• Nenhum resultado encontrado

Braz. J. Phys. vol.31 número1

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.31 número1"

Copied!
7
0
0

Texto

(1)

Positronium Formation from Hydrogen

Negative Ion, H

Puspitapallab Chaudhuri

Instituto deFsia,UniversidadedeS~aoPaulo,

CaixaPostal66318, 05315-970S~aoPaulo,Brazil

Reeivedon21Otober,1999. Revisedversionreeivedon5June,2000.

Theoretialresultsforthepositronium(Ps)formationfromhydrogennegativeion,H ,targetsare

presented. AnexatanalytialexpressionisonstrutedforthetransitionmatrixforPsformation

inollisions of positrons with H in the frameworkof Born approximation using threedierent

targetwavefuntions. Theorrespondingdierentialandtotal rosssetionsarepresentedforPs

formationinground state. Comparison between theseross setions for dierent wavefuntions

reveals the dependeneofthe Ps-formation proess onthehoieof thetarget wavefuntionand

theeetoforrelationamongthetargeteletronsontheproess.

I Introdution

Hydrogen atom, being the simplest system in atomi

physis,hasbeenusedextensively in thedevelopment

of quantum mehanis. Despitetherepulsive

Coulom-biinterationbetweeneletronswhihisequalin

mag-nitude to theirattrationto aproton,itis possibleto

attah an eletron to the hydrogen atom. Although

veryweakly bound, the twoeletrons and the proton

togetherformthesinglyhargednegativehydrogenion,

H . Itisthesimplestnegativeion(boundbya

short-rangepotential).

In last few years , there has been a signiant

progressinstudyingollisionproessesinvolvingH . It

isofgreatimportaneinastrophysisasitplaysa

fun-damentalroleinmaintainingtheradiationequilibrium

ofthesolaratmosphere[1℄andalsoprovidesastringent

testoftheapproximationmethodsusedintheanalysis

oftwo-eletronsystems[2℄. Moreover,H alsohas

im-portantbiologial appliation as it an be used as an

eÆientantioxidantin humanbody [3℄. On theother

hand, both positron (e +

) and positronium atom (Ps)

havedierentimportantappliationsinmanydierent

branhesofphysis.Hene,studyingPs-formation

pro-essfrom H bypositronimpatissomethingofgreat

interest.

Reently, Luey et al[4℄studied the(e,2e) proess

on H and showed the sensitiveness of the proess to

the form of the approximationused for the H

wave-funtions. Quiteinthesamespirit,weinvestigatehere

the positronium formation proess by the ollisionof

positronandH (e +

+H !Ps+H)andstudythe

eet of target eletron orrelation on the formation

ross setion. In this ase the nal hannel onsists

onsidered tobein groundstatein the present study.

We onsider three dierentrepresentations of theH

wavefuntion, orrelated and unorrelated versions of

Chandrasekharrepresentation[5℄ and Slater

represen-tation[2,4℄toalulatethedierentialandtotalross

setionforthePs-formationinitsgroundstate. As

dis-ussedintheref. [5℄and [4℄,Chandrasekhar

represen-tationwhih desribesone eletronasstrongly bound

andtheother looselybound to thenuleus,gives

bet-terionizationpotentialandgroundstateenergyforH .

Considerationofthe orrelationbetweentheeletrons

improvestheenergy valueonsiderably. Infat, there

existseveraldierenttypesofH wavefuntion. Very

reently Le Seh [6℄ formulated anew orrelated

ver-sionoftheH wavefuntionwhihgivesslightlybetter

ground stateenergy than that of Chandrasekhar

rep-resentation. However, for the time being, we hoose

to work with Chandrasekhar representation

onsider-ingthegoodenergypreditionandomparatively

sim-ple struture and of the wavefuntion whih redues

theomputational labour signiantly. In table 1We

present the ionization potential and ground state

en-ergy of H due to various wave funtions. The

dif-ferene between orrelatedChandrasekhar

representa-tion and Le Seh representation of H wave funtion

intermsofthepreditionofgroundstateenergyisnot

muhsigniantandhene,wehopetheorrelated

ver-sion of the Chandrasekhar wavefuntion will provide

fairly aurate results. Slater wave funtion for H ,

onthe other hand, predits muh higher value of the

groundstate energy whih atually makes H an

un-stable struture [5℄. Still we inlude this in ourstudy

asit isinterestingto see theeet ofwavefuntionon

(2)

Chan-oforrelationinthePs-formationfromH .

Table 1. Ionization potential and ground state energies due to some wavefuntions of H ompared to the

experimentalvalues.

Wavefuntion Ionization GroundState

potential(a.u.) energy(a.u.)

Experimental 0.028 -0.5277

Slater -0.027 -0.473

Chandrasekhar 0.026 -0.5259

(Correlated)

Chandrasekhar 0.014 -0.514

(unorrelated)

Pekeris[7℄ 0.028 -0.5276

Thakkar &Koga[8℄ 0.028 -0.5276

LeSeh 0.027 -0.5266

S.H. Patil[9℄ 0.025 -0.5253

In the present work we use Born approximation

(BA) and evaluate the transition matrix in exat

an-alyti form using Lewis integral [10℄. Although there

exist more rened approximationshemes to estimate

satteringparameters,BAstillhasasigniant

impor-tane in atomi physis. It givesquite auratevalue

whenthetotalorparialrosssetionisnotlarge,as

o-ursgenerallyatthehigherenergies[11℄. Exat

evalua-tionoftheBornsatteringamplitudeisveryimportant

formanyofthesemorerenedapproximationshemes

andusefultohaveageneralviewoftheorresponding

sattering proess. Sine in the present work we are

interested in studying the qualitative behavior of the

eetoforrelationandthedependeneofthe

satter-ing ross setions on the hoie of wavefuntion, the

useBAissuÆient.

Wewill report the dierential and total ross

se-tionsforPs-formationfromhydrogennegativeionin a

energy range of 50-500 eV using both Chandrasekhar

and Slater representation of wavefuntion for H and

ompare them among themselvesto study the

depen-deneoftheproessonthehoieoftargetwave

fun-tionandorrelationamongtargeteletrons.

II Theoretial development

The three dierent wave funtions of our interest are

givenby,

i)Slaterrepresentation:

Sl

H (r

i ;r

j )=

Z 3

e

Z(ri+rj)

(1)

withZ =11=16.

a)Unorrelatedversion:

Unorr

H (r

i ;r

j )=

N

1

4

e

ri rj

+e

ri rj

(2)

withN

1

=0:3948;=1:039and =0:283.

b)Correlatedversion:

Corr

H (r

i ;r

j )=

N

2

4

e

ri rj

+e

ri rj

(1 Dr

ij )

(3)

with N

2

= 0:36598;= 1:0748; = 0:4776 and D =

0:31214:Inthisworkweshallusei=2andj=3.

Inatomiunits,therstBornsatteringamplitude

forPs-formationfromH isgivenby

f B

(k

f ;k

i ) =

1

Z

(r

3 )!

(r

12 )e

ik

f S

12

V(r

1 ;r

2 ;r

3 ) (r

2 ;r

3 )e

ikir1

dr

1 dr

2 dr

3 ;

(4)

where

V(r

1 ;r

2 ;r

3 )=(

1

r

1 1

r

2 +

1

r

23 1

r

13

): (5)

Forthepurposeofstudyingtheinitialtarget-state

ele-tronorrelationonthenalhannelwehoosethepost

formoftheinteration. Inwriting(4)wedenotethe

in-identpositronandtwoeletronsofthetargethydrogen

negativeionas partiles1, 2and 3respetively. Here

(r

2 ;r

3 );(r

3

)arethewavefuntionsofthetargetH

and theneutralhydrogenatom of thenal hannel in

the ground state, respetively and !(r

12

) that of the

positroniumatomwith

S

12 =

1

2 (r

1 +r

2 ); r

12 =r

1 r

2

: (6)

S

12

(3)

thepositronium(Ps),k

f

arerelatedthrough

onserva-tionofenergyby

1

2

i k

2

i +E

H =

1

2

f k

2

f +E

Ps +E

H

(7)

where E

H

is the ground state energy of the

hydro-gennegativeion,E

Ps

=-0.25a.u. andE

H

=-0.5a.u.

i

and

f

arethe reduedmasses in the initial andnal

hannels respetively(

i =1,

f

=2). Thus the energy

onservationrelationin thepresentasebeomes,

k 2

i +2E

H =

1

2 k

2

f

1:5 (8)

Toevaluatetheamplitudein (4)weworkwith the

groundstatehydrogenwavefuntion, 1

p

e

r3

and the

ground state positronium wave funtion is taken as

1

p

8 e

r12

j

=0:5

. Also we use the Fourier

transfor-mation

e r

ij

=

2

Z

e

ip(~ri ~rj)

( 2

+p 2

) 2

dp: (9)

an bearranged in terms of Lewisintegral [10℄ whih

hasstandardanalytial solution. The nal expression

ofthesatteringamplitudeforeahwavefuntion

on-sideredisgivenbelow:

i) for Slater representation of the wavefuntion, eqn.

(1)

f B

(k

f ;k

i )=I

1 +I

2

; (10)

where

I

1

= A B; (11)

I

2

= C D: (12)

Nowusingsomegeneralnotations,Q

mn (;

i

;x;y )and

L

lmn (;

i ;

1 ;

f ;

2

) (whose denitions will be given

later)weanwrite

A =

8 p

8Z 3

2

(1+Z) 3

lim

t!0 L

101 (;

i ;t;

f

;Z); (13)

B= 32

p

8Z 3

(1+Z) 3

Q

21 (;

i

;Z ;K); (14)

C= 32

p

8Z 3

(1+Z) 3

Q

21 (;

i

;Z ;K) f(2Z+1)(Z+1)gQ

22 (;

i

;2Z+1;K)

Q

21 (;

i

;2Z+1;K)

; (15)

D= 8

p

8Z 3

2

(1+Z) 3

lim

t!0 L

101 (;

i ;t;

f ;)

1

2

(1+Z)L

111 (;

i

;1+Z;

f ;)

L

101 (;

i

;1+Z;

f ;)

: (16)

ii)forunorrelatedrepresentationofChandrasekharwavefuntion,eqn. (2)

f B

(k

f ;k

i )=I

1 +I

2

(17)

where

I

1

= A+B; (18)

I

2

= C+D: (19)

with

A =

64C

3 lim

t!0 L

101 (;

i ;t;

f ;)

256C 3

3 Q

21 (;

i

(4)

B =

64C

(+1) 3

lim

t!0 L

101 (;

i ;t;

f ;)

256C 3

(+1) 3

Q

21 (;

i

;;K); (21)

C=i C

1 i

C

2

; (22)

with,

i C

1 =

256C 3

(+1) 3

Q

21 (;

i

;;K) fY(+1)gQ

22 (;

i

;Y;K) Q

21 (;

i ;Y;K)

; (23)

i C

2 =

64C

(+1) 3

lim

t!0 L

101 (;

i ;t;

f ;)

1

2

(+1)L

111 (;

i

;+1;

f ;)

L

101 (;

i

;+1;

f ;)

; (24)

and

D=i D

1 i

D

2

: (25)

with,

i D

1 =

256C 3

(+1) 3

Q

21 (;

i

;;K) fY(+1)gQ

22 (;

i

;Y;K) Q

21 (;

i ;Y;K)

; (26)

i D

2 =

64C

(+1) 3

lim

t!0 L

101 (;

i ;t;

f ;)

1

2

(+1)L

111 (;

i

;+1;

f ;)

L

101 (;

i

;+1;

f ;)

: (27)

InthisaseY =++1andC=N

1 =8

p

2 3

.

iii)fororrelatedrepresentationofChandrasekharwavefuntion,eqn. (3)

f B

(k

f ;k

i )=I

1 +I

2 I

3

; (28)

where,

I

1

= A+B; (29)

I

2

= C+D; (30)

I

3

= E+F: (31)

A =

64C

(+1) 3

4 2

Q

21 (;

i

;Y;K)+(1+)YQ

22 (;

i ;Y;K)

(1+)

2 L

111 (;

i

;1+;

f

;) L

101 (;

i

;1+;

f

;) (32)

B =

64C

(+1) 3

4 2

Q

21 (;

i

;Y;K)+(1+)YQ

22 (;

i ;Y;K)

(1+)

2 L

111 (;

i

;1+;

f

;) L

101 (;

i

;1+;

f

;) (33)

C=

64CD

(+1) 3

4 2

4Y 2

(1+)Q

23 (;

i

;Y;K)+(1+ 2Y)Q

22 (;

i ;Y;K)

+

(1+)

2 L

112 (;

i

;1+;

f ;)+

(1+)

2 L

111 (;

i

;1+;

f ;)

L

102 (;

i

;1+;

f ;)

1

L

101 (;

i

;1+;

f

(5)

(+1) 3

23 i 22 i

+

(1+)

2 L

112 (;

i

;1+;

f ;)+

(1+)

2 L

111 (;

i

;1+;

f ;) L 102 (; i

;1+;

f ;) 1 L 101 (; i

;1+;

f

;) (35)

E=

64CD

(+1) 4

4 2

4Y(1+) 2

Q

23 (;

i

;Y;K)+(5Y 1)(1+) 2

Q

22 (;

i ;Y;K)

+ 3Q

21 (;

i

;Y;K) Y(1+)Q

22 (;

i ;Y;K)

+

(1+) 2 2 L 121 (; i

;1+;

f

;) 1:5(1+)L

111 (;

i

;1+;

f ;) + 3L 101 (; i

;1+;

f

;) (36)

and

F =

64CD

(+1) 4

4 2

4Y(1+) 2

Q

23 (;

i

;Y;K)+(5Y 1)(1+) 2

Q

22 (;

i ;Y;K)

+ 3Q

21 (;

i

;Y;K) Y(1+)Q

22 (;

i ;Y;K)

+

(1+) 2 2 L 121 (; i

;1+;

f

;) 1:5(1+)L

111 (;

i

;1+;

f ;) + 3L 101 (; i

;1+;

f

;) (37)

where Y =++1,C=N

2 =8

p

2 3

andD=0:31214.

The mathematial expression of the sattering amplitude thus beomes more and more omplex from Slater

representation tothe orrelatedversionof Chandrasekharrepresentation. Inwritingalltheexpressions abovewe

useafewgeneralnotationsthataredened below:

f = k f 2 i =k i k f 2

and K=k

i k f ; (38) Q mn (; i

;x;y )=

1 ( 2 + 2 i ) m (x 2 +y 2 ) n (39) and L lmn (; i ; 1 ; f ; 2 )= l l m m 1 n n 2 L 000 (; i ; 1 ; f ; 2 ) (40) with L 000 (; i ; 1 ; f ; 2 ) = Z 1 (p 2 + 2

)(jp+

i j 2 + 2 1 ) 1

(jp+

f j 2 + 2 2 ) dp: (41) L 000

istheLewisintegral[10℄thathasanalytialsolutiongivenby,

L

000 (;q

1 ;a;q

2 ;b) =

Z 1 (p 2 + 2 )(jp q 1 j 2 +a 2 ) 1 (jp q 2 )j 2 +b 2 ) dp = 2 1 2 log (+ 1 2 ) ( 1 2 ) ; (42) = 2 (43) = f(q 1 ~ q 2 ) 2

+(a+b) 2

gq 2

1

+(+a) 2

q 2

2

+(b+) 2 (44) = f(q 1 ~ q 2 ) 2

+(a+b) 2

g+bfq 2

1

+(+a) 2

g+afq 2

2

+(+b) 2

(6)

ThegeneralisedLewisintegralsL

lmn (;

f ;

1 ;

i ;

2 )

oforder3(i.e. l+m+m=3)havebeenevaluated

numerially by the proedure of Roy et al [12℄. The

higher order Lewis integrals are evaluated using its

equalitywithDalitzintegral,D

lmn =L

lmn

[12℄where

D

lmn =

2

m+n

m

1

n

2 Z

1

0 dx

1

l

0

1

! 2

+Æ 2

: (46)

with

!=xq

1

+(1 x)q

2

; (47)

2

=x 2

1

+(1 x) 2

2

+x(1 x)jq

1 q

2 j

2

(48)

and

Æ=

0

+ (49)

The Dalitz integrals are arried outby a 16 point

Gauss-Legendre quadrature with subsequent division

of the interval (0,1) to obtain a pre-determined

rela-tive errorof10 10

. Thetotalrosssetions are

alu-lated numerially by using a Gauss-Legendre

quadra-turemethodforintegratingthedierentialrosssetion

overtheosineofthesatteringangle.

III Results and disussion

Based on the exat analyti evaluation of the rst

Born transition matrix we have omputed the

dier-entialross setions(d=d) and total rosssetions

() for the positronium formation using the standard

denitions [13℄ with all the three sattering

ampli-tude mentioned in the previous setion. For brevity,

we denote thedierentialross setions due to Slater

wavefuntionas(d=d)

slater

andthat dueto

orre-latedandunorrelatedChandrasekharwavefuntionas

(d=d)

orr

and (d=d)

unorr

respetively. In Figs

1and2, wepresentaomparativestudy ofthe

dier-entialrosssetionsduetothethreewavefuntions.

In Fig. 1, we plot (d=d)

slater

, (d=d)

orr

and (d=d)

unorr

separately eah for threeenergies,

E=100, 300and 500 eV to havea omparison among

themselveswhileinFig.2,(d=d)

slater

,(d=d)

orr

and(d=d)

unorr

areompared forinidentenergies

E=100,200,300and400eV.Qualitatively,eahofthe

urves with unorrelated wave funtion has the same

featurehavingasharpminimum. As energyinreases,

amplitudeduetotherepulsiveinterationpartaswell

as that due to the attrative part beome more and

morepeakedin the forwarddiretion and theminima

movetowardsthesmallerangles. Theouraneofthe

sharp minimais due to thedestrutive interfereneof

theattrativeandrepulsivepartsoftheinteration

po-tential. However,(d=d)

unorr

shows adierent

na-ture. Unliketheunorrelatedase,theinter-eletroni

repulsionpushesthedipoftheorrelatedwave-funtion

towards higher sattering angles with the inrease of

that the rosssetion dereasesin asmooth

exponen-tial manner. From Fig. 1we an see that in ase of

(d=d)

slater

, the minima are more or less at the

same sattering angle for all energies, the movement

being extremely slow. But in ase of (d=d)

unorr

theminimamovetowardsforwardsatteringanglewith

theinreaseofenergyatafasterrate. Howeverinboth

theasesofunorrelatedwave-funtiontheminimaare

loatedsomewherearound30 Æ

satteringangle.

Figure 1. A omparison of dierential ross setions (in

units ofa 2

0

) for the formationofPs(1s) statefrom H

us-ingSlaterwavefuntion,unorrelatedChandrasekharwave

funtion and orrelated Chandrasekhar wave funtion

re-spetively. Eah blok ontains dierential ross setion

urves for inident positron energy E=100 eV

(dashed-dottedline),E=300eV(dottedline)andE=500eV(Solid

line).

In Fig. 2, we ompare the dierential ross

se-tions for the three wave funtions at four partiular

energies. Here we see, (d=d)

slater

is always a bit

higherthan(d=d)

unorr

forsatteringanglesbelow

20 Æ

and above 30 Æ

at all energies, but the dierene

between them diminishes with the inrease of energy.

However,omparingwith(d=d)

orr

weansaythat

(d=d)

slater

liesmoreorlessloseto(d=d)

unorr

atallenergiesinspiteoftheimportantfatthatSlater

wavefuntion providesapoorervalue ofground state

energyofH thanthatprovidedbyunorrelated

Chan-drasekharwavefuntion (table 1). Inthis ontext,its

worthnotingthat(d=d)

orr

runsalwayslowerthan

(d=d)

slater

and (d=d)

unorr

and the dierene

amongthemissigniant. Heneweanonludethat

to study the Ps-formation from H , onsideration of

(7)

im-Figure 2. A omparison of dierential ross setions (in

units ofa 2

0

) forthe formationofPs(1s) statefrom H

us-ing Slater wavefuntion(dottedline),unorrelated

Chan-drasekhar wave funtion(solid line) and orrelated

Chan-drasekhar wave funtion (dashed-dotted line) respetively

atdierentenergies. Inthegure,x-axisdenotesthe

sat-tering angleindegreeswhiley-axis isthe dierentialross

setions.

InFig. 3we displaythe resultsfor thetotal ross

setionforPs-formationingroundstateusingthethree

dierent representations. Unlike the dierential ross

setions, totalross setions due to Slater

representa-tionarealwayshigherthanthatofunorrelated

Chan-drasekharrepresentation,howeverthedierene

dimin-isheswithinreaseofenergy. Thisisduetothehigher

valuesofthe(d=d)

slater

forthelowersattering

an-gles whih ontribute most to the total ross setion

values. Thetotalrosssetionduetoorrelated

Chan-drasekhar wave funtion is muh smaller than both

thetwounorrelatedwavefuntion asexpeted. Sine

there exist no experimental results for apture ross

setions in e +

H ollisions omparison of ourross

setionsisnotpossible.

Inonlusion,wehaveperformedanlosed

analyt-ialalulationofrstBorn transitionmatrixelement

and presentthe dierentialand totalross setion for

positroniumformationingroundstateine +

H

olli-sion fordierent positron impatenergies. A

ompar-isonbetweentheSlater representationandmore

au-rate Chandrasekhar representations, both in

unorre-lated and orrelated version, of wave funtion for

hy-drogen negativeionhasbeendrawnthroughthese

Ps-formationrosssetionvalues. Itislearfromthe

om-parisonthatthePs-formationproessfromH isquite

sensitivetothehoieoftarget wavefuntionand the

onsiderationoftheorrelationeetbetweenthe

ele-tronsoftargetH isveryimportant. Itsbeyonddoubt

thattogetmorelearpitureofthepartiularproess,

more rened models and approximations are required

whihwewillonsiderinourforthomingstudies.

How-ever,thepresentmethod of analytialalulationwill

advanedstudies. Moreover,webelievethatthepresent

endeavourwillhelptoprovideageneralideaaboutthe

Ps-formationproessfrom hydrogen negativeion, H

and a lear visualization of the eet of the eletron

orrelationonthisrearrangementproess.

Figure 3. Total ross setions (in units of a 2

0

) for the

Ps(1s)-formationfromH usingSlaterwavefuntion

(dot-tedline),unorrelatedChandrasekharwavefuntion(solid

line)andorrelatedChandrasekharwavefuntion

(dashed-dottedline)respetivelyatdierentenergies.

TheauthorwouldliketothankProfA.S.Ghoshfor

useful disussions and FAPESP for the nanial

sup-port.

Referenes

[1℄ S.Chandrasekharand D.D. Elbert,Astrophys. J128,

633(1958).

[2℄ B.H. Bransdenand C. J.Joahain, Physis of Atoms

andMoleules(London: Longman,1983).

[3℄ www.nutribiz.om/h ions.html

[4℄ S.Luey,C.T.Whelan, R.J.AllanandH.R.J.

Wal-ters,J.Phys.B:At.Mol. Phys29,L489(1996).

[5℄ S.Chandrasekhar,Astrophys.J100,176(1945).

[6℄ C.L.Seh,J.Phys.B:At.Mol.Phys29,L47(1997).

[7℄ C. L. Pekeris, Phys Rev 115, 1216 (1959), 126 1470

(1962).

[8℄ A.J.ThakkarandT.Koga,PhysRev.A50,854(1994).

[9℄ S.H.Patil,Euro.Phys.J.D6,171(1999).

[10℄ R.R.Lewis,Jr,PhysRev102,537(1956).

[11℄ J.W.Darewyh,J.Phys.B:At.Mol.Phys.20,5925

(1987).

[12℄ U.Roy,U.J.Dube,P.MandalandN.C.Sil,Comput.

Phys.Commun.92,277(1995).

[13℄ BransdenBHandJoahainCJ,Introdutionto

Imagem

Figure 1. A omparison of dierential ross setions (in
Figure 3. Total ross setions (in units of a 2

Referências

Documentos relacionados

we nd innitely many more new growing modes for open and losed universes.. The large sale struture of the universe

orretions perturbatively and show that at all orders the Casimir energy remains zero, sine eah=. term in the power series in

present all the experimentally known eletri dipole atomi transitions and energy levels for the O..

This paper reports the analysis of modal normalized frequeny ut-o of oaxial bers having four..

in some oordinate systems, like ylindrial, spherial.. and prolate

ment ongurations: paraboli leads (dotted line), 1D-leads. (dashed line) and the hybrid ase

propagator omes about as a type of expansion of the wave funtion over the spae of the

Here, the solid tri- angles and the dotted line are the results for the single-loss - single-ionization process, the solid circles and the dashed line correspond to the single-loss