• Nenhum resultado encontrado

Braz. J. Phys. vol.31 número1

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.31 número1"

Copied!
7
0
0

Texto

(1)

Analysis of Cut-o Conditions for Coaxial Fibers

Humberto Filomeno da Silva

Departamento deFsia,CentrodeCi^enias ExataseTenologia

UniversidadeFederaldoMaranh~ao,Av. dosPortugueses,S/N

CampusdoBaanga,SaoLus,MA,Brazil-CEP65080-042

and Frederio Dias Nunes

Departamento deEletr^onia eSistemas,Centrode Tenologia

UniversidadeFederaldePernambuo

CaixaPostal7800, 50711-970,Reife,PE,Brazil

Reeivedon21June,2000. Revisedversionreeivedon20September,2000

Thispaperreportstheanalysisofmodalnormalizedfrequenyut-oofoaxialbershavingfour

dieletri layers. The ut-ourvesare obtained for four dierent strutures and several modes

as afuntionof the several parametersof the bers (refrativeindexand layerdimension). The

alulation is done using a transendental equation obtained in this work. The analysis pays a

speialattentiontothefundamentalmodeHE

11

showingthatfortwostrutures(W1andM1)the

normalized frequenyalways is null as is the ase of thestandard rodbers. For the other two

strutures(W2andtworegions), thenormalizedfrequenymaynotbenull,dependingontheset

ofvaluesoftheberparameters. Forthislastase aloidiagramisobtainedshowingtheregions

where the normalized frequeny is equalto zero and dierent from zero for several sets of ber

parameters. From the transendental equation, we have anexpression to alulate the urve of

separationbetweenthesetworegions.

I Introdution

CozensandBououvalas[1℄introduedanewstruture

ofoptialbershavingfourdieletrilayerswithwhih

ithasbeenpossibletodevelopdierentdeviessuhus

sensorsandspetrallters[2℄. Nunesetal[3℄have

pub-lished,forthersttime,adetailedtheoretialstudyof

fourdierentstruturesofoaxialbers. The

transen-dentalequationsforeahstruturewereobtainedforall

the rangesofphysiallyaeptable valuesof the

ee-tiverefrativeindex. Thisworkbringsomplementary

resultsto those ofRef. [3℄, beingfousedonthe

anal-ysisof theut-obehaviorofthestruturesW andM

[3℄. Theirrefrativeindexprolesareshownin Fig. 1

and, asindiated,bothstruturesW andMhavebeen

sub-lassiedas1and2.

The struture Wl and been used to manufature

spetral lters [2℄ with promising harateristis for

optial ommuniations and dispersion ompensating

ber [4℄ with large negative dispersion oeÆient D

for the fundamental mode. For example, the lters

aremadewithbertapersanditsphysialbehavioris

mainlydesribedusingperturbativetheory,loalmode

HE

11

andHE

12

. WiththeLMapproahitsisseenthat

theouplingbetweenHE

11

andHE

12

isafundamental

parton thedeviedesription. However,ouplingwill

onlyour if both modes exist. If one of them is

un-der the ut-o ondition, no oupling an our and

thedevieisunabletooperateshowingtheneessityof

understandingtheut-oonditions.

Theut-oonditionforonemodeisdependenton

theberparametersandlightwavelength. Inthe

spe-i ase of W oaxial bers with four dieletri

lay-ers,there areseven parameterstobeonsidered: four

values of refrative index and three dimensions (Fig.

1). These parametersarereduedto fouraordingto

whihtheut-oonditionsareanalyzed. ThevaluesV

of ut-onormalized frequenieare alulatedsolving

atransendentalequationthatwehaveobtainedandis

giveninsetionIII.Theresultsshowthatintheaseof

thestrutureW2andM2thefundamentalmodehasa

nonvanishingV,ontrarytothestrutureW1andM1

(2)

II Mathematial approah

The propagation harateristi of a oaxial ber an

bedesribedusing the well-known LPapproximation.

This is the approah that we use in this work and in

thissetionwepresentabriefdisussionof theresults

widely detailed in Ref. [3℄. The modal wavefuntions

willbethosegivenby

(;;z)='(;)exp(iz) (1)

where maybeE

y orE

x

,dependingonthehoie

be-tweenthetwopossiblelinearly polarized LPsolutions

[3℄,zisthediretion ofpropagationand isthe

prop-agationonstant. Ineq. (1), '(;)isgivenby:

'(;)=R ()

os(m)

sin(m)

; m=0;1;2::: (2)

where is theazimuth angle and m is the parameter

thatdenes theazimuthLPmodeorder. Thesolution

insineorosinefollowsfromthehoieofpolarization

[3℄. R () is the transverse solution given as a

ombi-nation of the well known Bessel and Modied Bessel

funtions of rst and seond lasses. In eah region,

an appropriate ombination of Bessel funtions is

re-quired to math the onditionsof onvergene that is

dependentontherangeofthemodaleetiverefrative

index. With this approah, transendental equations

[3℄ are obtained for eah struture and they desribe

the bers ompletely. For the strutures W1 and M1

the transendental equation is that orresponding to

N

e

(eetiverefrativeindex) within therange(n

2 ;n

4 )

[3℄. Forthestrutures W2andM2 thetransendental

equation isthat orrespondingto N

e

within therange

(n

1 ;n

4 )[3℄.

Figure1. Coaxialoptialbersprolesforthestrutures

W1,W2,M1andM2.

Table1-Parametersofeq.(3)

III Cut-o ondition

Theut-oonditionforanymodeoftheoaxialber

that weare analysingours when its eetive

refra-tive indexN

e

equalsto n

4

. Followingthis, theut-o

onditionforallbersanbeimposingmakingNe=n4

in the arguments of the Bessel funtion of the

orre-spondingtransendentalequations. Bydoingso,some

problems our beause the modied Bessel funtion

K

m (W

4

) divergesfor verysmall valuesof W

4

. These

problems an be overome using the small argument

approximation in the transendental equation for the

eetive refrative index and easy mathematial

ma-nipulations, theut-ofrequenyanbealulatedby

solvingthefollowingtransendental equation:

2`J

` (U

4 ) U

4 J

`+1 (U

4 )

2`J

` (U

4 ) U

4 Y

`+1 (U

4 )

(ADBC)

=(E

1 DE

2

B); `=0;1;2;::: (3)

whereU

4

,A,B,C,D,E

1 andE

2

areparametersgiven

in theTables1,2and 3. InTable2,A and Rare

de-ned as: A= a

, R=

b a

(3)

turesW1andM1whiletheplussignto thestrutures

W2 andM2. The numeri solutionsof theeq. (3) for V

i

(i=1,2,3,4) are shown and disussed in the setion

IV.

Table2-Besselfuntion"sargumentswhereV

1 =k

0 (n

2

1 n

2

3 )

1=2

;V

2 =k

0 (n

2

3 n

2

4 )

1=2

;V

3 =V

1 and

V

4 =k

0 (n

2

3 n

2

2 )

1=2

:

A speial attention is givento themodeHE

11

be-ause itisthemostommonexitedmodeoftheber

in pratialappliations. As wewill showin the next

setion,eq. (3)justadmitssolutionfordisretvaluesof

V

i

(i=1,2,3,4)foraertainvalueof`. Then,thestudy

of eq. (3) assuming` =0 andlose to V

i

=0, allows

to determine when the fundamental mode presents a

ut-odierentfrom zero.

For this purpose, we will dene the funtion G as

the dierene between the right and left sides of eq.

(3). Following the analysis of Safaai-Jazi et al [6,8℄,

we will use the ondition ` =0 and V

i

! 0 in G. In

thelimitwhere V

i

issmall,allBesselfuntions present

expansions[7℄forsmallarguments.

SubstitutingtheseexpansionsinG,makingthe

ne-essarymanipulationsandmaintainingthetermsof

lin-eal orderinV weobtains:

G=f

i V

i

; for i=1;2;3;4 (4)

where f

i

isa funtion that depend on theparameters

and kind of the oaxial ber under analysis, and are

dene when V

i

is lose to zero. When V

i

tends to 0,

G should tend to zero for V

i

to be a solution of eq.

(3). Forthe bers W1and M1, f

i

(i=1,2) in eq. (4)

is always positive and dierent from zero for any

val-uesof the bersparameters. ForGto be nullin this

limitwe must always have V

i

= 0: In these ases the

fundamental modehasanullut-o.

Thesituationis dierentforbersW2and M2. In

thelimitV

i

!0(i=3,4),Ganbezerousing the

on-dition f

i

= 0 for these bers. In this ase V

i

anbe

dierentfromzero. Thisonditionallowstodetermine

the relationship between the parameters of the ber

startingfrom whereV

i

beomedierentfromzero.

IV Results

We rstpresent the resultsof an important ase

or-responding to the ut-o normalized frequeny of the

fundamental mode. As is well known in onventional

ore-lad bers, the mode HE

11

always has a ut-o

(4)

For the strutures W2 and M2, f

i

(i=3,4) may

hange itssignaldepending ontheset ofvaluesofthe

bersparameters. Then f

i

=0 is the limit ondition

for G= 0in eq. (4) with V

i

6= 0(i=3,4). Therefore,

dependingonthevaluesofthedimensionalparameters

and of the refrative indexes, the fundamental mode

has V

i

=0or V

i

6=0. This behavioris alreadyfound

inthree layersbersasreportedbySafaai-Jazi[6℄and

Mahmaudetal[9℄.

The limit equations obtained in this work for the

strutures W2 and M2 an be heked-upin thease

some limit strutures. For example, making a = 0

(A=0), theoaxialberW2 isreduedto the

stru-turestudiedbyMahmaudetal[9℄,asshowninFig2.a.

Theritialvalueb/isobtainedin this workmaking

A = 0 in the equation f

3

= 0 for the W2 struture

givenin theTable(4):

b = n 2 3 n 2 4 n 2 3 n 2 2 1=2 (5)

ThisresultreproduesthatofRef. [9℄. Mahmaudetal

showthatforb/largerthanthevaluesuppliedbythe

eq. (5),thefundamentalmodepresentut-odierent

fromzero.

Figure2. LimitstruturesfortheberW2.

Bymaking b = (R = 0) in the equation f

3 = 0

fortheW2struture,wereprodued theresultsofthe

struture studied by Adams [10℄, shown in Fig. 2.b.

Theritialvaluea/obtainedisthisworkis:

a =p 2 = n 2 4 n 2 2 n 2 1 n 2 2 1=2 (6)

thatisinagreementwithRef. [10℄. WewillanalyzeV

i

(i=1,2,3,4)fordierentmodesasfuntionoftheother

parameters of the ber. This analysis will be made

through numerialsolution of eq. (3) for the referred

struture. In order to avoid exeeding numberof

g-ures,wehavehosenafewonvenientmodesandV

i is

studied as afuntion of the parameterR for dierent

setsoftheremainingparameters.

IV.1 W1 struture

Fig. 3(a,b)showV

1

asafuntion ofRfordierent

modes HE

11

(n=2,3) and HE

21

for thestruture W1.

Asitiswellknown,themodeHE

21

isthehigherorder

modenexttoHE

11

permittedtopropagateinstandard

bers[8℄. TheparameterR inthisgurehasvaluesin

the range [0,1-A℄. In the extreme values of the R the

W1 strutureis reduedto a threeregion double lad

struture.

The W1 struture always has a vanishing ut-o

frequenyforthefundamentalmodeaordingto

argu-ments presented after the dedution of eq. (4). For

other modes, V

1

has non-vanishing values whih

in-rease for inreasing R and order modes, presenting

quasi-osillatorybehavior. Theseosillationswerealso

reported by Bououvalas et al [11℄ for a oaxial ber

with n 1 =n 3 and n 2 =n 4

. Beause the oaxialber

hasmanyparametersitisnoteasytoseparatetheir

spe-iinueneontheV,behaviorshowninFig. 3(a,b).

Inordertoexplaintheosillationswesuggestthatthis

behaviorisausedbytheompetitionbetweenthetwo

oupled substrutures that ompose the oaxial ber.

As disussed in Ref. [11℄, the oaxialberis a

stru-tureformedbytwooupledstrutures,namelyrodand

tube. ForsmallR values,therod harateristitends

tobedominantduetoitsstrongeronnement

hara-teromparedtothetubestruture. Ontheotherhand,

in therangewherethetubeharateristiis dominant

(large R values), V, inreaser faster. For R between

these extremevaluesitis notlearwhodominatesthe

ompetition. InthisintervalofR ,V

1

presentan

inter-mediarybehaviorbetween thetwolimitingsituations.

Fig. 4 shows the behavior of the onnement fators

(between the energy ontained in ertain layer of

re-frativeindex andthe total energy),veryloseto the

ut-o onditions for the modes HE

12

and HE

13 . In

these graphs, g

1

is the onnement fatorof the ore,

g

2

istheonnementfatoroftheregionofthe

refra-tiveindexn

2 ,g

3

istheonnementfatoroftheregion

of therefrativeindexn

3

, F =1 (g

1 +g 2 +g 3 )and

ut-o is the normalized ut-o urve. These graphs

show that, if the ut-o urve is approximately

on-stant, all frations of energy ontained in eah layer

areapproximatelyonstant. WepointoutthattheV

1 ,

urvesorrespondingtomodesHE

21

andHE

12 havea

rossingpoint,asobservedin Fig. 3b. Thisisalso

ob-served in the struture analyzedby Bououvalaset al

[10℄andindiatesthatforsomesetsofberparameters,

themodeHE2,isnolongerthelowestmodesubsequent

(5)

Fig. 3ashowsthatsmallvaluesofp

1

takethelargest

valuesofV

1

forR>0:1. Itiseasytoseethatlower

val-uesofp

1

,withonstantq

1

,orrespondto lowervalues

ofn

2

resultinginalargestep(n

1 n

2

)inthegapregion

andasaonsequene,weakeronnementthatleadsto

highervaluesof V

1

:ForR<0:1, theut-ofrequeny

doesnothangefordierentvaluesofp

1

beause

pra-tiallydoesnotexistaregionintheberorresponding

totherefrativeindexn

2

. Thus,thereisnosigniant

hangeonV

1

whenp

1

ismodied. Thesamebehavior

ours inFig. 4b,butin thisase,V

1

is smallerin the

whole rangeofR beausetheextensionof thenuleus

islarger,inreasingtheonnementofthemodes.

Figure 3. Coaxial berut-o frequenies for the modes

12, 13 and 21for dierent values of q

1 and p

1

inthe W1

struture.

Figure4. ConnementfatorfortheW1struturenextto

theut-owithA=0.01. Theut-ourveisthenormalized

ut-ourve. (a)HE12mode. (b)HE13mode.

Theanalysesarriedouttounderstandthevariation

ofp

1 andq

1

anbesummarizedwiththefollowingrule:

the modalonnementinreasesintheproximityofthe

ut-oondition(V

1

dereases)ifthe refrativeindies

satisfy the following ondition n

1 = n 2 = n 3 .

Apply-ingthisruletoanalyzethegraphsofthestrutureW1

allowsustounderstandthetendsoftheurves.

IV.2. M1 Struture

TheM1struturehasabehaviorsimilar tothatof

the W1 struture and the same kind of analyses an

bedoneforthisstruture. It isaremarkablefat that

therulevalidtodesribethebehaviorofV

1

fortheWl

strutureisalsovalidtodesribethebehaviorofV

2 for

the M1struture. A omment isthat,for asmall rod

dimensio, V

2

is basially independent of the

parame-ter q

3

. This ours when A isverysmall andbeause

n

1 <n

3

. Then, theinuene ofthe rod region onthe

IV.3. W2 struture

Theut-ovaluesofV

3

forthestrutureW2is

pre-sented in Fig. 5 (a,b). This struture presents very

dierentbehaviorinomparisonwiththoseofthe

stru-turesW1andM1. Thestrutureisfreeofosillations,

presentingastrongdependeneonRwhenthis

param-eter approah the limiting values R = 1 A. This

behaviorindiatesthatareduedompetitionbetween

thetwosubstruturesoursandthetubesubstruture

is dominant in almost all range of R . Also, no

ross-ingpointisobservedbetweentheV

3

urvesofdierent

modesasistheaseoftheW1andM1bers. Thesharp

dependene oftheut-onormalizedfrequenyforthe

strutureW2onRindiateaweakmodalonnement

thatisassoiatedwiththehighrefrativeindex ofthe

lad region (n

4 > n

2

). Another great dierene

be-tweenthestrutureW2andtheothersalreadystudied

refersto the behavior of the fundamental mode. For

thismode,aritialvalueofRexistsabovewhihV

3 is

dierentfrom zero. Thisritial valuedepends onthe

setoftheberparametersbeingfound, imposingthat

f

3

intheTable4isnull. Then,

= 1+ A 2 p 2 2 q 2 2 1=2 A (7)

Figure5.Coaxial-berut-ofrequeniesforthemodes11,

12, 13 and 21 for dierent values of q

2 and p

2

in the W2

struture.

Using theequationf

3

=0for thestrutureW2, it

is possible to obtain in the planeRA thelous

di-agramof theregionswherethefundamental modehas

V

3

= 0and V

3

6= 0forthe struture W2. Theresults

areshownin Fig. 6. Theshadedregionsin thisgure

indiatewhereV

3 6=0:

Fig. 5ashowsthatinreasingvaluesofp

2

with

on-stantvalueofq

2

,inreasethevaluesofV

3

. Byobserving

thedenition ofp

2 andq

2

in Table 3it anbe

under-stood that inreasing the value of p

2

keeping q

2

on-stant,meanshighervaluesof(n

4 n

2

). Thissituation

impliesasmalleronnementof modes. Onthe other

hand,q

2

variesandp

2

ismadeonstantinFig. 5b. The

higherthevalueofq

2

,thelowerthevaluesofV

3 ,an

ef-fetopposite of inreasing p

2

asshown in Fig. 5a. In

thisase,inreasingvaluesofq

2 withp

2

onstantmeans

highervaluesofn

3

(6)

Table4-Funtionsf

1

foreahoaxialstruture.

Figure6. DelimitationurvesbetweenV

3

=0and V

3 6=0

(shaded)forthefundamentalmodeoftheW2struture.

Table3-Denitionofpandqfortheseveral

strutures.

When the radius of the nuleus inreases, the

be-havior of V

3

for the modes hange substantially, as

showsin Fig. 7. This resultwasobtainedfor A=0.20,

n

1

=1.4658, n

2

=1.444, n

3

=1.46 and n

4

=1.4587. The

modesHE

11

andHE

12

areveryloseforertainvalues

ofRwithV

3

onstantwhenR>0:5forthemodeHE

11 .

For themode HE

12

, twointervalsofonstantvariable

R exist. This behavior is justied when the study of

the dispersion urves is made [12℄. This study allows

toonludethatforertainvaluesofRtheresults

ob-tainedoftheW2limitstruturemakingn

1 =n

2 ,

dom-inatesthebehaviorofthewholestruture. Inthisway,

thedispersionurveofthestrutureW2alwaysbegins

in thesamevalueindiatingthat theut-o ondition

doesn'thange.

Figure7. Coaxial-berut-ofrequeniesofmodes11and

12withA=0:20andtherefrative indexitedinthetext

fortheW2struture.

IV.4 M2 struture

The M2 struture presents a behavior similar to

that ofW2. Thesamekindofanalysisis appliableto

thisstrutureandalsothefundamentalmodehas

non-vanishingut-onormalizedfrequenyabovearitial

value of R . The expression for the value of R above

whih theut-o onditionsof the fundamental mode

beomesdierentfrom zeroanbe established

impos-ingtheonditionf

4

=0inTable4. Then,

R=(1+A 2

q 2

+p 2

) 1=2

(7)

Afatthatdeservestobementionedhereisthe

in-dependeneofV

4 onq

4

,forsmallvaluesofA.Changes

in the value of q

4

while keeping p

4

onstant does not

produeanyeetonthevaluesofV

4

beausethevalue

ofA issmall. Changesin q

4

withp4onstantmeansa

variationof n

1

aordingto thedenition ofthese

pa-rameters givenin Table3. Therefore,for verynarrow

rodregion,theinueneoftherefrativeindexisalmost

nonexistent. ThisalsohappensfortheM1struture.

V Conlusions

This work presents results about the ut-o behavior

of four oaxial bers with four onentri layers. In

orderto alulatetheut-onormalizedfrequeny

nu-merially, we obtained a transendental equation for

the normalized frequeny V

i

(i=1,2,3,4) for the four

strutures. The results show that eah pair of

stru-tures W1/M1 and W2/M2 have a dierent behavior.

For the strutures W1 and M1, V

i

(i=1,2) shows an

osillatory harateristi behavior as a funtion of R

and the fundamental mode alwayshas V

i

=0. In the

aseofthestruturesW2and M2,V

i

(i=3,4)presents

a non-vanishing ut-o normalized frequeny for the

modeHE

11

,andthereisnoosillatorybehaviorofthe

modes. WefoundexpressionsfortheritialvalueofR

asfuntionoftheparametersoftheber,startingfrom

whihthefundamentalmodepresentsaut-odierent

from zero.

Aknowledgements

TheauthorsaknowledgeCNPqUniversidade

Fed-eraldoMaranh~ao,fornanialsupport.

Referenes

[1℄ J. R. Cozens and A. C. Bououvalas, Eletron. Lett.,

18,138(1982).

[2℄ S. Celashi, J. T. Jesus, D. Dini, A. Juriollo and R.

Arradi, Narrowband All-FiberSpetralFilters,

CPqD-Telebras,Campinas-SP.

[3℄ F.D.Nunes,C.A.S.Melo andH.F.daSilva,Applied

Optis,35,388,January(1996).

[4℄ F.D. Nunes, H. F.da Silvaand S. C.Zilio, Brasilian

JournalofPhysis,28,June(1998).

[5℄ J.D.Love,W.M.Henry,W.J.Stewart,R.J.Blak,S.

LaroixandF.Gauthier,IEEProeedings-J,Vol.138,

n5,Otober(1991).

[6℄ Ahmad Safaai-Jazi and Gar Lam Yip, IEEE

Transa-tionsonMirowaveTheoryandTehniques,Vol.

MTT-26,No.11,898-903,November(1978).

[7℄ M. Abramowitz, Handbook of Mathematial Funtions,

pp.355-433,DoverPubliations(1965).

[8℄ A.Safaai-JaziandG.L.Yip,RadioSiene,12,No.4,

603-609,July-august(1977).

[9℄ Samir F. Mahmoud and A. M. Kharbat, Journal of

Lightwave Tehnology, Vol. II, No. 11, 1717- 1720.

November(1993).

[10℄ M. J. Adams, An introdution to optial waveguides,

pp272,JohnWiley&Sons(1981).

[11℄ AC.Bououvalas,OptisLetters,10,No.2,February

(1985).

[12℄ H.F. Da Silva,DotorateThesis, IFSC-USP,August

Imagem

Figure 1. Coaxial optial bers proles for the strutures
Table 2 - Bessel funtion&#34;s arguments where V
Figure 2. Limit strutures for the ber W2.
Figure 3. Coaxial ber ut-o frequenies for the modes
+2

Referências

Documentos relacionados

toroidal ows indued by Alfv en waves on transport proesses in the edge of elongated tokamak..

we nd innitely many more new growing modes for open and losed universes.. The large sale struture of the universe

orretions perturbatively and show that at all orders the Casimir energy remains zero, sine eah=. term in the power series in

present all the experimentally known eletri dipole atomi transitions and energy levels for the O..

in some oordinate systems, like ylindrial, spherial.. and prolate

Disordered Magneti Media: Loalization Parameter,.. Energy T ransp ort V eloity and

ontribution and improve the Borel stability in both Dira strutures of the baryon

Laser beam inident on a slab of GRIN glass. where x is measured from beginning of GRIN