeletronswithreduedomputational

eort [1℄. The basi idea is to replae the ore

ele-trons andthenuleusofeah atomin themoleuleby

the orresponding soft norm-onserving

pseudopoten-tialandtodesribethevaleneeletronsinaquantum

hemistry framework (Hartree-Fok approximation in

the present implementation). The ross setions for

eletron sattering by moleules with dierent atoms

butwiththesamenumberofvaleneeletronsanthen

bealulatedwithaboutthesameomputationaleort.

To illustrate this idea, Table I shows the total

num-ber of eletrons for eah studied moleule ompared

to the number of valene eletrons. The method an

providesubstantialomputationalsaving,espeiallyfor

moleulesontainingmanyheavierthanHenters,suh

asCFCl

3

forexample.

The Shwinger multihannel method has been

de-sribed previously and we only review here some key

featuresforompleteness. Inthismethod,theworking

expressionforthesatteringamplitudeis

[f ~ k i ; ~ k f ℄= 1 2 X m;n hS ~ k f jVj m i(d 1 ) mn h n jVjS ~ k i i; (1) where d mn =h m jA (+) j n i (2) and A (+) = ^ H

N+1 (

^

HP+P ^

H)

2

+

(VP+PV)

2 VG (+) P V: (3)

IntheaboveequationsjS

~

k

i

iistheprodutofa

tar-get state and a plane wave, V is the interation

po-tential between the inident eletron and the target,

j

m

i is a (N+1)-eletron Slater determinant used in

theexpansionofthetrialsatteringwavefuntion, ^

His

thetotalenergyoftheollisionminusthefull

Hamilto-nianofthesystem,P isaprojetionoperatorontothe

open hannel spae dened by target eigenfuntions,

andG (+)

P

isthefree-partileGreen'sfuntionprojeted

ontheP-spae.

Inour formulation all thematrix elementsneeded

toevaluatethesatteringamplitudeareomputed

an-alytially,exept thoseinvolvingtheGreen's funtion,

i.e. h m jVG (+) P Vj n

i,whih arealulatedby

numer-ialquadrature [11℄.

We use the norm-onserving pseudopotentials of

BaheletHamannandShluter[12℄todesribethe

nu-lear potential and the ore eletrons of eah atom.

These pseudopotentialswereimplementedin theSMC

method asdesribed in Ref. [1℄. TheCartesian

Gaus-sianfuntionsusedtodesribethemoleularand

sat-tering orbitals were espeially designed to be used in

ourpseudopotentialalulations[13℄.

Ourrosssetionswereobtainedinthexed-nulei

stati-exhangeapproximation. Wedonotinlude the

desriptionofpolarizationeets,sinetheyareknown

to beof littleimportane for theimpatenergy range

westudy here(5{30 eV).Forwater moleule, wealso

present stati-exhange DCS in the (2-5)-eV energy

rangebeause,in thisase,polarizationeets arenot

soimportant,sinetheexisting long{rangepermanent

dipole moment potential is known to dominate

low-energy satteringfor thissystem [14℄. Wealsodo not

inludeinthisalulationanyorretiontoaountfor

the dipole potential ofthe polarmoleules, exeptfor

theH

2

X (X=O,S, Se, Te) moleules andTMAs,for

whih we have ombined the Shwinger multihannel

methodwithaBornlosureproedure[7,8℄. Themain

ontribution of this longrange potential to the

dier-ential ross setions is at very low sattering angles,

where the ontribution of high partial waves is more

important.

III Results and Disussion

III.1 CF 4 , CCl 4 , SiCl 4 , SiBr 4

, and SiI

4

Ourelastidierentialrosssetions(DCS)for

ele-tronsatteringfromCF

4 , CCl 4 ,SiCl 4 ,SiBr 4

, andSiI

4

fromRef.[4℄arepresentedinTablesIItoVI,alongwith

(3)

areinverygoodagreementwithavailableexperimental

data [15℄ (see Ref. [4℄). To ourknowledge, exept for

CF

4

,therearenootherDCSforthesemoleulesinthe

literatureforomparison.

InTablesVIIandVIIIweshowourintegralelasti

rosssetionsandourunpublishedmomentumtransfer

rosssetionsforCF

4 ,CCl

4 ,SiCl

4 ,SiBr

4

,andSiI

4 .

III.2 Fluoromethanes, Chloromethanes

and Chlorouoromethanes

Inthissubsetionwepresenttableswithour

dier-entialrosssetionsofRef.[5℄forCH

3 FCH

2 F

2 ,CHF

3 ,

CH

3 Cl, CH

2 Cl

2 , CHCl

3 , CF

3 Cl, CF

2 Cl

2

, and CFCl

3

and new results for many other eletronimpat

ener-gies. Asanillustration,Fig.1omparesourdierential

ross setionsfor CF

2 Cl

2 , CF

3 Cl, CH

3

Cl, andCH

2 F

2

at seleted impat energies with the experimental

re-sultsofRef.[16,17,18,19℄respetivelyandthe

agree-ment is very good even for impat energies as low as

5eV.Although notshownhere,ourresultsforCH

3 Cl

are also in good agreement with the results obtained

with the omplex Kohn variational method [20℄ (see

Ref. [5℄).

Figure 1. Our dierential ross setions for seleted

moleulesandenergiesomparedtoexperimentaldata.Full

lines: ourtheoretialresults;triangles: CF

2 Cl

2

experimen-taldata[16 ℄;diamonds: CF

3

Clexperimentaldata[17 ℄;

ir-les: CH

3

Clexperimentaldata[18 ℄;squares: CH

2 F

2

exper-imentaldata[19 ℄.

InFigs. 2and 3weompare dierential ross

se-tions for uoromethanes and hloromethanes

respe-tively,bothat10eVimpatenergy. Wealsoinludeour

resultsforCF

4 ,CCl

4

andCH

4

[1℄. Wehaveshown

pre-viously [5℄ that the moleules with largerouteratoms

present more osillations in the dierential ross

se-tions than the other ones espeially for high impat

energies. This behaviorindiates that the presene of

largerouteratomsinreasestherangeofthepotential,

andfavorstheouplingofhigherpartialwaves. Figs.2

and3showthatthis behaviorisalsopresentforlower

impatenergies,althoughlessevident.

Figure2. DierentialrosssetionsforCHnF4

n

at10eV.

Fullline: CF4[4 ℄;longdashedline: CF3H;dot{dashedline:

CF2H2;shortdashedline: CFH3;dottedline: CH4 [1 ℄.

Figure3.DierentialrosssetionsforCH

n Cl

4 n

at10eV.

Full line: CCl

4

[4℄; long dashed line: CCl

3

H; dot{dashed

line: CCl

2 H

2

; short dashed line: CClH

3

; dotted line:

CH

4 [1 ℄.

TablesIX to XVII show our dierential ross

(4)

CF

3 Cl,CF

2 Cl

2

,andCFCl

3

respetively,forseveral

im-patenergies.

III.3 XH

3

Y (X = C, Si, Ge, Sn; Y = F,

Cl, Br, I)

In this subsetion we present aomparativestudy

ofdierentialandmomentumtransferrosssetionsfor

CH

3 F, CH

3 Cl, CH

3 Br, CH

3 I, SiH

3

Cl, SiH

3

Br, SiH

3 I,

GeH

3

Cl, GeH

3

Br, and SnH

3

Br. To our knowledge,

there are no theoretial nor experimental results for

these moleules in the literature for omparison,

ex-eptforCH

3

F[19℄andCH

3

Cl[18,20℄,asdisussedin

SubsetionIII-2above.

Fig. 4 ompares our dierential ross setions at

20eVfor CH

3

Brand CH

3

I to ourpreviousresultsfor

CH

3

F, and CH

3

Cl [5℄. The dierential ross setion

for CH

3

Fis signiantlydierent from the resultsfor

theothermoleules. CH

3 Cl,CH

3

Br,andCH

3

Ipresent

verysimilar dierential ross setions, with small

dif-ferenesonlyintheforwardandbakwarddiretions.

Figure4. Dierentialrosssetionsfor CH3Y (Y=F,Cl,

Br,I)at20eV.Fullline: CH3F[5 ℄;dottedline: CH3Cl [5 ℄;

dashedline: CH3Br;dot{dashedline: CH3I.

InFig.5weompareourdierentialrosssetions

at 20 eV for SiH

3

Cl, SiH

3

Br, and SiH

3

I (top graph)

and GeH

3

Cl, and GeH

3

Br(bottom graph). Forthese

twosets of moleules theperipheral atoms have little

inuene on the dierential ross setions, exept for

highsatteringangles.

Fig.6showstheinueneoftheentralatomonthe

dierentialrosssetions at 20eV. Thethree pitures

show that dierententral atoms produelittle

dier-enes in therosssetions,exept forCH

3

I andSiH

3 I

(bottomgraph). Inthisase,thepreseneofsilionin

themoleuleinsteadof arbonintroduesundulations

intherosssetions,whih areharateristiofhigher

Figure5. Dierentialross setionsat20eV. Top: results

for SiH3Y (Y=Cl, Br, I). Full line: SiH3Cl; dotted line:

SiH3Br;dashedline: SiH3I.Bottom: resultsforGeH3Y (Y

=Cl,Br). Fullline: GeH3Cl; dot{dashedline: GeH3Br.

Figure6. Dierentialrosssetionsat20eV.Topleft:

re-sultsforXH

3

Cl(X=C,Si,Ge). Fullline: CH

3

Cl; dashed

line: SiH3Cl; dot{dashed line: GeH3Cl. Topright: results

for XH3Br (X = C, Si, Ge, Sn). Full line: CH3Br;

dot-ted line: SiH3Br; dashed line: GeH3Br; dot-dashed line:

SnH3Br. Bottom: resultsforXH3Cl(X=C,Si). Fullline:

CH3Cl;dashedline: SiH3Cl.

TablesXVIIIto XXV presentourdierentialross

setions for all the XH

3

Y{type of moleules we have

(5)

Ta-rosssetions.

III.4 X

2 H

6

(X=C, Si, Ge)

Elasti integral and dierential ross setions for

this family are presented in Tables XXVII, XXVIII

and XXIX. These moleules were subjet of previous

studiesbyourgroupusingtheSMCPPmethod[6℄.

III.5 B

2 H

6

and Ga

2 H

6

B

2 H

6

isusedasgaspreursorinproessesof

hemi-alvapordeposition[21℄andwasthesubjetofprevious

studies[6℄. Inthissubsetionwepresenttableswithour

previousresultsfor B

2 H

6

[6℄ andelasti eletron

sat-teringresultsforGa

2 H

6

forthersttime. Fig.7shows

elastiintegralrosssetionforB

2 H

6

andGa

2 H

6 from

5eV to30eV. Therosssetionfor Ga

2 H

6

liesabove

the result for B

2 H

6

, and presentsno struture in this

energyrange. TheintegralrosssetionforB

2 H

6 shows

averybroadfeaturearound10eV.

Figure 7. Elasti integral ross setions for B

2 H

6 and

Ga

2 H

6

. Solidline: Ga

2 H

6

;dashedline: B

2 H

6 .

Fig.8omparesdierentialelastirosssetionsfor

these two moleules for seleted energies. These DCS

arealsoshowninTablesXXXandXXXIalongwithour

results for other eletron impat energies. The DCS

for these two moleules are dissimilar, the results for

Ga

2 H

6

beingrihin osillationsdue tohigher angular

momentum ouplingespeially at higherimpat

ener-Figure 8. Dierential elasti ross setions for B2H6 and

Ga2H6at5eV,10eV,25eV,and30eV.Solidlines:Ga2H6;

dashedlines: B

2 H

6 .

III.6 H

2

X (X = O, S, Se, Te)

Inthissubsetion wepresentourelastidierential

rosssetions (DCS)forH

2

X(X=O,S, Se,Te)from

Ref.[7℄(TablesXXXIItoXXXV).Thelong{range

po-tentialduetothepermanentdipolemomentofthe

tar-gets(H

2

OandH

2

S)wasdesribedthroughaBorn

lo-sureproedure.OurDCSforH

2

OandH

2

Sareingood

agreementwithavailableexperimentaldataand

previ-ousalulations(seeRef.[7℄). Tableswithourintegral

rosssetionsandmomentumtransferrosssetionsfor

thesemoleulesareshownin Ref.[7℄.

III.7 As(CH

3 )

3

{ Trimethylarsine

(TMAs)

Thetrimethylarsinemoleuleanbefoundin

innu-merable dierent onformations, sine the three CH

3

groupsanrotatearoundtheAs{Chemialbond. In

our previous work on elasti eletron sattering from

TMAs [8℄wehaveshownthat, althoughthedierene

betweenthetwoseletedonformations(referene

on-formation(RC)andlowestenergyonformation(LEC))

issimplytherelativepositionsof thehydrogenatoms,

theeletronsatteringrosssetionsaresensitivetothe

onformationofthetargetforimpatenergiesbetween

4eV and15eV. Inthisenergy range,one should

per-formanaverageoverallpossibletarget onformations

in order to ompare alulated ross setions and

ex-perimentaldata. Above15eV,however,thereseemsto

benorelevantonformationaleet.

TableXXXVI presentsourdierentialelastiross

setionsand Table XXXVII showsour elastiintegral

(6)

III.8 N

2

O, and O

3

In this subsetion we present elasti rosssetions

for N

2

O [9℄ and O

3

[10℄ moleules. These moleules

were subjetofpreviousstudies. ForO

3

wehaveused

the rst Born approximation to orret the

dieren-tialrosssetionsatsmallsatteringanglesduetothe

inuene of the moleular permanent dipole moment.

For N

2

O we have not used this proedure. In

Ta-blesXXXVIII and XXXIXwepresentourdierential,

integralandmomentumtransferrosssetionsforN

2 O

andO

3

respetivelyatseletedenergies.

Tables

All tables are available only in the eletroni

version of the paper on the world wide web at

http://www.sbf.if.usp.br/bjp/Vol31/Num1/.

Aknowledgments

A.P.P.N.aknowledgessupportfromFunda~aode

AmparoaPesquisadoEstadodeS~aoPaulo(FAPESP).

M.H.F.B.,L.G.F.andM.A.P.L.aknowledge

par-tial support from Brazilian agenyConselho Naional

de Desenvolvimento Ciento e Tenologio (CNPq).

M. T. N. V. aknoledges both FAPESP and CNPq.

OuralulationswereperformedatCENAPAD-SP,at

CENAPAD-NEandat CCE-UFPR.

Referenes

[1℄ M. H. F. Bettega, L. G. Ferreira, and M. A. P.Lima,

Phys.Rev.A47,1111 (1993).

[2℄ M. Hayashi \Swarm Studies and Inelasti

Eletron-Moleule Collisions", edited by L. C. Pithford,B. V.

MKoy,A.Chutjian,andS.Trajmar,NewYork,p.167

(1987).

[3℄ See, for example, L. G. Christophorou, J. K. Oltho,

and M. V. V. S.Rao, J. Phys. Chem. Ref. Data, 25,

1341(1996);L.G.Christophorou,J.K.Oltho,andM.

V.V.S.Rao,J.Phys.Chem.Ref.Data,26,1(1997);L.

G.Christophorou,J.K.Oltho,andY.Wang,J.Phys.

Chem.Ref.Data,26,1205 (1997).

[4℄ M. T.doN.Varella,A.P.P.Natalense, M.H. F.

Bet-tega,L. G.Ferreira,andM.A.P.Lima,Phys.Rev.A,

aeptedforpubliation(1999).

[5℄ A. P. P. Natalense, M. H. F. Bettega, L. G.Ferreira,

andM.A.P.Lima,Phys.Rev.A,59,879(1999).

[6℄ M. H.F.Bettega,A.J.S.Oliveira,A.P.P.Natalense,

M. A.P.Lima,L. G.Ferreira,Eur.Phys.J.D. 3,291

(1998).

[7℄ M. T.doN.Varella,M.H.F.Bettega,M. A.P.Lima,

and L.G.Ferreira, J.Chem.Phys.aeptedfor

publi-ation(1999).

[8℄ M.T.doN.Varella,L.G.Ferreira,andM.A.P.Lima,

J.Phys.B32,2031 (1999).

[9℄ S.M.S.daCosta andM.H. F.Bettega, Eur.Phys.J.

D3,67(1998).

[10℄ M.H.F.Bettega,M.T.doN.Varella,M.A.P.Lima,

andL.G.Ferreira,J.Phys.B31,4419 (1998).

[11℄ M.A.P.Lima,L.M.Bresansin,A.J.R.daSilva,C.

Winstead,andV.MKoy,Phys.Rev.A41,327(1990).

[12℄ G.B.Bahelet,D.R.Hamann,andM.Shluter,Phys.

Rev.B26,4199(1982).

[13℄ M. H.F.Bettega,A. P.P.Natalense, M.A.P.Lima,

and L. G. Ferreira, Int. J. Quantum Chem., 60, 821

(1996).

[14℄ T. N. Resignoand B. H. Lengseld,Z. Phys.D 24,

117(1992).

[15℄ L. Boesten, H. Tanaka, A. Kobayashi, M. A. Dillon,

andM.Kimura,J.Phys.B25,1607(1992).

[16℄ A.Mann,andF.Linder,J.Phys.B,25,1633(1992).

[17℄ A.Mann,andF.Linder,J.Phys.B,25,1621(1992).

[18℄ X.Shi,V. K.Chan,G.A.Gallup, andP.D. Burrow,

J.Chem.Phys.,104,1855(1996).

[19℄ H. Tanaka,T.Masai, M. Kimura,T.Nishimura,and

Y.Itikawa,Phys.Rev.A56,R3338(1997).

[20℄ T.N.Resigno,A.E.Orel,andC.W.MCurdy,Phys.

Rev.A,56,2855,(1997).

[21℄ I.Konyashin,J.Bill,andF.Aldinger,Chem.Vap.

Imagem

Figure 3. Dierential ross setions for CH
Fig. 4 ompares our dierential ross setions at
Figure 7. Elasti integral ross setions for B

Referências

Documentos relacionados

deposition ooling is ritial and the high pressure of oxygen during ooling is favorable..

toroidal ows indued by Alfv en waves on transport proesses in the edge of elongated tokamak..

we nd innitely many more new growing modes for open and losed universes.. The large sale struture of the universe

orretions perturbatively and show that at all orders the Casimir energy remains zero, sine eah=. term in the power series in

present all the experimentally known eletri dipole atomi transitions and energy levels for the O..

This paper reports the analysis of modal normalized frequeny ut-o of oaxial bers having four..

in some oordinate systems, like ylindrial, spherial.. and prolate

Disordered Magneti Media: Loalization Parameter,.. Energy T ransp ort V eloity and