• Nenhum resultado encontrado

Braz. J. Phys. vol.31 número1

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.31 número1"

Copied!
9
0
0

Texto

(1)

Appliations of the Shwinger Multihannel Method

with Pseudopotentials to Eletron Sattering from

Polyatomi Moleules II. Rotational

Exitation Cross Setions

Mario T. do N. Varella,

InstitutodeFsiaGlebWataghin,

UniversidadeEstadual deCampinas,UNICAMP,

13083-970, Campinas,SP,Brazil

Mario H. F. Bettega,

Departamento deFsia,UniversidadeFederaldoParana,

Universidade FederaldoParana

CaixaPostal19044,81531-990, Curitiba,PR,Brazil

Alexandra P. P. Natalense,Luiz G.Ferreira, and Maro A. P. Lima

InstitutodeFsiaGlebWataghin,

UniversidadeEstadual deCampinas,UNICAMP,

13083-970, Campinas,SP,Brazil

Reeivedon14Marh,2000

Thispaperreportsresultsfor rotationalexitation ofH2OandH2Smoleulesbyeletronimpat.

It is also adatabasis inluding tables of previouslypublishedrotationally resolvedross setions

for CH4, SiH4, GeH4, SnH4, PbH4, NH3, PH3, AsH3, SbH3, CF4, CCl4, SiCl4 SiBr4, and SiI4.

Oursattering amplitudes werealulated usingtheShwingermultihannelmethodwith

norm-onservingpseudopotentialsandtherotationalresolvedrosssetionswereobtainedwiththehelp

of the adiabati nulei rotation approximation. Our results are in good agreement with other

theoretialdataandexperimentalresultswhenavailable.

All tables are available in the eletroni version of the paper only [on the world wide web at

http://www.sbf.if.usp.br/bjp/Vol31/Num1/℄.

I Introdution

It hasbeenpointedoutbydierentauthors[1, 2℄that

rotational exitation of moleular gases is a relevant

energy{lossmehanisminsloweletrondisharges.

Al-thoughtheaverageenergytransferperollisionisonly

a fration of onemeV, the order of magnitude of

ro-tational exitation rosssetions anbe10 16

m 2

or

evenlarger.Asaresult,purerotationalenergytransfer

an be quite eetive in disharge environments orin

theionosphereofEarth[2℄.

The Shwinger Multihannel Method implemented

with Pseudopotentials(SMCPP) [3℄hasbeenapplied,

along with the adiabati{nulei{rotation (ANR)

ap-setionsforsomepolyatomitargets,suh asXH

4 (X:

C, Si, Ge, Sn, Pb) [5℄, XH

3

(X: N, P, As, Sb), CF

4 ,

CCl

4 ,SiCl

4 ,SiBr

4

andSiI

4

[6℄. Inthispaper,weshow

dierential,integralandmomentumtransferrotational

exitation ross setions of H

2

O and H

2

S moleules.

We also present tables not reported in previous

pub-liations[5,6,7℄and rotationallyresolvedmomentum

transferrosssetionsforCX

4

(X:F,Cl)andSiY

4 (Y:

Cl,Br,I)notpublishedinRef. [6℄. Thispaperis

om-plementarytoRef. [8℄,whereelastisattering ofslow

eletronsby H

2

Xmoleules (X: O,S, Se, Te) was

dis-ussedandalso to theompanionpaper[9℄, where we

present elasti results for a wide range of moleules.

However, we also intend to present here a omplete

(2)

easilybeomparedtofutureexperimentsandother

al-ulations.

Someofthemoleulestreatedhereareplasma

pro-essing gases[10, 11℄ and others are also of biologial

and environmental interest [11℄. Despite their

indus-trialandenvironmentalimportane,studiesoneletron

interations with these moleules are verysare. To

ourknowledge, thisis the rstolletionof rotational

exitationrosssetionsbyeletronimpatforsomeof

themoleulesitedabove.

This paperisoutlined asfollows. In setionII,we

present abrief review of the theory and desribe the

main approximationsusedin ouralulations. In

Se-tion III, we present our results and disussion. This

setion is divided in four subsetions. In subsetion

III.a,wewillreportournewresultsforrotational

exi-tation ofwaterandsuldri aid. Insubsetions III.b

toIII.d,wewillshowresultsforrotationalexitaionof

CH 4 ,SiH 4 ,GeH 4 ,SnH 4 and PbH 4 (III.b);NH 3 , PH 3 , AsH 3 and SbH 3 (III.); CF 4 , CCl 4 , SiCl 4 , SiBr 4 and SiI 4 (III.d). II Theory

The implementation of pseudopotentials in the

Shwinger multihannel method allows alulationsof

low-energyeletronsatteringbymoleulesontaining

atomswithmanyeletronswithreduedomputational

eort [3℄. The basi idea is to replae the ore

ele-trons andthenuleusofeah atomin themoleuleby

the orresponding soft norm-onserving

pseudopoten-tialandtodesribethevaleneeletronsinaquantum

hemistry framework (Hartree-Fok approximation in

the present implementation). The ross setions for

eletron sattering by moleules with dierent atoms

butwiththesamenumberofvaleneeletronsanthen

be alulated with about the same omputational

ef-fort. Intheompanionpaper[9℄,weomparetheatual

numberofeletronsandthenumberofvaleneeletrons

foreahoneofthemoleulesstudiedhere. Forsomeof

thesemoleulesanall-eletronrosssetionalulation

would beimpratial.

The Shwinger multihannel method has been

de-sribed previously and we only review here some key

featuresforompleteness. Inthismethod,theworking

expressionforthesatteringamplitudeis

[f ~ k i ; ~ k f ℄= 1 2 X m;n hS ~ k f jVj m i(d 1 ) mn h n jVjS ~ k i i; (1) where d mn =h m jA (+) j n i (2) A (+) = ^ H

N+1 (

^

HP+P ^

H)

2

+

(VP+PV)

2 VG (+) P V: (3)

IntheaboveequationsjS

~

ki

iistheprodutofa

tar-get state and a plane wave, V is the interation

po-tential between the inident eletron and the target,

j

m

i is a (N+1)-eletron Slater determinant used in

theexpansionofthetrialsatteringwavefuntion, ^

His

thetotalenergyoftheollisionminusthefull

Hamilto-nianofthesystem,P isaprojetionoperatorontothe

open hannel spae dened by target eigenfuntions,

andG (+)

P

isthefree-partileGreen'sfuntionprojeted

ontheP-spae.

Theform of theoperator P andthe set of

(N+1)-eletron Slater determinants dene the main

approxi-mationsinoursatteringalulations. Inthiswork,we

do not onsider real eletroni exitations of the

tar-getbyeletronimpat. Theonlyopenhannelisthen

the elasti hannel and the projetion operator P is

thendened bythetargetgroundstate. Inthestati{

exhangealulationstheSlaterdeterminantsj

m iare

onstrutedas:

j

m

i=Aj

0 ij i i; (4) where j 0

i is the target ground eletroni state, j

i i

are one{partile sattering funtions and A is the

an-tissymetrizationoperator. Inour alulations, we use

themoleularvirtualorbitalstorepresentthefuntions

j

i i.

The polarization of the target due to the eletri

eldoftheinidenteletronistakenintoaountinour

methodbyinludingvirtualeletroniexitedstatesof

thetargetintheonstrutionoftheSlaterdeterminants

j

m i:

j

m

i=Aj

j ij

i

i: (5)

Inequation 5 theindex j runs overthe eletroni

states of the moleular target, beginning with the

groundstateuptosomehosenexitedstate.

We use the norm-onserving pseudopotentials of

BaheletHamannandShluter[12℄todesribethe

nu-lear potential and the ore eletrons of eah atom.

These pseudopotentialswereimplementedin theSMC

methodasdesribedinRef.[3℄. TheartesianGaussian

funtionsusedtodesribethemoleularandsattering

orbitalswereespeiallydesignedtobeusedinour

pseu-dopotentialalulations[13℄.

Ourrosssetionswereobtainedinthexed-nulei

stati-exhangeapproximation. Wedonotinlude the

desriptionofpolarizationeets,sinetheyareknown

tobeoflittleimportanefortheimpatenergyrangewe

studyhere(5{30eV).(Wepresentstati-exhangeand

(3)

The adiabati{nulei{rotation (ANR)

approxima-tion expression for the ! 0

rotational exitation

sattering amplitudeisgivenby[4℄

f( ! 0 ; k in ; ~ k out )= h 0 ()jf lab (k in ; ~ k out

;)j ()i : (6)

In the above expression, f lab

is the elasti sattering

amplitude written in the laboratory{xed frame (LF)

1 . ~ k in and ~ k out

are, respetively, inoming and

out-going wave{vetors; (;;) are the Euler

an-gles dening the frame transformation [5, 14℄; ()

are rotational eigenfuntions of the target; and

de-notes a omplete set of rotational quantum numbers.

Amongthemoleulesonsideredhere,onends

spher-ial,symmetriandasymmetri{tops. Ineahofthese

three ases, one should observe the appropriate

rota-tional quantum numbers, eigenfuntions and the

or-ret degeneraies of rotational levels. The rotational

eigenfuntions for both spherialand symmetri{tops

arewrittenas

JKM ()=

2J+1

8 2 D J KM

(); (7)

where D J

KM

are the well{known Wigner rotation

ma-tries[14℄;J isthetotalmoleularangularmomentum;

andKandM are,respetively,itsprojetionontothe

quantization axisof moleular and laboratory frames.

Rotational levels of spherial{tops present (2J+1) 2

{

fold degeneraies,relatedto K and M quantum

num-bers [5℄. For suh systems, the rotational exitation

rosssetionsaregivenby

d

d

(J !J 0 ; out )= 1 2 1

(2J+1) 2 J X K;M= J J 0 X K 0 ;M 0 = J 0 k J 0 k J Z 2 0 djf

JKM !J 0 K 0 M 0 j 2 : (8) where k J 0 andk J

areoutgoingandinomingwavevetormoduli,respetvely. Symmetri{toprotationallevels,on

the otherhand,are (2J+1){folddegenerated [7℄. Therosssetions, remindingthat degeneraiesare assoiated

onlywithM quantumnumber,arewrittenas

d

d

(JK !J 0 K 0 ; out )= 1 2 1

(2J+1) J

X

M= J J 0 X M 0 = J 0 k J 0 K 0 k JK Z 2 0 djf

JKM !J 0 K 0 M 0j 2 : (9)

Forasymmetri{tops,K isno longer agood quantum number,and the rotationaleigenfuntions, s

JM

(), are

givenbysymmetry{adaptedlinearombinationsofsymmetri{topeigenfuntions[15℄:

s JM ()= J X K=0 1 X =0 a J KM s JKM

(); (10)

where s JKM ()= 1 p 2 [ JKM

+( 1)

J KM

℄ ;K>0 ; =0;1; (11)

s

JKM ()=

JKM

;K=0: (12)

Intheexpressionsabove, isapseudoquantum numberintroduedto distinguishtheasymmetri{top

eigenfun-tions[15℄;anda J

KM

areexpansionoeients. Therotationalexitationrosssetionsaregivenby

d

d

(J !J 0 0 ; out )= 1 2 1

(2J+1) J X M= J J 0 X M 0 = J 0 k J 0 0 k J Z 2 0 djf

JM !J 0 0 M 0 j 2 : (13) d

Both symmetriandasymmetri{topspresent

per-manentdipole moments. Totakedipole{related long{

rangeinterationsintoaount,weapplyaBornlosure

proedure to the dipole{allowed rotational exitation

ross setions (J = 0K = 0 ! J 0

= 1K 0

= 0 for

symmetri{tops and J = 0 = 0 ! J 0

= 1 0

= 0

forasymmetri{tops.) Wealso takeadvantadgeofthe

rotational energy transfer to avoid divergene of

dif-ferentialrosssetions atforwardsatteringdiretion.

TheBorn{losureproedureisarefullydisussed

(4)

where[7,8℄.

III Results and Disussion

Duetothenarrowspaingbetweenneighbouring

rota-tionallevelsofpolyatomimoleules,experimentaldata

onerningrotationallyresolvedrosssetionsarevery

sare. Among the moleules addressedin this work,

weouldndrotationallyresolveddiferentialross

se-tions for H

2

O [2℄ and CH

4

[16℄. Theoretial work is

also skethy. There are reported rotational exitation

ross setions only for CH

4

[5, 17, 18℄, SiH

4

[5, 18℄,

NH

3

[7,19, 20℄,H

2

O[21, 22, 23,24℄ andH

2

S[19,25℄.

Wepresentourresultsbelow.

H

2

O and H

2 S

InFigs.1and2weshowrotationallyresolved

dier-entialrosssetions(DCS)forwaterat2.14and6.0eV.

Ineahgure,therotationally elasti(00 !00)and

dipole{allowed(00 !10)transitionsareonsidered.

For bothenergies, we present twosets of alulations

obtainedat stati{exhange(SE) and stati{exhange

plus polarization (SEP) levels of approximation. For

omparisonpurposes,wealsoshowtheoretialSEP

re-sultsofJainandThompson[21℄,Gianturo[22℄,Greer

and Thompson [23℄ (6.0 eV only) and Gianturo et

al.[24℄ (00 !10rotational exitationonly).

Experi-mental dataofJunget al.[2℄isalso shown. OurDCS

fortherotationallyelastiexitationat2.14eVpresent

a maximum between 50 o

and 90 o

not notied either

in the experimental data [2℄ or in the other

alula-tions[21,22℄,althoughourSEPresultagreesverywell

withmeasurementat15 o

and30 o

. At6.0 eV,our

al-ulationsshowabetteragreementin shapewithother

results, but onestillobservesdisrepany around60 o

.

Itistobepointedoutthatourelasti(rotationally

un-resolved)DCSshoweddisagreementwithexperimental

dataandpreviousalulationsatinidentenergies

be-low 8.0eV, around60 o

[8℄. Itis notsurprising,

there-fore, that rotationally resolved ross setions present

a similar behavior. All alulations and experimental

DCSagreebetterforthe00 !10exitation,whihis

mainlydeterminedbydipolemomentinterations. Itis

interestingtoobservethatourresultsat2.14eVarein

betteragreementwith experimental data, lying below

the other alulations. This was also to be expeted,

sineourBorn{orretedrotationallysummedintegral

rosssetion(ICS)showedbetteragreementwith

mea-Figure 1. Rotationally resolved dierential ross setions

for e {H2O sattering at 2.14 eV. Upperpart:

rotation-ally elasti (00 ! 00) exitation. Lower part: dipole{

allowed(00 !10) exitation. Thik solid lines: present

results (SEP approximation); thin solid lines: present

re-sults (SEapproximation); dotted lines: Jain and

Thomp-son[21 ℄;long{dashedlines: Gianturo[22 ℄;dot{dashedline:

Gianturoetal.[24 ℄(00 !10exitationonly);bullets:

ex-perimentaldataofJungetal.[2℄.

(5)

Figure 3. Rotationally resolved dierential ross setions

fore {H

2

Osatteringat30eVforJ=0 !J 0

=0;1;2;3

exitations (summedover 0

). Solid lines: present results

(SEapproximation);stars: Gianturoetal.[24℄.

InFig.3,we ompareourSErotationallyresolved

DCS forH

2

OwithalulationsofGianturoetal.[24℄

forJ =0 !J 0

=0;1;2;3exitations,whereross

se-tionswith sameJ 0

weresummed over 0

. Onenoties

goodagreementinmagnitudeandverygoodagreement

in shape for all rotational transitions, reeting the

observedgood agreementof elasti(rotationally

unre-solved)DCS [8℄at 30eV.

Inorder toilustrate theonvergeneof presentSE

alulationsforwater,wepresentinFig.4,andalsoin

TablesIandII,rotationallysummedDCS(RSDCS)at

10,1520,and30eV.Foreahenergy,weshowRSDCS

summed fromJ =0uptoJ 0

=0;1;2;3;4and7. (For

agiven J 0

,wesumover 0

.) Wealso showelasti

(ro-tationallyunresolved)experimentalDCS of Johnstone

andNewell[26℄. Itislearthatonvergeneisahieved

forJ 0

=4,beausethedot{dashedlines,orresponding

to RSDCSupto J 0

=4,are oftenhiddenbythe solid

thikline(RSDCSuptoJ 0

=7). Oneanalsoobserve

signiant ontributions of rotationally inelasti

exi-tationsto RSDCSaround120 o

,where therotationally

elastiDCSpresentminima,andneartheforward

sat-Figure4.Rotationallysummeddierentialrosssetionsfor

e {H

2

Osatteringat10, 15,20and30eV,fromJ=0up

todierentJ 0

. (ForagivenJ 0

,rosssetionsweresummed

over 0

.) Thin solid lines: J 0

= 0; dotted lines: J 0

= 1;

short{dashedlines: J 0

=2;long{dashedlines: J 0

=4;thik

solidlines: J 0

= 7 [8 ℄; bullets: elasti (rotationally

unre-solved)experimentalDCSofJohnstoneandNewell[26 ℄.

InFig.5weshowSErotationally resolvedintegral

rosssetion(RSICS)forwater,alongwithalulations

of Gianturo et al. [24℄. J =0 ! J 0

=0;1;2;3

ex-itationsareonsidered,and weagainsumover 0

for

eahJ 0

. Ingeneral,thereisverygood agreementboth

in shape and magnitude, although some disrepany

isfound forthe dipole{allowedexitation (at all

ener-gies)andalso at6.0eVfor0 !0;2transitions. This

behaviorwastobeexpeted, onsideringtheobserved

behavior of elasti(rotationally unresolved) ross

se-tions[8℄(seealsodisussionofFigs.1and2.)

Next, we show SE rotationally resolved DCS for

H

2

S. We adress 00 ! 00 (Fig. 6) and 00 ! 10

(Fig. 7) exitations at 5, 7.5, 10, and 15 eV.

Calu-lations ofGianturo[19℄ (00 !10only) andof Jain

and Thompson [25℄ are also presented for omparison

purposes. One nds,in general, good agreementboth

in shape andmagnitude. Some disagreementis found

at10and15eVforthe00 !10exitation,though. It

istobeobservedthatourrotationallysummedintegral

rosssetion(ICS)forH

2

Sagreeswellwith

experimen-taldata[8℄.

RotationallyresolvedICS for00 !00and00 !

10exitationsareshowninFig.8(SEapproximation),

along with results of Jain and Thompson [25℄. One

(6)

ex-tationallyelastiICS.Ourresultspresentaverybroad

maximumaround10 eV,while alulationofRef. [25℄

showanarrowermaximum8eV.

Figure 5. Rotationally resolved integral ross setions for

e {H

2

Osattering. (Allresultsaresummedover 0

.)

Up-per part: Thik solid line: 0 ! 0 exitation (present

SE result);bullets withthinsolidline: 0 !0 exitation

(Gianturoet al.[24 ℄);thik long{dashedline: 0 !1

ex-itation(presentSEresult);squareswiththinlong{dashed

line: 0 !1exitation(Gianturoetal.[24 ℄). Lowerpart:

Thiksolidline: 0 !2exitation(presentSEresult);

dia-mondswiththinsolidline: 0 !2exitation(Gianturoet

al.[24℄);thiklong{dashedline: 0 !3exitation(present

SE result); triangles with thinlong{dashed line: 0 ! 3

exitation(Gianturoetal.[24℄).

ConvergeneofpresentSEalulationsforsuldri

aid is illustrated in Fig. 9. We show rotationally

summed DCS (RSDCS) at 10, 15, 20, and 30 eV.For

eahenergy, weshowRSDCS summedfrom J =0up

toJ 0

=0;1;2;3;4and7. (ForagivenJ 0

,wesumover

0

.) (Seealso TablesIII andIV.) Wealsoshowelasti

(rotationally unresolved) experimental DCS of Gulley

et al. [27℄. It islear that onvergene isahievedfor

J 0

=4,beausethedot{dashedlines,orrespondingto

RSDCS up to J 0

= 4, are often hidden by the solid

thik line (RSDCS up to J 0

= 7). One an also

ob-serve signiant ontributions of rotationally inelasti

o

allyelastiDCS presentminima,andneartheforward

sattering diretion (due to the dipole{allowed

transi-tion).

Figure6. Rotationallyelasti(00 !00) dierentialross

setions for e {H

2

S at 5.0, 7.5, 10.0 and 15.0 eV. Solid

lines: present results (SEapproximation); stars: Jain and

Thompson[25 ℄.

Figure 7. Rotationally resolved dierential ross setions

fore {H2Sforthedipole{allowed(00 !10)exitationat

5.0, 7.5, 10.0 and 15.0 eV. Solidlines: present results (SE

(7)

Figure 8. Rotationally resolved integral ross setions for

e {H2S sattering. Upper part: 00 ! 00 exitation.

Lowerpart: 00 !10exitation. Solid lines: presentSE

result;stars: JainandThompson[25 ℄.

Figure9.Rotationallysummeddierentialrosssetionsfor

e {H2Ssattering at10,15, 20and30eV,fromJ=0up

todierentJ 0

. (ForagivenJ 0

,rosssetionsweresummed

over 0

.) Thin solid lines: J 0

= 0; dotted lines: J 0

= 1;

short{dashedlines:J 0

=2;long{dashedlines:J 0

=4;thik

solid lines: J 0

= 7 [8℄; bullets: elasti (rotationally

unre-Figure 10. Integral ross setion (ICS) for water (upper

part)andsuldriaid (lowerpart). Solid lines:

rotation-allysummedICS(J 0

=0up toJ 0

=7);long{dashedlines:

ICSfor00 !00exitation;dottedlines:ICSfor00 !10

exitation;dot{dashedlines: rotationallysummedinelasti

ICS(J 0

=1uptoJ 0

=7).

Finally, in Fig.10 we showICS forbothH

2 O and

H

2

S. Foreah moleule, wepresentICS for00 !00

and00 !10rotationalexitations;inelasti

rotation-allysummed(IRS) integralross setion,from J 0

=1

up to J 0

= 7; and also rotationally summed ICS

(RSICS), from J 0

= 0 up to J 0

= 7. (Integral and

momentumtransferrotationallyresolvedrosssetions

arealso shown in TablesV andVI, respetively.) For

watermoleule,itislearthatthedipole{allowed

tran-sitionprovidesthemostsigniantontributiontoIRS

integralross setion, being even greater than the

ro-tationallyelastiexitation,forinidentenergiesbelow

10 eV. The less polar H

2

S moleule presents smaller

ICS for the dipole{allowed rotational exitation, and,

asaresult,itsIRSintegralrosssetionisonsiderably

smallerthantherotationallyelastiICS.Itis

interest-ingtoobservethat IRSintegralrosssetionforwater

isalmost ashigh asthe elasti(rotationally summed)

ICS,forE<7:5eV.Asaresult,oneshouldexpet

rota-tionalexitationstobeanimportantenergy{loss

(8)

ontain-XH

4

(X = C, Si, Ge, Pb, Sn)

TablesVIItoXIpresentourpreviouslypublished[5℄

dierentialrosssetionsforrotationalexitationofthe

XH

4

(X = C, Si, Ge, Pb, Sn) moleules at seleted

energies. Ourresults were foundto be in good

agree-ment with previous alulations for CH

4

[17, 18℄ and

SiH

4

[18℄. Our results for methane also showed good

agreement with experimental data [16℄. Ref. [5℄ also

shows tableswith ourintegralross setionsand with

ourmomentumtransferrosssetions.

XH

3

(X = N, P, As, Sb)

TablesXIItoXIVpresentourdierentialross

se-tionsfrom Ref.[7℄at 10eV, 20eV,and30 eV

respe-tively. Thereare othertheoretialelasti(rotationally

unresolved)resultsintheliteratureforNH

3 ,PH

3 ,and

AsH

3

[19, 20, 28℄ and experimental datafor NH

3 and

PH

3

[29℄, allin good agreement withour rotationally

summedrosssetions. Ourrotationallyresolvedross

setions for NH

3

were found to bein good agreement

withpreviousalulations[19,20℄(seeRef.[7℄). Tables

with ourintegralross setionsand with our

momen-tumtransferrosssetionsareshowninRef.[7℄.

CF

4 , CCl

4 , SiCl

4

, SiBr

4

, and SiI

4

Our rotational momentum transfer ross setions

are shown in Table XV. Tables with rotational

inte-gral ross setions are shown in Ref. [6℄. Due to the

largeperipheralatoms, these moleules were found to

have large rotationally inelasti ross setions (being

omparable in magnitude with respetive rotationally

elastirosssetions). Adetaileddisussionisfoundin

Ref.[6℄.

Tables

All tables are available only in the eletroni

version of the paper on the world wide web at

http://www.sbf.if.usp.br/bjp/Vol31/Num1/.

Aknowledgments

A.P.P.N.aknowledgessupportfromFunda~aode

AmparoaPesquisadoEstadodeS~aoPaulo(FAPESP).

M.H.F.B.,L.G.F.andM.A.P.L.aknowledge

par-tial support from Brazilian agenyConselho Naional

de Desenvolvimento Ciento e Tenologio (CNPq).

M. T. N. V. aknoledges both FAPESP and CNPq.

OuralulationswereperformedatCENAPAD-SP,at

CENAPAD-NEandat CCE-UFPR.

Referenes

[1℄ N.F.Lane,Rev.Mod.Phys.52,29(1980).

[2℄ K.Jung,Th.Antoni,RMuller,K.H.KohemandH.

[3℄ M. H.F.Bettega, L.G.Ferreira,and M.A.P.Lima,

Phys.Rev.A47,1111 (1993).

[4℄ D.M.Chase,Phys.Rev.A104,838(1956);A.Temkin

andK.V.Vasavada,Phys.Rev.160,190(1967);F.A.

GianturoandA.Jain,Phys.Rep.143,347(1986).

[5℄ M. T.doN.Varella,M. H.F.Bettega, and M. A.P.

Lima,Z.Phys.D39,59(1997).

[6℄ M.T.doN.Varella,A.P.P.Natalense,M.H.F.

Bet-tega, and M. A. P.Lima, Phys.Rev.A, aepted for

publiation(1999).

[7℄ M. T. do N. Varella, M. H. F. Bettega, A. J. R. da

Silva, and M. A.P.Lima, J.Chem. Phys.110, 2452

(1999).

[8℄ M.T.doN.Varella,M.H.F.Bettega,M.A.P.Lima,

andL. G.Ferreira,J.Chem.Phys.,aeptedfor

pub-liation(1999).

[9℄ A.P.P.Natalense,M.T.doN.Varella,M.H.F.

Bet-tega,L.G.FerreiraandM.A.P.Lima,submittedfor

publiationinBraz.J.Phys.(1999).

[10℄ M. Hayashi \Swarm Studies and Inelasti

Eletron-Moleule Collisions",editedbyL.C.Pithford,B.V.

MKoy,A.Chutjian,andS.Trajmar,NewYork,p.167

(1987).

[11℄ See, for example, L. G.Christophorou,J. K.Oltho,

and M. V. V.S.Rao, J.Phys.Chem. Ref.Data, 25,

1341(1996);L.G.Christophorou,J.K.Oltho,andM.

V.V.S.Rao,J.Phys.Chem.Ref.Data,26,1(1997);

L. G. Christophorou,J. K. Oltho, and Y. Wang, J.

Phys.Chem.Ref.Data,26,1205 (1997).

[12℄ G.B.Bahelet,D.R.Hamann,andM.Shluter,Phys.

Rev.B26,4199(1982).

[13℄ M. H.F.Bettega,A. P.P.Natalense, M.A.P.Lima,

and L. G.Ferreira, Int. J. QuantumChem., 60, 821

(1996).

[14℄ M. E.Rose, \ElementaryTheoryof Angular

Momen-tum",Wiley,NewYork,(1957).

[15℄ C.VanWinter,PhysiaXX,274(1954);A. Jainand

D. G. Thompson, Comput. Phys. Commun. 30, 301

(1983).

[16℄ R. Muller, K.Jung, K-H.Kohem, W. Sohn,and H.

Ehrhardt,J.Phys.B:AtMolPhys18,3971(1985).

[17℄ A. Jain, and D. G. Thompson, J. Phys. B 16, 3077

(1983); N.Abusalbi, R.A.Eades, T.Nam,D.

Thiru-malai,D.A.Dixon,D.G.Truhlar,andM.Dupuis,J.

Chem.Phys.78,1213 (1983);F.A.Gianturo, Phys.

Sri. T 23, 141 (1988); L. M. Bresansin, M. A. P.

Lima, and V. MKoy Phys.Rev. A 40, 5577 (1989);

F.A.Gianturo, J.A.Rodriguez-Ruiz,andN. Sanna

Phys.Rev.A52,1257 (1995).

[18℄ A.Jain,Z.Phys.D21,153(1991)

[19℄ F.A.Gianturo,J.Phys.B24,4627(1991).

[20℄ A.JainandD.G.Thompson,Phys.Rev.A,16,2593

(1983).

[21℄ A. Jain and D. G. Thompson, J. Phys. B 16, 3077

(9)

[23℄ R.GreerandD.Thompson,J.Phys.B27,3533(1994).

[24℄ F.A.Gianturo,S.Meloni,P.Paioletti,R.R.Luhese

ansN.Sanna,J.Chem.Phys.108,40021998.

[25℄ A.JainandD.G.Thompson17,443(1983).

[26℄ W. M. Johnstone and W. R. Newell, J. Phys. B 24,

3633 (1991).

[27℄ R. J. Gulley, M. J. Brunger and S. J. Bukman, J.

Phys.26,2813(1992).

[28℄ H.P.Prithard,M.A. P.Lima,andV.MKoyPhys.

Rev.A39,2392 (1989);T.N.Resigno,B.H.

Lengs-eld,C.W.MCurdy,andS.D.Parker,Phys.Rev.A

45,7800 (1992); C. Winstead, Q.Sun,V. MKoy, J.

L.daS.Lino,andM. A.P.Lima,Z.Phys.D24,141

(1992); J.M. Yuan, and Z.J. Zhang, Z.Phys.D28,

207(1993).

[29℄ T.W.Shyn(privateommuniation);D.T.Alle,R.J.

Gulley,S.J.Bukman,andM.J.Brunger,J.Phys.B

25,1533(1992);M.BenArfa,andM.Tron,J.Chim.

Imagem

Figure 2. Same as in Fig. 1 but for 6.0 eV. Short{dashed
Figure 3. Rotationally resolved dierential ross setions for e {H 2 O sattering at 30 eV for J = 0 ! J 0 = 0; 1; 2; 3
Figure 7. Rotationally resolved dierential ross setions
Figure 8. Rotationally resolved integral ross setions for

Referências

Documentos relacionados

we nd innitely many more new growing modes for open and losed universes.. The large sale struture of the universe

orretions perturbatively and show that at all orders the Casimir energy remains zero, sine eah=. term in the power series in

present all the experimentally known eletri dipole atomi transitions and energy levels for the O..

This paper reports the analysis of modal normalized frequeny ut-o of oaxial bers having four..

in some oordinate systems, like ylindrial, spherial.. and prolate

Disordered Magneti Media: Loalization Parameter,.. Energy T ransp ort V eloity and

ontribution and improve the Borel stability in both Dira strutures of the baryon

Laser beam inident on a slab of GRIN glass. where x is measured from beginning of GRIN