• Nenhum resultado encontrado

Braz. J. Phys. vol.31 número1

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.31 número1"

Copied!
6
0
0

Texto

(1)

Multiple Sattering of Eletromagneti Waves in

Disordered Magneti Media: Loalization Parameter,

Energy Transport Veloity and Diusion Constant

F.A.Pinheiro 1

, A.S.Martinez 2

; and L.C.Sampaio 1

1

CentroBrasileirode PesquisasFsias/CNPq,

RuaDr.XavierSigaud,150,CEP22290-180, RiodeJaneiro,RJ,Brazil

2

FauldadedeFilosoa,Ci^eniase Letrasde Ribeir~aoPreto,Universidadede S~aoPaulo,

Av.Bandeirantes 3900,CEP14040-901,Ribeir~aoPreto,SP,Brazil

Reeivedon16August,2000

Wereviewsomeof ourreent resultsonerningthesingleandmultipleeletromagnetisattering

bymagnetispherialpartiles. Forasingleeletromagnetisatteringweshowthatthemagneti

ontributionalters, whenomparedto nonmagnetisattering, thebehavior oftheross setions

andmeanosineofthesatteringangle(hosi). Forferromagnetipartiles,resonanesmayour

eveninthesmall-partilelimitwhenthepartileradiusismuhsmallerthanthewavelength.The

resonanesinreasetheross-setionswhilehosiisdiminished,andevenmaybeomenegative.

Several quantities suh the Ioe-Regel parameterfor loalization are alulated for the multiple

satteringregime. Weshowthatmagnetisatteringfavorstheobservationofloalizationof

ele-tromagneti wavesin threedimensions. Further,this is also veried for dynamial experiments,

whereweshowthatthediusiononstantanbeverysmall. Sinethemagnetipermeabilityofthe

satterersanvarysigniativelyaroundtheCurie-Weissritialtemperature,experimentsshould

bedone onthemirowaveregionandthe satterersshouldbesoft ferrites. Some aspetsof suh

experimentarepresented.

I Introdution

Theinterestinstudyingthepropagationof

eletromag-neti (EM) wavesin random media hasexperiened a

onsiderableinreaseoverthelast years. Afterthe

ob-servation of the oherent baksattering eet,[1℄ the

optial ounterpart of eletroni weak loalization, it

has beensoon realized that many eletroni eets in

ondensedmatterphysishavetheiranaloginEMwave

systems. Amongthese, arethephotoniHalleet,[2℄

theanisotropilightdiusion[3℄andtheloalizationof

light.[4℄Althoughthesephenomenaharaterizealose

analogy between EM waves and eletrons, dynamial

situationsonerningEMandeletronpropagation

re-vealfundamentaldierenesbetweenthem. [5℄Infat,

van Albada et al.[6, 7℄ have shown that, the energy

transportveloity v

E

, whih haraterizesthe

dynam-is of lightdiusion through the disordered media, is

not equalto thephase veloity v

p

as in theeletroni

ase. This is beausea orretion fator in v

E

(asso-iatedwiththestoredEMenergyinsideeahsatterer

due to Mie resonanes) should be taken into aount

in the optial ase, in ontrast to eletroni systems

sinefor eletron-impuritysatteringthisorretionis

However, in all multiple sattering phenomena

re-ported so far, inluding the destrution of the

o-herent baksatteringeet by magneto-optialative

materials,[8,9℄itisassumedthatthesatterersare

non-magneti. The presentpaperis thus devotedto

inves-tigate some aspets of single and multiple sattering

and diusion of EM waves through magneti random

media.[10,11,12℄

This paper is organized as follows. In Se. II we

treat both analytially and numerially the EM

sat-tering by a single magneti satterer, assumed to be

asphere. It is importantto point that several of the

mainpropertiesofmultiplesattering inmagneti

me-diaareessentiallydueto unusualfeatures whih

har-aterizesmagnetisinglesattering,suhaspreferential

baksatteringandresonaneeetseveninthe

small-partilelimit. InSe.III these resultsonerning

sin-glesatteringwillbeinsertedinthemultiplesattering

ontext,where wewill investigate theonsequenesof

theintrodutionofmagnetisatterersinthe

loaliza-tion parameter and oherent baksattering eet, in

theenergytransportveloityandin thediusion

on-stant. We haveshown that the presene of magneti

(2)

stant. Se. IV is devoted to the disussion of some

experimental aspets and possible appliations of our

results. Exploring the fat that the magneti

perme-abilityof magneti satterersis stronglydependentof

anexternalmagnetieldH

ext

andtypiallyfollowsthe

Curie-Weisslaw,wesuggestthatboththeloalization

parameterand thediusion onstantanbetuned by

varying either H

ext

or thetemperature. Finally, some

ommentsandonlusionsare addressedinSe.V.

II Single Sattering

In order to investigate the inuene of magneti

sat-terersontheloalizationparameterk`

(wherekisthe

wavenumberand `

is the transport meanfree path),

it is essential to onsider the single sattering of EM

waves by magneti partiles. In single Mie

satter-ing problem, aplane wave with wavelength is

sat-tered by a homogeneous magneti sphere of radius a,

omplexmagnetipermeability

s

andomplexeletri

permittivity

s

, leading to a omplexrefration index

n s =( s s ) 1=2

. Themediumhasarealeletri

permit-tivity

m

(itdoesnotabsorbnoremitlight)andvauum

magnetipermeability

0

, whihleadsto areal

refra-tive index n

m = ( m m ) 1=2

. The relative refrative

index ism=n

s =n

m =()

1=2

, where= 0 +{ 00 and = 0 +{ 00

are theomplexrelativeeletri

permit-tivity andtheomplexrelativemagneti permeability,

respetively. Both the satterersand the medium are

onsideredtobenonmagneto-optialative.

Although in standard texts on EM sattering [13,

14, 15℄therelativemagneti permeabilityis usually

assumedtobeunitary,thisisnolonger validfor

mag-neti partiles. In ferromagneti materials an

as-sume arather large spetrum ofvalues. For instane,

foranikelbulkatroomtemperature,isoftheorder

of10 6

forinidentradiationinthemirowaverange.[16℄

The quantities of interest in single sattering are

thetotal ross-setion andanisotropyfatorhosi,

whih an be expressed in terms of the Mie

oeÆ-ientsa

n andb

n

. [13,14,15℄Inthesmall-partilelimit

(ka1), wehave,in thelowestorderin ka,

a 1 = {(ka) 3 3 ka 0 1

(mka) 2m ~

1 (mka)

ka 0

1

(mka)+m ~

1 (mka) (1) b 1 = {(ka) 3 3 ~ mka 0 1 (mka) 2 1 (mka) ~ mka 0 1 (mka)+ 1 (mka) ; (2)

where m~ =m==(=) 1=2 and n (z)and 0 n (z)are

the Riatti-Bessel funtion and its derivative with

re-spettotheargument,respetively. It isimportantto

stress thefat that small-partile limitdoesnotmean

pointlikesatterers.

ToobtaintheRayleighlimit,onehasalsotoensure

that thesize ofthe sattererissmall ompared tothe

toa

1

=(1 )=(2+)andb

1

=(1 )=(2+),where

= 2{(ka) 3

=3.[17℄Notiethat allthedependene on

isintheb

1

term,whih vanishesin thenonmagneti

ase. Inthisase,theleadingtermintheb

1

expansion

isoftheorderof(ka) 5

. Theanisotropyfatorinterms

oflowestorderinkaishosi=<(a

1 b 1 )=(ja 1 j 2 +jb 1 j 2 ).

Notiethatinmagnetisatteringhosidoesnot

van-ish, inontrasttothenonmagnetiase.

It is important to point out that, when jj 1,

whihistheaseofferromagnetimaterials,the

small-partile limit must be treated in a dierent form. In

this ase, thelimitjmjka1 mustbeonsidered

us-ing

n

(z) os[z (n+1)=2℄ in Eqs. (1), leading

to: a 1 = {(ka) 3 3

p(m;ka)+2m~

p(m;ka) m~

(3) b 1 = {(ka) 3 3 ~

mp(m;ka)+2

~

mp(m;ka) 1

; (4)

where p(m;ka) = katan(mka). Dierently from the

Rayleigh limit, the a

1

term also has a magneti

on-tribution forlargevaluesofjj. Theperiodifuntion

tan(mka), whih depends on , is responsiblefor

res-onanes in hosi. Furthermore,these osillationsare

due to the real part of m, sine tan({x) = {tanh(x)

whihisnonperiodi.

Toanalyzeinmoredetailtheproblemofsingle

mag-neti sattering, we numeriallyalulate the valueof

hosiasafuntionofthesizeparameterkafor

diele-tri 00

= 0satterers for three dierent valuesof the

realpartoftherelativemagnetipermeability 0

,asis

exhibited in Fig.1 (for details, see Ref. [10℄). In the

small-partilelimit(ka1),thesatteringisisotropi

(hosi=0) fornonmagneti satterers(=1). The

appearane of usual Mie resonanes in hosi is

ob-served aska inreases. This situation hanges

drasti-ally when magneti satterersareonsidered. Notie

that EMsatteringbymagneti partilesis

harater-ized by the nonvanishing value of hosi even in the

small-partile limit, as it an be seen by 0

= 2 and

0

=100urves. Furthermore,weobservethepresene

ofresonanephenomenaforlargevaluesofin hosi

even in thesmall-partilelimit, whih isabsentin the

nonmagneti ase. This isin agreementwithour

ana-lytialresult[seeEqs. (2)andommentsthatfollow℄.

To further investigate EM sattering by magneti

partiles inthe small-partilelimit, inFig.2hosiis

exhibited as funtion of boththe real ( 0

) and

imagi-nary ( 00

) part of for ka = 0:63. hosi has an

os-illatorydependene on 0

, onrming thepreseneof

resonanephenomena. As 0

inreases,therealpartof

malsoinreases. Alargevalueofmleadstothe

build-ingupofstandingwavesinsidethesatterer,whihare

(3)

Figure 1. Thesattering anisotropyfator hosi,plotted

as a funtionof the size parameterka for three valuesof

the real part of the relative magnetipermeability:

non-magnetiase 0

=1(dashedurve), 0

=2(dottedurve)

and 0

=100(solidurve). Theotherparametersusedare:

0

=1:4161, 00

=0and 00

=0. [reprinted fromPinheiro,

Martinez andSampaio,Phys. Rev. Lett. 84, 1435(2000),

withpermissionfromtheAmerianPhysialSoiety℄.

Figure 2. hosi plottedas afuntion ofboth thereal 0

(solidurve)andtheimaginary 00

(dashedurve)partsof

in the small-partile limit ka = 0:63 and in the

large-partile limit ka= 63(inset). Therelative dieletri

on-stantis= 0

=1:4161. [reprintedfromPinheiro,Martinez

and Sampaio,Phys. Rev. Lett. 84, 1435(2000), with

per-missionfromtheAmerianPhysialSoiety℄.

values of , meaning a predominant bakward

sat-tering. This preferential baksattering in the

small-partile limit,whih isquiteunusual inEMsattering

bynonmagnetipartiles,isduetothesigniant

on-tribution given by magneti dipole radiation in

mag-netisattering.[17℄Ontheotherhand,notie the

ab-seneofresonaneswhenhasapureimaginaryvalue:

hosiisaveryslowlyvaryingfuntion of 00

. We

nu-meriallyobtainthelimitingvaluehosi 0:3when

00

! 1. This means that a high level of magneti

dissipation of energyontributes onlywith aonstant

negativevaluetohosiin thesmall-partilelimit. In

the inset of Fig. 2 hosi is plotted as a funtion of

0

and 00

for a size parameter ka = 63, in the

so-resonanesfor the realmagneti permeability ase,as

expeted,but thesatteringis alwayspreferentiallyin

theforwarddiretion,i.e.,hosi>0.

III Multiple Sattering

An important quantity in multiple sattering is the

meanlengththat the wavevetorloosememoryof the

inidenediretion. Thislength isgiven bythe

trans-port mean free path `

= `=(1 hosi), where ` =

1=(

t

)isthemeanfreepath,isthenumberof

par-tilepervolumeand

t

isthetotalsatteringross

se-tion. Theloalization(Ioe-Regel)parameterisdened

ask`

andstrongloalizationisexpetwhenk`

1.

III.1 Loalization parameter

In the following, using the above results

onern-ing single magneti sattering, we numerially

alu-late1=(k`

),whih isproportionalto thewidth ofthe

baksattering one, in a magneti medium for both

the small and large partile limits. We only onsider

the salar aspet of light propagation. In Fig. 3 we

showthe dependene of1=(k`

) onboth 0

and 00

in

the small-partile limit for dieletri satterers.

No-tie the global derease of the loalization parameter

induedby the presene of magneti (6= 1)

satter-ers. Furthermore, while 00

gives an almost onstant

ontributiontotheonewidth, 0

ontributestoafast

osillation. It is alsoimportant to point outthe wide

spetrumofvaluesinvolvedinthisosillation: theone

width an vary over three orders of magnitude when

jjvariesfrom1to100. Thisinterestingpatternofthe

angularproleofthebaksatteringoneisessentially

duetothefatthatthesatteringanisotropyan

osil-latebetweenpositiveandnegativevaluesasvaries.

Figure3.Theinverseoftheloalizationparameter1=(k`

),

proportionaltothebaksatteringonewidth,plottedasa

funtionofboth 0

(solidurve)and 00

(dashedurve)in

thesmall-partilelimit ka=0:63 for= 0

=1:4161. The

wavelengthis =633 nm and the onentration of

sat-terers = 0:01. [reprinted from Pinheiro, Martinez and

(4)

permis-Theosillatory behaviorfor realvaluesof isalso

present in the large-partile limit (see Fig. 4). Here,

notonlyweobserveaglobaldereaseintheloalization

parameter,whenomparedwiththenonmagnetiase,

but alsothefat that k`

dereases asboth 0

and 00

inreasesuntilitahievesasaturationminimumvalue.

Figure4.Theinverseoftheloalizationparameter1=(k`

)

plottedasafuntionofboth 0

(solidurve)and 00

(dashed

urve)inthelarge-partilelimitka=63for= 0

=1:4161.

The wavelength is = 633 nm and the onentration of

satterers = 0:01. [reprinted from Pinheiro, Martinez

andSampaio,Phys. Rev. Lett. 84,1435 (2000),with

per-missionfromtheAmerianPhysialSoiety℄.

III.2 Energy transport veloity and

dif-fusion onstant

The unusual resonant behavior exhibited by EM

sattering by magneti partiles in the small-partile

limitdisussed in Setion II hasalso important

impli-ationsinthedynamisofthediusionproess. Infat,

thediusion onstant D=v

E `

=3of EMpropagation

is strongly aeted in the presene of magneti

sat-terers, notonlythroughthe transport meanfreepath

`

, as disussed in Setion 3.1, but also through the

\transportveloity"v

E

. Thefatthatsinglesattering

bymagnetipartilesexhibitsaharateristiresonant

behavior,eveninthesmall-partilelimit,willintrodue

anextra timedelay in EMpropagation,ausing a

de-rease ofv

E

ifompared tothe nonmagnetiase. To

solve a disrepany between stationary and dynami

experiments, van Albada et al.,[6, 7℄ have developed

a salar theory using the low-density approximation,

whihtakesintoaountarenormalizationmehanism

ofD forlassialwaves. Aording tothis theory,the

transport veloity v

E

for spherialdieletriMie

sat-terersisgivenby:[7℄

v

E

0 =

0

v

p "

1+ 3f

4x 2

1

X

n=1

(2n+1) d(

n +

n )

dx

fC

2 #

1

;

(5)

where

0

istheveloityofpropagationin thevauum,

f isthepakingfrationandv = =(1+fC) 1=2

isthe

phase veloity. The phase angles

n

(ka) and

n (ka)

are dened in terms of the Mie sattering oeÆients

a

n

(ka)andb

n

(ka).[13℄TheparameterC(ka)isdened

aordingto:

C(ka)= 3

2(ka) 3

1

X

n=1 Im(a

n +b

n

): (6)

Figure 5. The energy transport veloity vE (normalized

by

0

), plotted as a funtion of ka in the small-partile

limit for three values of the (real) magneti permeability:

= 1 (dashed urve), = 10 3

(bold solid urve) and

= 10 5

(solid urve). The paking fration is f = 0:36

and= 0

=7:29. [reprinted fromPinheiro,Martinezand

Sampaio, Phys. Rev. Lett. ?? ,withpermissionfromthe

AmerianPhysialSoiety℄.

FromEqs. (2) and(3), wehaveanalytially

alu-lated v

E

forferromagnetiMiesatterersinthe

small-partilelimit,where resonanephenomenaarepresent

in a singular and unusual way. In Fig. 5, v

E is

ex-hibited as a funtion of the size parameter ka in the

small-partile limitforthreedierentvaluesof fora

pakingfrationf =0:36,thesameusedinexperiments

with nonmagneti satterersTiO

2

.[6℄Foromparison,

the urve =1 (nonmagneti ase), alulatedusing

thewell-knownexpressionsfora

1 andb

1

intheRayleigh

limit,[13,14,15℄isalsoshown. Notiethattheabsene

ofresonanesinthenonmagnetiase(=1)produes

analmostonstantvalueofv

E

. Thissituationhanges

drastiallywhenmagnetisatterersaretakeninto

a-ount. Inthisase,v

E

exhibitssharpdropseveninthe

small-partile limit, in lear ontrast to the

nonmag-neti ase where these drops only our in the

inter-mediateregime (ka1)andin thelarge-partilelimit

(ka1).[7℄Inaddition,notiethatv

E

anevenvanish

forsomevaluesofka. AspointedoutbyvanAlbadaet

al.,[6,7℄thesesharpdrops inv

E

areessentiallydueto

resonanes in thesatterers ross-setion,whih ause

thebuildingupofstandingwavesinsidethesatterers,

(5)

The inuene of the presene of magneti

satter-ers on the diusion onstant D in the small-partile

(ka = 0:01)limit an be seen in Fig. 6, where D, v

E

and `

areexhibited asafuntion oftherelative

mag-neti permeability . Here one an notie a striking

onsequeneoftheintrodutionofmagnetisatterers

in thedynami properties ofEM propagationthrough

disordered media: the presene of osillations in the

diusion onstantD. Forsomevaluesof, in

partiu-lar,oneanobservethesituationofvanishingdiusion

(D =0) of eletromagneti propagation. Inaddition,

it isinteresting topoint outthedampingin the

diu-siononstantosillationsinduedbytheinreaseofthe

valuesof.

Figure6. Thetransportveloityv

E

(solidurve),transport

meanfreepath`

(dashedurve)anddiusiononstantD

(boldsolidurve),plottedasafuntionofthe(real)(for

di-eletri ferromagneti satterersinthe small-partile limit

(ka = 0:01). In orderto exhibit dimensionlessquantities

v

E , `

and D are multiplied by 1=

0

, 3f=4aand 3f=4a

0 ,

respetively. For omparison, vE is multiplied by the

fa-tor 107. The other parameters used are: 0

= 7:29 and

f=0:36. [reprintedfromPinheiro,MartinezandSampaio,

Phys. Rev. Lett. ?? ,withpermissionfromthe Amerian

PhysialSoiety℄.

IV Experimental Aspets

Letusnowbrieydisusspossiblesituationswhereour

results ould be experimentally veried. Most of the

soft ferromagnets and ferrimagnets display high

mag-netipermeabilitytensorwithbeingstrongly

depen-dentonanexternalappliedmagnetieldH

ext andon

the temperature T, i.e., = (H

ext

;T). These fats

makeallthementionedpropertiesonerningboth

sin-gle and multiple sattering of EM waves by magneti

partiles tunable mehanisms: they an be ontrolled

bythevariationofanexternalparameter,suhasH

ext

or T. For instane, soft ferrites present large values

MHzandwithoutloss,whihinturnanbeeasily

on-trolled by the appliation of an external d magneti

biaseld.[17℄ Forthemajority of ferrites,in high

fre-quenies, beomes very small, whih turns the

uti-lizationofthistunablesatteringmehanismfairly

dif-ult at optial frequenies. This kind of restrition

tothemagnetipermeabilityhavealsobeenemployed

previously in other ontexts involving the interation

between eletromagneti radiation and magneti

ma-terials, suh as reported by Sigalas et al., who have

reentlydisussedthepossibilityofdesigningphotoni

rystalswithsoftmagnetimaterials.[19℄

The magnetipermeability of the vast majority of

ferritestypiallyfollowstheCurie-Weisslawabovethe

ritialtemperature,i.e., /(T T

)

1

.[17℄Thus, a

preise tuning of an be performed in this

temper-ature range. As a result, the utilization of magneti

satterersfollowing theCurie-Weiss suseptibility law

oersthepossibilitytotunethevalueofboththe

loal-izationparameterk`

andthediusion onstantD by

varying thesample temperature. In thelarge-partile

limit,inpartiular,thisfatouldbeexploredin

alter-nativeexperimentalinvestigationsofAnderson

loaliza-tionofEMwavessine,asthetemperatureapproahes

the Curie-Weiss ritial temperature, one an set k`

toaminimumvalue(seeSe. III).

Finally, we suggest that the possibility of

ontrol-lingtheosillationsin thediusiononstant(Se.III)

oersthetheoretialbasisfortheimplementationofa

magneto-optialdevie,abletoontrolthetransmission

ofEMwavesthroughdisorderedmagnetimedia. Suh

adeviewouldoperateasanoptial swithontrolled

by either the temperature orby an external d

mag-netield (fordevie appliationsexploringthe

trans-port properties of EM waves through random media

see,forinstane,Ref. [18℄).

V Conlusions

Summarizing,wehavestudiedtheinueneofmagneti

satterersonsingleand multipleeletromagneti

sat-tering,andtheirimpliationsintheoherent

baksat-tering eet, loalization parameter, energy transport

veloity and diusion onstant. We have shown that,

inthesmall-partilelimit,notonlysinglesattering

ex-hibitsaforward-bakwardspatialasymmetry,but also

anunusualresonaneeet. Inmultiplesattering

on-text,these unusualaspetsonerningsinglemagneti

satteringleadtoseveralinterestingonsequenes,suh

as the global derease of the loalization parameter,

sharp drops in the energy transport veloity even in

the small-partile limit and osillations in the

diu-siononstant. Furthermore,exploringthefatthatthe

magnetipermeabilityofmagnetisatterersisstrongly

dependentonanexternalmagnetieldH

ext

(6)

typ-that both theloalizationparameterand thediusion

onstant an be tuned by varying either H

ext or the

temperature.

Aknowledgments

We thank I. S. Oliveira and L. G. Guimar~aes for

fruitful disussions. This work was supported by the

BrazilianageniesCAPESandCNPq.

Referenes

[1℄ Y.KugaandA.Ishimaru,J.Opt. So. Am.A8,831

(1984);M.P.vanAlbadaandA.Lagendijk,Phys. Rev.

Lett. 55, 2692 (1985); P. E. Wolfand G.Maret, ibid.

55,2696 (1985).

[2℄ G.L.J.A.RikkenandB.A.vanTiggelen,Nature381,

54(1996).

[3℄ B.A.vanTiggelen,R.MaynardandA.HeiderihPhys.

Rev. Lett.77,639(1996);H.StarkandT.C.Lubensky,

ibid.77,2229(1996).

[4℄ D.S.Wiersma,P.Bartolini,A.LagendijkandR.

Righ-ini,Nature390,671(1997).

[5℄ B.A.vanTiggelenandA.Lagendjik,Phys. Rep.270,

143(1996).

[6℄ M.P.vanAlbada,B.A.vanTiggelen,A.Lagendijkand

A.Tip,Phys. Rev. Lett.66,3132 (1991);

[7℄ B. A. van Tiggelen, A. Lagendijk, M. P. van Albada,

andA.Tip,Phys. Rev.B45,12233(1992).

[8℄ R.LenkeandG.Maret,Phys. Sripta49,605(1993).

[9℄ A.S.MartinezandR.Maynard,Phys. Rev. B50,3714

(1994).

[10℄ F. A. Pinheiro, A. S. Martinez and L. C. Sampaio,

Phys. Rev. Lett.84,1435(2000).

[11℄ F.A.Pinheiro,A.S.MartinezandL.C.Sampaio,

Ele-tromagnetiSattering bySmallMagneti Partiles(to

appearin: JournalofMagnetismandMagneti

Materi-als).

[12℄ F.A.Pinheiro,A.S.MartinezandL.C.Sampaio,

Van-ishingof EnergyTransportVeloityandDiusion

Con-stant ofEletromagnetiWavesinDisorderedMagneti

Media(toappearin: Phys. Rev. Lett.).

[13℄ H.C.vandeHulst,LightSattering bySmallPartiles

(Dover,NewYork,1980).

[14℄ M.Kerker,TheSattering ofLightandOther

Eletro-magnetiRadiation (AademiPress,NewYork,1969).

[15℄ C.F.BohrenandD.R.Human,Absorptionand

Sat-tering of Light by Small Partiles (John Wiley, New

York,1983).

[16℄ C.W. Chen,Magnetism andMetallurgy ofSoft

Mag-netiMaterials(Dover,NewYork,1986).

[17℄ M. Kerker,D. S.WangandC.L. Giles,J.Opt. So.

Am.73,765(1983).

[18℄ A.Z.GenakandN.Garia,J.Opt. So. Am.B10,

408(1993).

[19℄ M. M. Sigalas, C. M. Soukoulis, R. Biswas, and

Imagem

Figure 1. The sattering anisotropy fator hos i, plotted
Figure 4. The inverse of the loalization parameter 1=(k`
Figure 6. The transport veloity v

Referências

Documentos relacionados

It is also a databasis inluding tables of previously published rotationally resolved ross setions.. for CH4, SiH4, GeH4, SnH4, PbH4, NH3, PH3, AsH3, SbH3, CF4 , CCl4 , SiCl4 SiBr4,

deposition ooling is ritial and the high pressure of oxygen during ooling is favorable..

toroidal ows indued by Alfv en waves on transport proesses in the edge of elongated tokamak..

we nd innitely many more new growing modes for open and losed universes.. The large sale struture of the universe

orretions perturbatively and show that at all orders the Casimir energy remains zero, sine eah=. term in the power series in

present all the experimentally known eletri dipole atomi transitions and energy levels for the O..

This paper reports the analysis of modal normalized frequeny ut-o of oaxial bers having four..

in some oordinate systems, like ylindrial, spherial.. and prolate