• Nenhum resultado encontrado

Braz. J. Phys. vol.31 número1

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.31 número1"

Copied!
8
0
0

Texto

(1)

Eet of Plasma Subsoni Toroidal Flows Indued

by Alfven Waves on Transport Proesses in the

Edge of Elongated Tokamaks

V. S.Tsypin, J. H. F. Severo, I. C. Nasimento,

R. M.O. Galv~ao,and Yu. K.Kuznetsov

Instituteof Physis,UniversityofS~aoPaulo,

RuadoMat~ao,TravessaR, 187,05508-900, S~aoPaulo,Brasil

Reeivedon4May,2000

There is a renewed interest in using Alfven waves (AW) in tokamak plasmas. Previously, AW

were atively explored mostlyfor urrent drive and plasma heating in tokamaks. Presently, the

possibility oftheanomalousandneolassial transportsuppressionbyAWintokamakplasmasis

beingvividlydisussed. AWanalsoinduepoloidalandtoroidalplasmarotation.Toroidalplasma

rotation anreah thesubsoni level. These ows ansubstantiallyaet neolassial transport

both in ollisional and weakly ollisional plasmas. In this paper, the eet of plasma subsoni

toroidalows indued by Alfvenwaves ontransportproesses inthe edgeof elongated tokamak

is investigated. The dependene of poloidal plasma rotation and ion heat ondutivity on the

elongationparameterandtheratioofinduedtoroidalveloity tothesonispeedareanalytially

obtained.

I Introdution

Itiswell-knownthat Alfvenwavesareoneofthebasi

methodsofurrentdrive(AWCD)andplasmaheating

(AWPH) in tokamaks. 1 5

These methodswerelearly

demonstratedinnumerousexperiments 6 8

andwillbe

anew applied in forthoming experiments in TCABR

(Tokamak Chauage Alfven Brasil) tokamak. 9;10

The

omparatively reent appliations of AW in

toka-maks are reation of transport barriers and

suppres-sion ofanomalous and neolassialtransport by these

waves. 11 14

Themainideaistoindueashearedradial

eletrield that antakeapart theturbulentplasma

eddies and thus suppress anomalous transport. 15 17

Suppression of neolassial transport in weakly

olli-sionaltokamak plasmasis onneted with ion banana

orbitsqueezingbytheshearedradialeletrield. 18;19

Alfven waves an be used to eÆiently indue the

stronglyshearedradialeletrield 11 14

thusahieving

suppression of anomalous and neolassial transport.

The rst experimental evidene that AW an be

use-ful to reate plasma rotation, and, onsequently, the

radial eletri eld, was obtained in the Phaedrus-T

tokamak. 20

Besides these very attrative topis, there is also

theadditionalphysialmehanismwhereAW anplay

asubstantialrole,i.e.,theionneolassialtransportin

of this mehanism was emphasized in the papers by

Rogister, 21 23

where theexperimental resultsin

mod-ern tokamaks were arefully analyzed. Rogister

on-siders the transport proesses in tokamak edge

plas-mas to be in the H-mode (the so-alled high regime),

when the harateristi length of plasma marosopi

parametersL

n

isoftheorderoftheionLarmorradius,

i = v

Ti M

i =e

i B

p

, alulated on the poloidal

mag-neti eld B

p , i.e., L

n

i

. Heree

i

andM

i

are the

ionhargeandmass,respetively,B

p

isthe"physial"

omponent of the magneti eld, to dier it from

o-variantorontravariantomponentsthatappearbelow,

and v

Ti =

p

2T

i =M

i

is theionthermalveloity.

How-ever,therearesomerelevantproblemsthatneedtobe

investigated in ollisional tokamak plasmas, in the

L-mode(thelowregime),whentheonditionL

n >

i is

fullled.

Theionneolassialtransportintokamakollisional

plasmas 24

wasoriginallyinvestigatedbyShafranov. He

used thewell-known approahbyPrshand Shluter

toalulatetheionheatondutivityintokamak

plas-maswithirularmagnetisurfaes. Theseresultswere

latergeneralizedforarbitrarygeometryofthemagneti

eld. 25

The next step in this diretion was taken by

Mikhailovskii and Tsypin, 26

who onsideredthe eet

of soni toroidal ows on transport proesses in

(2)

hang-valueof theratio oftoroidalveloityU

i

to sound

ve-loity 2

s = (T

e +T

i )=M

i

, and the importane of the

ollisional parameter b = q 2

R 2

= 2

i

were brought up

in this paper. Here, q is the inverse rotational

trans-form, R is the tokamak major radius,

i = v

Ti =

i is

the ion mean free path, T

e and T

i

are the eletron

and ion temperature, respetively, and

i

is the

ion-ion ollision frequeny. 27

This study waslater

ontin-ued todeterminealsotheionheat ondutivitytaking

into aount of large values of the ollisional

param-eter b, 1 < b < M

i =M

e ,

28;29

external fores, 30

and

elongation. 31

In this paper we arry on this

investi-gation studying the eet of plasma subsoni toroidal

owsindued byAlfven waveson poloidal plasma

ro-tation andionheat ondutivityin ollisionalplasmas

of elongatedtokamaks,withsmoothprolesof

maro-sopiplasmaparameters,L

n >

i .

II Magneti eld and metri

To solve our problem, we need to hoose the

oordi-natesystemtoarryoutthealulationsforatoroidal

plasma olumn with ellipti ross-setion. As the

al-ulationsofthemetrishavebeenrepeatedlypresented

inmanypreviouspubliations,wehereshowonlymain

stepstoobtainit. Initially,wetaketheoordinates 0

,

00

andtobeattahedtothegeometrialenterofthe

magneti surfaes,where 0

istheradialoordinatein

thetokamakross-setionand 00

and arethepoloidal

andtoroidalangles,respetively. Thelengthelementin

these oordinatesis

dl 2

=d 02

+ 02

d 002

+(R 0

os 00

) 2

d 2

: (1)

The nextstepis the "enirling"ofthe magneti

sur-faes bymeansofthetransformation

os 0

=exp(=2) 0

os 00

;

sin 0

=exp( =2) 0

sin 00

; (2)

where= p

l

1 l

2

; =ln(l

2 =l

1 ), andl

2 andl

1

are

semi-major and semiminor axes, respetively, of the

mag-neti surfae. Then, wehoose newoordinatesto be

attahed tothegeometri enterofthetokamak

ross-setion,andstraightenthemagnetilinesoffore:

os 0

=ros[+Æ(;r)℄+(r);

sin 0

=rsin[+Æ(;r)℄; (3)

where (r) is the shiftof thegeometri enter of the

magneti surfae, determined from equilibrium

ondi-tions.

The straightening parameter Æ an be found from

theonditionthattheradialomponentoftheurrent

density vanishes, j r

= 0, by taking into aount the

expressionforthemagnetieldwiththestraightlines

offore,

~

B

0

=f0;

0

=2 p

g;

0

=2 p

gg; (4)

(here and are the poloidal and toroidal magneti

uxes,respetively,andg isthemetritensor

determi-nant),andafter ndingthemetritensoromponents

g

ik

, afterthesubstitution ofEqs. (2)and (3)into Eq.

(1),

( g

33 =

p

g)==0: (5)

Asaresult,theparameterÆisequalto

Æ= sin("

+ 0

exp(=2)): (6)

Then, we nd the metri ovariant tensor

ompo-nentsandtheirdeterminant

g

11

=osh sinhos2+2 0

exp( =2)os; (7)

g

22 =r

2

(osh+sinhos2)[1 2os("

+ 0

exp(=2))℄; (8)

g

12 =g

21

=rfsinhsin2 sin[osh("

+r 00

exp(=2))+ 0

exp( =2)℄g; (9)

g

33 =R

2

(1 2"

os); p

g=rR (1 2"

os); (10)

d

where the parameter "

is "

= "exp( =2); and

"=r=Risthetokamakinverseaspetratio. Theangle

dependeneofthemagnetieldanbeobtainedfrom

theexpressionB

0 =

p

g

ik B

i

B k

;wehave

B

0 =B

s

1+"

os+(A"

=2)os 2

; (11)

where

A= "

q 2

[exp(2) 1℄= l

1

R q 2

l 2

2

l 2

1 1

; (12)

and q = 0

= 0

is the inverse rotational transform

de-nedin generalgeometry.

WealsoneedaomponentoftheCristoel'ssymbol

i

= g im

(3)

m;k l = 1 2 g mk x l + g ml x k g k l x m ; (13) namely, ="

sin: (14)

Thenon-orthogonaloordinatesarex i

=(r;;) .

III Starting equations

AswementionedintheIntrodution,ourmain goalis

toalulatethesurfaeaveragedionheatux

Ti and

theionpoloidalrotationveloityU

i

asfuntionsofthe

ratio =U 2

i =

2

s

(the squaredMah number) andthe

elongationparameter A. Theion heat ux is dened

bytheexpression

Ti hq

r

i

i; (15)

where h:::i= Z 2 0 (:::) p gd= Z 2 0 p gd (16)

andtheheatux radialontravariantomponentq r i is equalto q r i = 2p i i g 11 M i ! 2 i T i r 5 2 p i g 33 h M i ! i p g T i : (17) Here, p i

is the ion isotropi pressure, !

i = e

i B=M

i

is theionylotron frequeny, g 11

is theontravariant

omponentofthemetritensor,andh

=B

=B isthe

-ontravariantomponentoftheunitvetorh=B=B.

Theonventionalrelationbetweenvetorovariantand

ontravariantomponentsB

=g

B

isalsoused

be-low. The physial poloidal omponent of veloity U

i

is dened by the expression U

i = rV

i

, where V

i is

the -ontravariantomponentof the ionmarosopi

veloityV

i .

From Eqs. (15)-(17) we nd the surfaeaveraged

ionheatux,

Ti = 2p i i osh M i ! 2 i T i r 5 4 B s T i "e i R Z 2 0 d n 0 B 2 T i : (18) Here,n 0

isthepartiledensity.

Further, to nd the poloidal rotation veloity U

i

weemploytheone uidmomentumequation

M i n 0 d i V i dt

= rp r+

1

[jB℄+F h

; (19)

where p=p

i +p

e

istheplasmapressure, istheion

visosity, 27

in whihwetakeintoaountonlyparallel

visosity

k

,therefore,

r^ = 3

2

[h(rh)+(hr)h℄

k

+h( hr)

k 1 3 r k ; (20) d and F h

is the radio frequeny fore aeting

ele-tronsandions. Usingtheambipolarityondition,

Z

rjdr= Z 2 0 Z 2 0 j r p

gdd 0; (21)

whih an be obtained from the urrent ontinuity

equationrj0averagedoverthemagnetisurfae,

oneobtainsfromEq. (19)

p

+( r)

+M i n 0 d i V i dt +rF h p 0; (22) i U i F h p : (23) Here, i

istheoeÆientdesribingtheiontoroidalor

anomalous visosity orfrition withneutrals, and F h

p

and F h

p

are "physial" poloidal and toroidal

ompo-nentsoftheradio frequenyfore F h

,respetively.

Theplasmadensitypoloidalperturbationsen

0 inEq.

(18)anbefound from themomentum equation (19),

taking into aount the ion inertial terms onneted

with thesubsoni toroidal ow, U

i <

s

, and theion

andeletrontemperatureperturbations,

e n 0 n 0 e T i + e T e +e k T i +T e " n 0

os: (24)

UsingEq. (24),theexpressionfortheCristoel's

sym-bolEq. (14), andtheparallel omponentofEq. (19),

oneobtainsfromEq. (22),

1 2r Z 2 d 3 2 e k

lnB " h n 0 ~ T e + ~ T i +e k i sin +F h p

(4)

Thus,ourbasiequationsfortheproblemunderstudy

areEqs. (18)and(25).

IV Poloidally perturbed

quanti-ties

WeseefromEqs.(18)and(25)that weshouldndthe

perturbed ion andeletron temperaturesand ion

par-allel visosity. To nd the partile temperatures, we

proeedfromtheheattransportequations, 27 3 2 n d T dt +p rV

= rq

+Q

; (26)

where=i;e,theheatexhangeQ

betweenionsand

eletronsisequalto

Q i = Q e = 3M e M i n 0 e (T e T i

); (27)

andpartileheatuxesare

q ik = 3:91 n 0 T i M i i qR T i ; q ek = 3:16 n 0 T e M e e qR T e ; q ? = 5 2 n 0 T e B

[hrT

℄: (28)

Then, weobtainequationsforperturbedquantities fromEqs. (26)-(28)

T i U i r ~n + 1 qR q ik

+rq

i? 3M e n 0 e M i ~ T e ~ T i

=0; (29)

T e U e r ~n + 1 qR q ek

+rq

e? + 3M e n 0 e M i ~ T e ~ T i

=0; (30)

d

The terms with thepoloidal veloities U

i andU

e in

Eqs. (29)and(30)anbeobtainedusingthe

quasista-tionaryontinuityequations

n

j rV

j +V

j rn

j

=0 (31)

andthefrozen-inondition

r[V

i

B℄0: (32)

Asaresult,wehave

~ V i q ~ V i ; ~ V i = U i r ln( n

0 p

g): (33)

Usingequation(33)andsolvingthesystemofEqs.(29)

and(30),wendtheperturbedpartiletemperatures

~ T i =0:51 " bT 0 r i d(b) U i

1+7:6b M e M i 5U Ti 1+ 2 (34) 3:8b M e M i " q j k e i n 0 +U p sin 0:32" bAT 0 r i d 1 (b) U Ti sin2; ~ T i + ~ T e =0:51 " bT 0 r i d(b) U i

1+15:2b M e M i 5U Ti 1+ 2 (35) 7:6b M e M i q j k e i n 0 +U p sin 0:32" bAT 0 r i d 1 (b) U Ti sin2;

where d(b)=1+2:2b p M e =M i , d 1

(b)=1+0:54b p

M

e =M

i

, andb=q 2 R 2 = 2 i

. Wehavealsoused

(5)

with T

e0 T

i0 = T

0

. The expression for U

e in Eq.

(36) an be obtained from momentum equations for

eletronsandions. 27

Wealso need to alulate the parallel visosity e

k

in Eqs. (24) and (25). Note, that the Braginskii's

approah 27

forvisosity(the Navier-Stokestypeofthe

visosity)isnotrelevantforproblemstobeunderstudy

in thispaper. Therefore, wetaketheparallel visosity

k

in the form derived in Refs. 26, 32, and 33. This

type of visosity is the so-alled Burnett type of the

visosity. 34

Besides the spatial derivatives of the ion

veloity,italsoinludesthederivativesoftheion

ther-maluxesq

i

. Theseadditionaltermsaresimilartothe

thermal fore terms in theion-eletron frition in the

momentum equation. 27

Thus,wehave, 26;32;33

e

k =

2

3 p

i

i

(0:96 0:59); (37)

where

=3

h(hr)V

i +

2

5p

i

h(hr)q

i 1

3

rV

i +

2

5p

i rq

i

; (38)

= 6

5

h( hr) q

i

+0:27q

ik

+ 1

3

rlnp

i q

i

r q

i

+0:27q

ik

: (39)

UsingEqs.(28)and(33),wesimplifyEqs. (38)and(39)

= 3

r

U

i

ln

p

gn 2=3

B

+ 1

q 2

R 2

U

i g

22

+U

Ti

ln

B

n

; (40)

= 3

r

0:34U

i

lnn+U

Ti

1:36

lnB 0:84

lnn

: (41)

Finally,weobtaintheexpressionfortheparallelvisosityEqs. (37),(40),and(41),employingEqs. (8),(11),and

(24),

e

k =

1:92"

p

i

r

i fU

i

[(1+0:19)sin+0:5Asin2℄+ (42)

+U

Ti

[( 1:83+1:52)sin+0:92Asin2℄g:

d

Thisexpression givesus the possibility to ndthe

ionambipolarpoloidalveloityU

i .

V Ion uxes and their analyses

Now,weanderivethenalexpressionsforplasma

ro-tationveloityandtheradialionheatuxandanalyze

them. The poloidal veloityU

i

anbeobtainedfrom

Eqs. (25),(35),and(42),

U

i =G

u1 (;A)U

Ti +G

u2 (;A)

q j

k

e

i n

0 +U

p

+1:39

i r

2

" 2

M

i n

0 v

2

Ti G

u3 (;A)F

h

; (43)

where

G

u1

(;A)= f

2 (;A)

f

1 (;A)

; G

u2

(;A)=1:35 M

e

M

i

2

b 2

f

1 (;A)

; G

u3

(;A)= d(b)

f

1 (;A)

; (44)

f

1

(;A)=d(b)

1+ 2

3

( 1+0:19)+0:25A 2

+0:18 2

b

1+15:2b M

e

M

i

; (45)

f

2

(;A)=d(b) 1+ 2

3

( 1:83+1:52)+0:46A 2

0:88b

1+

2

(6)

To plot funtions G

u1

(;A);G

u2

(;A);G

u3 (;A)

in Fig. 1, wehoose the parameterb =50. One an

observe that funtion G

u1

(;A) (gure 1), as in the

ase of an axially-symmetri tokamak, 30

hanges sign

at

0

2d(b)=b. Thisquantityoinideswithour

pre-viously obtained results. 26;28 31

It is a very

interest-ing and importantresult that inertialfores, aeting

ions,enforeionpoloidalrotationveloityU

i

tohange

its sign in the absene of radio frequeny waves in a

plasma. This eet, whih was originally obtained in

Ref. 26, isalso relevantforweaklyollisional plasmas

but sign hangingtakesplae at theMah numberof

theorderunity. 35

ThemaximumoffuntionG

u1 (;A)

ours atA0and isG

u1

(;0)2:4. Inreasingthe

parameterA, themaximumof thequantityG

u1 (;A)

dereasesandshiftstosupersonivalues,>1.

Never-theless,onlythease<1isofthepratialinterest.

The funtion G

u2

(;A) haraterizes the role of

the parallel urrent and diamagneti drift in the ion

poloidal rotation veloity. This funtion inreases

with the parameter , but stays at a small level, G

u2

(;A)<<1for<1.

The funtion G

u3

(;A) desribes the role of

ex-ternal fores in induing the ion poloidal rotation.

Thisfuntiondereases withthegrowthoftheplasma

toroidalrotation,and,orrespondingly,sodoestherole

ofexternalfores ontheionpoloidalrotation. The

in-duedradialeletrield,whih isurrentlysupposed

tobethedominantquantityfortransportbarrier

re-ationintokamaks, 12 17

anbefoundusingthe

expres-sionwhihis dened viatheion veloity from theion

motionequation, 27

E

r

B

(U

i h

p +U

pi U

i );

U

pi =

1

M

i n

0 !

i p

i

r

: (47)

UsingEqs. (11),(24),(34),(42),and(43),wederive

themagnetisurfaeaveragedradialionheatuxfrom

Eq. (18). Itisonvenienttowritethenalequationin

theShafranovform, 24;25

Ti =

2nT

i

i

M

i !

2

i T

i

r

osh+1:6q 2

" 2

" 2

G

T1

(;A)+G

T2 (;A)

1

U

Ti

q j

k

e

i n

0 +U

p

(48)

1:39

i r

2

" 2

U

Ti M

i n

0 v

2

Ti G

T3 (;A)F

h

;

where

G

T1

(;A)=

1+

2

f

3 (;A)

f

1 (;A)

; (49)

G

T2

(;A)=0:76 M

e

M

i

b(1+=2)

f

1 (;A)

1+ 2

3

( 1+0:19)+0:25A 2

0:18 2

b

d(b)

; (50)

G

T3

(;A)=

5f

1 (;A)

1+ 7:6bM

e

M

i

1+

2

; (51)

f

3

(;A)=

5

1+7:6b M

e

M

i

1+ 2

3

(1:83+1:52)+0:46A 2

+ (52)

+

1+

2

1+ 2

3

( 1+0:19)+0:25A 2

+1:4

1+

2

M

e

M

i

2

b 2

d(b) :

d

Inasupposition that theollisionalparameterb

satis-es the inequality 1<b < p

M

i =M

e

, one obtainsthe

well-knownresultfortheradialionheat ux. 24;25

TheoeÆientsG

T1

(;A)andG

T3

(;A) are

plot-ted in Fig. 2. The quantityG

T2

(;A)is small under

theonditionbM

i =M

e

,therefore,itisnotpresented

in Fig. 2. The funtions G

T1

(;A) and G

T3 (;A)

haraterize the neolassial ontribution and the

in-uene of external fores, respetively. The funtion

G

T1

(;A) is a growing funtion of the elongation A

fores inreases with the Mah number, nevertheless,

lessintensivelyfor largerelongations [see thefuntion

G

T3

(;A)inFig. 2℄.

VI Conlusion

Wehavestudied theeet ofplasmasubsonitoroidal

owsinduedbyAlfvenwavesonpoloidalrotationand

ionheatondutivityofollisionalplasmasofelongated

(7)

uxesaresometimesin asatisfatoryoinidenewith

theexperimentalresults, 36

as opposed to the eletron

Figure. 1 The dependene of the funtions Gu1(;A),

Gu2(;A), and Gu3(;A) on , for dierent magnitudes

oftheparameterA:A1=0;A2=1;A3=2::

Figure. 2Thedependeneof thefuntions GT

1

(;A)and

GT3(;A)on,for dierent magnitudesof theparameter

A:A1=0;A2=1;A3=2::

anomalous transport. This paper is a

generaliza-tion of our previous results for the ase of elongated

tokamaks. 26;28 31

It is shown that a tokamak

elon-gation an substantially aet ion neolassial uxes.

These uxesarepresentedin thepaperasfuntionsof

three quantities to be proportional to 1) the

onven-tionaliontemperaturegradient,2)theparallelurrent

and diamagneti drift, and 3) radio frequeny fores.

The proper oeÆientsare plotted on the Fig. 1and

Fig. 2. One more, the importane of the ollisional

parameterbis emphasizedin thepaper(seealsoRefs.

21-23,26,28-31). Itisalsodemonstratedthatthevery

interestingeetofhangingthesignoftheionpoloidal

rotationveloityin ollisionaltokamakplasmas,whih

dependsonthesquareoftheMahnumber,obtained

previously, 26

also takes plae in elongated tokamaks.

Thepoloidal veloityhasamaximumasafuntion of

(8)

of the ionpoloidal rotationis theonsequene of

tak-inginto aountinertialfores aetingions. It isalso

shownthattheradiofrequenyforesaninsomeases

determinetheionneolassialuxesinelongated

toka-maks.

Aknowledgments

Thisworkwassupported bytheResearh Support

Foundationof the Stateof S~ao Paulo(FAPESP),

Na-tional Counil of Sienti and Tehnologial

Devel-opment (CNPq), and Exellene Researh Programs

(PRONEX) RMOG 50/70grant from the Ministryof

Siene andTehnology,Brazil.

Referenes

[1℄ Ya. I. Kolesnihenko, V. V. Parail, and G. V.

Pereverzev,inReviewsofPlasmaPhysis,editedbyB.

B.Kadomtsev,(ConsultantsBureau,NewYork,1990)

Vol.17,p.3.

[2℄ A.G.Elmov,A.G.KirovandV.P.Sidorov,in

High-Frequeny Plasma Heating, edited by A. G. Litvak

(AmerianInstituteofPhysisTranslationseries,

New-York,1992),p.239.

[3℄ R.Klima,Czeh.J.Phys.B18,1280(1968).

[4℄ N.J.FishandF.F.Karney,Phys.Fluids24,27(1981).

[5℄ D. W. Fauloner, Fusion Tehnology 33 (2T) 219

(1998).

[6℄ R.A.Demirkhanov, A.G.Kirov, L.F.Ruhko,

and A.V.Sukahev, Soviet Phys. JETP Lett. 33, 28

(1981).

[7℄ G.A. Collins,F.Hofmann, B. Joye, R.Keller,A.

Li-etti, J.B. Lister,and A. Pohelon, Phys. Fluids, 29,

2260 (1986).

[8℄ N. Hershkovitz, P. Moroz, P. Probert, E. Y. Wang,

T. Intrator, D. Diebold, R.Breun, D. Brouhous,M.

Dozy,D.Edgel,A.Elmov,R.Fonk,M.Kishinevsky,

C.Litwin,P.Nonn,S.Regan,J.Sorensen,J.Tataronis,

M. Vuovih, X. Wang, and S.Wukith,in

Proeed-ings ofthe 15thInternational AtomiEnergyAgeny

Conferene onPlasmaPhysisandControlledFusion,

Seville,1994(InternationalAtomiEnergyAgeny,

Vi-enna,1995),Vol.2,p.245.

[9℄ I.C.Nasimento,R.M.O.Galv~aoandTCABRteam,

inPro.ofXIntern.Conf. onPlasmaPhysis.Contr.

Papers.Brazil,FozdoIguau,31.10.94-04.11.94,(AIP,

Woodbury,NewYork, 1996),Vol.1,p.69.

[10℄ R. M. O. Galv~ao, A. G. Elmov, G.

Amarante-Segundo, V. S. Tsypin, L. F. Ruhko, I. C.

Nasi-mento, M. Tendler. Plasma Phys. Contr. Fusion 41,

A487(1999).

[11℄ G.G.CraddokandP.H.Diamond,Phys.Rev.Lett.

67,1535(1991).

[12℄ V. S. Tsypin, A. G. Elmov, M. Tendler, C. A. de

Azevedo,andA.S.deAssis,Phys.Plasmas5,7(1998).

[13℄ V.S.Tsypin,R. M. O.Galv~ao, I.C.Nasimento, A.

G.Elmov,M. Tendler,C.A.de Azevedo, and A.S.

deAssis,Phys.Rev.Lett.81,3403(1998).

[14℄ V.S.Tsypin,I. C.Nasimento,R.M. O.Galv~ao, A.

G.Elmov,G.S.AmaranteSegundo,andM.Tendler

Phys.Plasmas6,3548(1999).

[15℄ H. Biglary, P. H. Diamond, and P. W. Terry, Phys.

FluidsB2, 1(1990).

[16℄ T.S.HahmandK.H.Burrel.Phys.Plasmas 2,1648

(1995)

[17℄ K.H.Burrell,Phys.Plasmas4,1499 (1997).

[18℄ H.L. Berk,A.A.Galeev.Phys.Fluids10,44(1967).

[19℄ K.C.Shaingand R. D. Hazeltine, Phys. Fluids B4,

2547(1992).

[20℄ S.Wukith,C. Litwin, M. Harper,R. Parker, and N.

Hershkovitz,Phys.Rev.Lett.77,294(1996).

[21℄ A.Rogister,Phys.Plasmas1, 619(1994).

[22℄ A.Rogister,Phys.Rev.Lett.81, 3663(1998).

[23℄ A.Rogister,Phys.Plasmas6, 200(1999).

[24℄ V.D.Shafranov,Sov.Atom.Energy19,1008(1965).

[25℄ V.D.Shafranov,J.W.Connor,andC.J.Watson,Sov.

J.PlasmaPhys.2,99(1976).

[26℄ A.B.MikhailovskiiandV.S.Tsypin,Sov.Phys.-JETP

56,75(1982).

[27℄ S.I.Braginskii, inReviewsof PlasmaPhysis, edited

byM.A.Leontovih(ConsultantsBureau,NewYork,

1965),Vol.1,p.205.

[28℄ V.S.Tsypin,Sov.J.PlasmaPhys.11,661(1985).

[29℄ V.S.Tsypin,Sov.J.PlasmaPhys.14,466(1988).

[30℄ V. S.Tsypin, D. Kh.Morozov, J. J. E.Herrera, J. J.

Martinell,M.Tendler,I.F.Potapenko,A.S.deAssis,

andC.A. de Azevedo. Plasma Phys.Control. Fusion

39,1681(1997).

[31℄ V.S. Tsypin, C.A. de Azevedo, and A. S. deAssis,

PhysisLettersA.219,282(1996).

[32℄ A.B.MikhailovskiiandV.S.Tsypin,PlasmaPhysis

13,785(1971).

[33℄ A.B.MikhailovskiiandV.S.Tsypin,BeitragePlasma

Physik24,335(1984).

[34℄ D. Burnett, Pro. Lond. Math. So. 39 385; 40 382

(1935).

[35℄ S.K.Wongand K.H. Burrel,Phys.Fluids 25 1863

(1982).

[36℄ F.WagnerandU.Strouth,PlasmaPhys.Contr.Fusion

Imagem

Fig. 2. One more, the importane of the ollisional

Referências

Documentos relacionados

present all the experimentally known eletri dipole atomi transitions and energy levels for the O..

This paper reports the analysis of modal normalized frequeny ut-o of oaxial bers having four..

in some oordinate systems, like ylindrial, spherial.. and prolate

Disordered Magneti Media: Loalization Parameter,.. Energy T ransp ort V eloity and

ontribution and improve the Borel stability in both Dira strutures of the baryon

Laser beam inident on a slab of GRIN glass. where x is measured from beginning of GRIN

tion of the path integral using urvilinear oordinates,.. sine quantising in urvilinear oordinates leads

The inuene of an external onstant uniform magneti eld on the Casimir energy assoiated with.. a Dira eld under antiperiodi boundary ondition is omputed using