• Nenhum resultado encontrado

The influence of flow asymmetry on refractory erosion in the vacuum chamber of a RH degasser.

N/A
N/A
Protected

Academic year: 2021

Share "The influence of flow asymmetry on refractory erosion in the vacuum chamber of a RH degasser."

Copied!
8
0
0

Texto

(1)

w w w . j m r t . c o m . b r

Availableonlineatwww.sciencedirect.com

Original

Article

The

influence

of

flow

asymmetry

on

refractory

erosion

in

the

vacuum

chamber

of

a

RH

degasser

Pedro

Henrique

Resende

Vaz

de

Melo

a,∗

,

Johne

Jesus

Mol

Peixoto

a

,

Gustavo

Santos

Galante

a

,

Bruna

Helena

Malovini

Loiola

a

,

Carlos

Antônio

da

Silva

a

,

Itavahn

Alves

da

Silva

a

,

Varadarajan

Seshadri

b

aDepartmentofMetallurgicalEngineeringandMaterials,FederalUniversityofOuroPreto(UFOP),OuroPreto,Brazil bDepartmentofMetallurgicalEngineeringandMaterials,FederalUniversityofMinasGerais(UFMG),BeloHorizonte,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received13February2019 Accepted22June2019 Availableonline12July2019

Keywords: RHdegasser Flowasymmetry Refractoryerosion Modeling

a

b

s

t

r

a

c

t

NozzleblockageinRHreactorsisaseriousoperationalproblemsinceitcancausean asym-metricdistributionofthesteelflowinboththeup-legaswellasthelowerregionofthe vacuumchamber.Thisanomalycanalterthecirculationrateinadditiontoaffectingthe erosionprofileofthelowerpartofvacuumchamberrefractorylining.Inthisstudy,the effectofnozzleobstructiononliquidcirculationrate,wallshearstress,velocityprofilesand flowpatternhavebeenevaluated.Inaddition,refractoryerosioninthevacuumchamber hasbeenestimatedthroughphysicalmodelingandmathematicalsimulationresults.Four blockageconditionswerestudiedfordifferentgasflowrates.Therewasagoodagreement inphysicalandmathematicalmodelsresults.Asymmetricflowwasobservedinvacuum chamberlowerregioninasymmetricblockagecases,whichresultedinpreferentialwear ononechambersideinphysicalmodelingexperiments.Thewallshearstressanalysisin thevacuumchamberusingafluiddynamicmodelalsoindicatespreferentialerosion.When compared,refractoryerosionresultsinphysicalmodelingandshearstressinmathematical modelingpresentedgoodcorrelation.

©2019TheAuthors.PublishedbyElsevierB.V.Thisisanopenaccessarticleunderthe CCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1.

Introduction

Refractorywearcostsinvolvedintheproductionofsteel rep-resentsasignificantproportionoftheoverallmanufacturing cost.Hencethechoiceofthemostsuitablerefractorytypefor eachapplicationisofutmostimportance,consideringaspects

Correspondingauthor.

E-mail:pedrovazdemelo21@hotmail.com(P.H.Melo).

suchasresistancetohigh-temperatureandtoerosion.These notonlydependsonrefractorytypebutalsothefluiddynamic conditionsofmoltensteelincontactwiththerefractory lin-ing.Inaddition,thechemicalpropertiesoftheslagandsteel, atmosphereandtemperatureofprocessarefactorsthataffect refractory linings. Hencethe refractorystructure zoningis important and thechoice ismade takinginto account the physicochemicalcharacteristicsoftherefractoryandthe envi-ronmenttowhichitisexposed.Someaspectsofpredominant refractoriesusedinmetallurgyhavebeendiscussedinRef.[1].

https://doi.org/10.1016/j.jmrt.2019.06.036

2238-7854/©2019 The Authors. Publishedby Elsevier B.V. This is anopen access articleunder the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Fig.1–(a)AcrylicmodelmaindimensionsoftheRHreactor;(b)setupforRHreactorCFDsimulation;(c)boricacidtablets

distribution/areasforwallshearstressanalysis(CFD)inthevacuumchamber.

TheRHreactoriswidelyusedinsecondarysteelrefining duetoitsflexibilityinrespectofmetallurgicalfunctionssuch asdecarburization,degassing,homogenization, desulfuriza-tion,removalofnonmetallicinclusionsandalloyingadditions

[2].ThenozzleblockageisarecurrentproblemintheRHand maydirectlyinfluencethefluidbehavior,especiallyinthe vac-uum chamber(VC).The uniformgas distributionand flow patterngetsaltered,incaseofasymmetricobstruction,and consequently,thecirculationratealsoisadverselyaffected

[3–5].

Theincreaseinliquidsteelcirculationrateisalsorelatedto theaccelerationofrefractoryliningerosion.Amongthe possi-blerefractoryweartypes,erosionisthemostaggressivetothe lininglife,especiallyintheupanddownlegsaswellastheVC lowerregion.Theerosionisduetoliquidsteelandslagflow, whichgraduallyremovestherefractorybrickssurfacelayer

[6].

Evaluationofwallshearstressdistribution,via mathemat-icalmodeling,helpstopredictrefractoryliningerosion.The maximumshearstresspointisthepreferentialpointofwear

[7].Luoetal.[8]alsousedmathematicalmodeling,validated bysimulationsinacoldmodel,tocalculatecirculationrate andmixingtime,aswellaswallshearstresstopredict pref-erentialrefractorieswearintheRHreactor.Thepresentwork aimstoanalyzeandcharacterizetheinfluenceofnozzle block-age,leadingtoasymmetricflowanditseffectoncirculation rateandrefractoryerosion.

2.

Materials

and

methods

2.1. Physicalmodeling

Fig.1givesthe maindimensionsofthe RHreactormodel, builtinacrylicwithascale factor=1:7.5.The

dimension-lessparameters,namelytheFroudenumber(Fr)andflow(NVa)

serve assimilarity criteria betweenprototype andphysical model.Thegasinjectionnozzlesdiameterwascalculatedby modifiedFroudenumber(Frm).Adiscussionofsimilarity

cri-teriaasappliedtoRHdegassercanbefoundinSeshadriand Costa[9].

Fr=V2/gD;N

Va=G/D2V;Frm=U2g/Dgl (1)

whereVisliquidvelocity;gandlarethedensityoftheliquid

andgas;Disthelegsinnerdiameter;gisthegravity acceler-ation;UisthegasvelocityinthenozzleandGisthegasflow rateinthenozzles.

Forboththephysicalandmathematicalsimulations,aRH reactormodelwith16gasinjectionnozzles(2.4mminternal diameter),distributedsymmetricallyintworingshavebeen considered.Fourdifferentconditionswere studied,namely: Condition1:noblockage;Condition2:asymmetricblockage of8nozzles;Condition3:asymmetric4-nozzleblockage; Con-dition4:symmetricalblockageof8nozzles.Fig.2showsthe simulatedblockageconditions.

2.1.1. Circulationrate

Thecirculation ratein the RHdegasser hasbeen assessed bytheconductimetrytechnique,asshowninprevious stud-ies[4,9–11].Itconsistsofinjectingapulse-shapedpotassium chloridesolutionintotheVCintheportionnearofthe up-leg.Aconductivitysensorwaspositionedinthedown-legfor continuouslymeasuringthesaltconcentrationvariation. Con-centrationvalueswereevaluatedbyadataacquisitionboard connectedtoacomputer,whichstoresandprocessesthedata

[4].ThecirculationratewascomputedusingEq.2.Thefour cloggingconditionsweresimulatedforgasflowratesof80,

(3)

Fig.2–(a)Condition1;(b)Condition2;(c)Condition3;(d)

Condition4.

90,100,110, 120,140L/min.Thereportedcirculationrateis theaverageof10experiments.

Q=C·Mwater/Ar (2)

whereQisthecirculationrate(kg/s);Cistheconcentration variationingofKCl/kgofwater;Mwateristheamountofliquid

inthereactorinkg;Aristheareaoftheregioncorresponding

tothepassageofthefirsttracerpulseundertheconcentration versustimecurve(gofKCl.s/kgofwater).

2.1.2. Flowprofilepattern

TocharacterizetheflowinsidetheVC,200mlofdyetracer,was injected50mmbelowtheRHup-leg.Acamerawaspositioned abovetheVCtovisualizethechamberbottom.Frameswere selectedinordertoevaluateandcomparethedyescattering andpathintheVCfortheproposedblockageconditions.The conditionsC1andC3forthe100L/mingasflowwere simu-lated.

2.1.3. Refractoryerosionsimulationinthevacuum chamber

Boricacid(7g)pressed(3000kgf)onmetallicplateswereused tosimulaterefractoryerosion.Boricacidissolubleinwater. Asthewaterpassesthroughthetabletsurface,boricacidis graduallyremoved,whichsimulatestherefractorieserosion accordingtothetechniqueproposedbySuetal.[12].

Theregionselectedforthis studywasthelowerportion ofthe VC,asit hasashorterrefractorylifeifcomparedto otherreactorregions[13].Ineachexperiment,6tabletswere used(A–F),distributedsymmetricallybytheVCataheight of3.5cm(Fig.1c).Thetabletswereweighedbeforeandafter theexperimenttoquantifytheweightloss. Photosofeach tabletweretakenbeforetheexperimentstomeasurethearea ofthetablet’scontactfacewithwaterwhichweremeasured andanalyzedthroughthefreesoftwareImageJ.Theresultsin termsoferosionrate(mm/min),wasgivenaccordingtoEq.3. ErosionRate= m/(b·A0·t) (3)

wheremisthetabletsmasschange(g);bistheboricacid

density(g/mm3);A

0istheinitialarea(mm2)andtisthe

exper-imentaltime(min).

After tablets positioning into the VC, the test has been started, promoting liquid circulation between the VC and the ladle.Thefour blockageconditionstogasflowratesof 100 and 140L/min were simulated. Three tests were per-formedforeachflowrate.Thetimeofeachexperimentwas 2min.

2.2. Mathematicalmodeling

Thegeometryusedinthesimulationswasbuiltusingthe soft-wareDesignModeler.Itsdimensionsarecompatiblewiththe physicalmodeldimensions.Themeshindependencestudy was performed bycomparingthe resultsofthe circulation rate obtained with meshes ofvaried sizes. Themesh was constructedbytheMeshingModelersoftware,themesh ele-mentsizingusedwas18mminthelowervessel,4mmmesh in the up-leg and rest of the VC and 5mm mesh in the down-leg.Therefore,themeshwasabout1millionelements and413,000gridpoints.Themathematicalsimulationswere performedthroughCFX18.2software(Ansys®).Inthe math-ematical model was assumedturbulent three-dimensional flow;incompressibleNewtonianfluids(theexpansionofthe gaswasdisregarded);isothermalsystem(at25◦C);ambient pressureequalto1atmandwaterandairstandardphysical propertiesat25◦C.Theturbulencemodeladoptedwasthek–␧ modelforthecontinuousphase(liquid),whileforthediscrete phase (gas), the dispersedphase zeroequation model was adopted.Itwasassumedthatthediscretephasehadthesame turbulent kinematicviscosity ofthecontinuous phase[14]. Theturbulencetransferbetweenthe phaseswasestimated bytheSatomodel[14].

Thefollowingconservationequationsweresolved:ofmass conservation ofeach phase, namely, waterand air;of vol-ume considered that the volumetric fractions sum of air and water is equal to 1; of turbulent kinetic energy and the rate ofdissipationofturbulencekinetic energy(model k–␧);ofthemomentumofeachphase(turbulentformofthe Navier–Stokesequations),inthethreeCartesiancoordinates (x,y,andz).FormoredetailsseePeixotoetal.[10].Basedon Ref.[10],theIshii–Zubermodelwasadoptedfordragforces, which ismoreappropriateforhigh particle concentrations

[14];themodelbasedontheFavreaverage(ormass-weighted average)wasusedtoevaluatethedragforcefortheturbulent dispersioninsituationsofknownvaluesofturbulent disper-sioncoefficient(CTD)[14]andforthewalllubricationforce,

Frank’smodelhasbeenused[10].

Theboundaryconditionsappliedtotheproblemare(see

Fig. 1b) asfollows. Non-slip condition appliedto all walls, regionswherethefluidhaszerovelocity.Injectioncondition: Gasisinjectedthroughnozzles(flowratesof80,90,100,110, 120and140(L/min)convertedinmassflowrates(kg/s)).The selectedflowregimeissubsonic,withaturbulenceintensity of5%(average).Freeslipconditionontheladlesurface.VC surface:with10cmairlayer-openingcondition,withpressure equaltoappliedvacuum.

Itisassumedthatthegasbubblediameterisconstant(the deformation,aswellasthebreakingandcoalescenceofthe gasbubbles,areneglected).Asinothercontributions[7,8,11], thecorrelationgivenbyEq.4(adaptedforladleagitationwith

(4)

gas[15],originallyfromRef.[16])isusedtoestimatethebubble diameter.

db=0.35



G2/g

0.2

(4)

whereGisthegasflow(Nm3/s)andgisthegravityacceleration

(m/s2).

The mathematical simulation has been carried out in steady state conditions. The first order advection scheme (Upwind)wasusedtosolvetheproposeddifferential equa-tions.Toreduceresiduesfluctuation,thephysicaltimescale controlof0.01sandamaximumof2100iterationswereused, whichweredividedinto300iterationswithoutturbulent dis-persionforce,300iterationsafterturbulentdispersionforce insertionand1500iterationswithadvancedsolutioncontrol option,coupledvolumetricfraction.Theconvergencecontrol was10−5(RMS,rootmeansquare).ThisprocedurefollowsRef.

[10].

Transient simulations were performed to evaluate the tracerdispersionintheVC.Tracerisrepresentedbythe Addi-tionalVariablesfunction,usingthevolumetricscalaroption (kg/m3). Thetracer injection point is shown in Fig. 1b, by

SourcePointtool,whichisasourcetermsimplyaddedtoa generalscalarequation[14].Thesteady-stateflowfieldisthen usedinordertoevaluatetracerdispersion.Atransient simu-lationlasting35sisenoughtodescribethedispersionasitcan beconfirmedbyphysicalmodelresults.

3.

Results

and

discussion

3.1. Circulationrate

Fig.3showsthecirculationrateresultsfordifferentgasflow ratesinthephysicalandmathematicalmodels.

Itcanbeseenthat, asthe gasflowinthe injector noz-zlesincreases, the circulationrate alsoincreases, which is inaccordancewiththeresultsreportedpreviously[4,17,18]. Thecirculationrate,incaseofasymmetricblockages(C2and C3),showed a considerable decrease relativeto the condi-tionwithoutblockages(C1).Insymmetricblockagescondition (C4),therewasnosignificantchangeinthecirculationrate. Theseresultsarecompatiblewithpreviousworks[3–5].There is good agreement between the experimental results and the valuespredicted bythe CFD model. This supportsthe assumptionthatthe mathematicalmodelisabletopredict thebiphasicflowbehaviorintheRHreactorandcouldbeused toevaluateotherparameters, suchasthewallshearstress ofthe reactorandcorrelateit withtherefractories erosion rate.

3.2. Flowandvelocityprofile

Thetracerflowpatternanalysisasafunctionoftimeforthe (C1)conditionindicatedsymmetricalscatteringbytheVC.The tracerpresentedthetendencytoflowalongtheVCsidewall. Theasymmetric4-nozzleblockage(C3)presentedpreferential flowthroughoneVCside.Inthiscase,thetracerscattering occurredasymmetrically.Theresultsobtainedinthe physi-calmodelexperimentsshowedagoodcorrelationwiththe

resultsobtainedthroughCFD,againsupportingthe mathe-maticalmodel.Fig.4showsthetracerdispersionintheVCas afunctionoftimeforblockageconditionsC1andC3via(a) physicalmodeland(b)mathematicalmodel.

Thepreferentialflowalongthewallcanbeexplainedby the higher velocityoftheliquid phasein thisregion com-paredtotheVCcentralregion(Fig.5).Theliquidentersthe VC athigh speed,carried by the gasinjected into the up-leg,and,asitspreadsandgetsinrecirculationzones,loses speed.The liquidonlyregainsspeed inthe impact region, thetransitionzonebetweenVCanddown-leg.Fig.5shows velocityvectors,calculatedintheVCcross-section,at3.5cm height.ConditionsC1andC4indicateasymmetrical distri-butionofthevectors.Ontheotherhand,conditionsC2and C3indicate highervelocityononeVCside,whichexplains the preferential flow.The symmetricalflow foundforcase C1andthefluidscatteringpatternbytheVCaresimilarto thepreviousflowcharacterizationresultsintheRHdegasser

[19–21].

3.3. Refractoryerosionsimulationinthevacuum

chamber

Fig. 6 presents the average erosionrates of the boric acid tablets,positionedinthe VC,forthe 4blockageconditions studied.Preferentialerosionwearisnotedonthetablets posi-tionedclosetotheup-leg.Intablet ¨A¨therewasgreaterwear, whilein ¨D¨justabovethedown-leg,wearseemstobe mini-mal.UnderconditionsC1andC4,erosionratesbetweenthe ¨B ¨and ¨F ¨aswellasbetween ¨C ¨and ¨E¨tabletsweresimilar,which indicatesflowsymmetryinthechamber.InthecasesC2and C3, the resultspresented preferential wearof the ¨B¨tablets comparedto ¨F ¨whichsuggestsasymmetricalflow.Astatistical hypothesis testconfirmingeneral,the tabletsaverage ero-sionintestswith140L/minwashigher thanincaseswith 80L/min,whichmayberelatedtotheincreaseoftheliquid localvelocity.

The wall shear stress distribution in the VC has been evaluated through computer simulation for the different obstructionconditions(Fig.7).AtconditionsC1andC4, sym-metrycanbeseeninthewallshearstressdistributioninthe VC,whichsignifiesflowsymmetry.InthecasesC2andC3, theshearstressdeviationtooneoftheVCsidesisdetected, thehighershearstressisobservedintheregion correspon-dent to the point ¨B¨in the physical model. Thewall shear stressdistributiondeviationindicatesasymmetricflowinthe VC.Inallcases,thewallshearstresswashigherinregions near the up-leg, due to the higher liquid velocity values, therefore,theyaremoresusceptibletoerosiondegradation. The increase in the gas flow rate and, consequently, the localliquid velocity,increases theshearstress on thewall surface

For analyzing the correlation between the erosion rate (physicalsimulations)andthewallshearstressintheVC, cal-culatedviaCFDintheregionsshowninFig.1c,the ¨A ¨position results were disregarded, due tothe impact ofair bubbles on the tablet’ssurface, which increase the erosionrate in the physicalmodel. For theother regions,the liquidphase isresponsibleforremovingmaterialfromthetablets.Itwas

(5)

Fig.3–Circulationrateasafunctionofthegasflowratefordifferentobstructionconditions.(a)Physicalmodeland(b)

mathematicalmodel.

Fig.4–DispersionandtrajectoryofthetracerasafunctionoftimeforC1andC3,gasflowof100L/min,via(a)physical

modeland(b)mathematicalmodel.

Fig.5–Velocityvectorsinthevacuumchambercross-section,attheheightof3.5cmfortheblockageconditions(a)C1;(b)

(6)

Fig.6–Erosionwearresultsonthephysicalmodelasafunctionofthepositioninthevacuumchamberfortheconditions

(a)C1;(b)C2;(c)C3and(d)C4.

Fig.7–WallshearstressintheVCfortheconditions(a)C1;(b)C2;(c)C3;(d)C4.

foundagoodcorrelationbetweentheparametersWallShear StressandErosionRate(Eq.5):

WallShearStress (Pa)=5.47ErosionRate(mm/min)r2=0,76(5)

whichvalidatestheuseofwallshearstressdistribution anal-ysistopredictpreferentialerosionwearpoints.

Thedistributionofwallshearstressoftheupanddown legswasanalyzed(Fig.8).TheC1andC4casesshowed sym-metryinthestressdistribution,whichindicatessymmetrical flowinbothlegs.Ontheotherhand,thecasesC2andC3

pre-sentedanaccumulationofstressesintheregionoppositethe nozzleblockages,whichindicatesapreferentialflowofliquid ononesideoftheup-leg.Theflowdeviationisalsoindicated fordown-leg.Theup-legpresentshigherlevelsofwallshear stressthanthedown-leg,sinceitisthemomentumtransfer regionbetweengasandliquidbubbles.TheC2andC3cases presentedlowerlevelofwallshearstressinthedown-legdue tothelowercirculationrateresultingfromtheobstruction.

Thewallshearstressvaluesshown inFig.8aare about one order of magnitude higher than the results reported in thework ofLuo et al.[8], who performed a

(7)

mathemat-Fig.8–Wallshearstressoftheupanddownlegsforthe

100L/mingasflowratefortheconditions(a)C1;(b)C2;(c)

C3;(d)C4.

ical simulation of a physical model on a 1:5 scale. This difference is due to the fact that Luo et al. [8] worked withgasflowsbetween15L/minand35L/min,muchlower than the values adopted in this study, from 100L/min to 140L/min.

In industrial practice, the preferred wear points of the refractoryliningarepositionedintheimpactzone,justabove thedown-leg,differentfromtheresultsuggestedbythewall shearstressanalysis.Thisfactindicatesthatinadditionto erosion,otherwearphenomenamayactintheregion,such asthedissolution(MgOandCr2O3oftherefractory),resulting

fromchemicalreactionsbetweenrefractory,slagandalloying elements(corrosionwear).Theslagformedinfunctionofthe oxygenblowthroughalanceinaVC,likeinRH-TOPprocess

[22], is certainly unsaturated in respect of the main con-stituentsoftherefractorybricks,andextremelyfluid,which shouldfavordissolutionofsomecomponentsoftherefractory intheslag.Consideringthatthisprocessathightemperatures (withoutkineticrestrictionregardingthe chemicalreaction stage)iscontrolledbymasstransfer,themasstransfer coef-ficientin the slag can be used toevaluate the dissolution potential.Thisisproportionaltotherelativerefractoryslag velocityiftheinterfacerenewaltheoryisadopted(Eq.6)[23]. Thisway,onecanrelatethemasstransferratewithavelocity index(I)asgivenbyEq.6,definedbytheratiooflocal veloc-itytothemaximumvelocityoftheliquidinapredetermined regionforthefourconditionsstudied.Whiledeterminingthe

velocityindexinashellintheVClocatedabovethe down-leg, 1cm away from the wall (Fig. 9), it can be seen that, in casesC1 and C4, the point of maximum velocityindex (region sensitiveto greater masstransfer),is inthe region oftransitionbetweentheVCandthedown-legandisgiven byEq.7.IntheC2andC3cases,thepointsofgreatestvalue of Iare shifted to the chamberside. For this analysis, the ¨shell ¨was selected onlyforhalf ofthe VCabove the down-leg,asitistheregionwiththehighestprobabilityofcontact betweenrefractoryand materialsthat causeits dissolution (FeO,slag,etc.).

k=2



Div L (6) I= v vmax (7) wherekisthemasstransfercoefficient;Di isthediffusion

coefficientoftheconstituentsoftherefractoryintheslag;Iis theliquidvelocityindex;Listhecharacteristiclengthandvis theliquidvelocity,givenbyCFDresults.

4.

Conclusions

The refractory erosion in the vacuum chamber of the RH reactorwasanalyzedthroughphysicalandmathematical sim-ulations.Itcanbeconcludedthat:

The circulation rate presented asignificant decrease in casesofasymmetricblockages(C2andC3)whencompared tothecasewithoutblockage(C1);

ThetracerflowpatternforconditionC1indicated symmet-ricalscatteringbythe VC.However,C3conditionpresented preferential flow through one side of the VC, indicating asymmetricflow.BothbehaviorsarereproducedbyCFD cal-culations;

Inthephysicalmodel,preferentialerosionwasnotedon thetabletinsertspositionedneartheup-leg.Underconditions C1andC4,erosionratesatsymmetricalpositionswere sim-ilarasexpected.InC2andC3cases,preferentialwearofthe tabletswasobservedononesideoftheVC,resultingfromthe asymmetricflow;

Themathematicalsimulation,throughwallshearstress, wasabletopredictpointsofhighererosionwearintheVC;

Itissuggestedthatabovethedown-leg,thereisanother wearmechanismacting,namelychemicalattackofthe refrac-tory(corrosion).Thus,thisisacriticalpointtothelininglife oftheRHreactor.

Fig.9–Liquidvelocityindex(I=v/vmax)toindicatepreferredregionsforcorrosionwearinashellabovethedownlegfor

(8)

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

Theauthors wishtoacknowledgethehelpprovidedbythe research institutions in Brazil, namely CNPq, CAPES and FAPEMIG.

r

e

f

e

r

e

n

c

e

s

[1]Ertu ˘gB.Classificationandcharacteristicsofpredominant refractoriesusedinmetallurgy.AdvEngForum2018;26:9–21.

[2]TembergenD,TeworteR,RobeyR.RHmetallurgy. MillenniumSteel2008:104–8.

[3]ZhuB,LiuQ,ZhaoD,RenS,XuM,YangB,etal.Effectof nozzleblockageoncirculationflowrateinup-snorkelduring theRHdegasserprocess.SteelResInt2016;87:136–45.

[4]SilvaCA,SilvaIA,deCastroMartinsEM,SeshadriV,Perim CA,VargasFilhoGA.Fluidflowandmixingcharacteristicsin RHdegasserofCompanhiaSiderúrgicadeTubarão,and influenceofbottomgasinjectionandnozzleblockage throughphysicalmodellingstudy.IronmakSteelmak 2004;31:37–42.

[5]LinL,BaoY,YueF,ZhangL,OuH.Physicalmodeloffluid flowcharacteristicsinRH-TOPvacuumrefiningprocess.IntJ MinerMetalMater2012;19(6):483–9.

[6]KumayasuT.Damageofrefractoriesinsecondary steel-refining.JTechAssocRefrac2016;36(3):158–64.

[7]LingH,ZhangL,LiuC.Effectofsnorkelshapeonthefluid flowduringRHdegassingprocess:mathematicalmodelling. IronmakSteelmak2016;1:1–12.

[8]LuoY,LiuC,RenY,ZhangL.Modelingonthefluidflowand mixingphenomenainaRHsteeldegasserwithoval down-legsnorkel.SteelResInt2018:1–13.

[9]SeshadriV,CostaSLS.ColdmodelofRHdegassing.TransISIJ 1986;26:133–8.

[10]PeixotoJJM,GabrielWV,deOliveiraTAS,SilvaCA,SilvaIA, SeshadriV.Numericalsimulationofrecirculatingflowand

physicalmodelofslag–metalbehaviorinanRHreactor: applicationtodesulfurization.MetallMaterTransB 2018;49:2421–34.

[11]KishanPA,DashSK.Predictionofcirculationflowrateinthe RHdegasserusingdiscretephaseparticlemodeling.ISIJInt 2009;49(4):495–504.

[12]SuCJ,ChouJM,LiuSH.Effectofbottomblowingconditionon refractoryerosionintheironmakingsmelterbywater modeling.MaterTrans2010;51(9):1586–93.

[13]HubbleDH,RusselRO,VernonHL,MarrRJ.Steelmaking refractories.In:FruehanRJ,editor.Themaking,shapingand treatingofsteel.Pittsburgh(PA):AISESteelFoundation;1998. p.227–90[chapter4].

[14]AnsysInc.ANSYSCFX—SolverTheoryGuide[Internet]. Release18.2.Canonsburg(PA):ANSYS;2017.

[15]JohansenST,BoysanF.Fluiddynamicsinbubblestirred ladles:partII.Mathematicalmodeling.MetallMaterTransB 1988;19B:755–64.

[16]DavidsonJF,SchülerBOG.Bubbleformationatanorificeina viscousliquid.TransInstChemEng1960;38:105–15.

[17]ParkYG,YiKW,AhnSB.Theeffectofoperatingparameters anddimensionsoftheRHsystemonmeltcirculationusing numericalcalculations.ISIJInt2001;41(5):403–9.

[18]MukherjeeD,ShuklaAK,SenkDG.Coldmodel-based investigationstostudytheeffectsofoperationaland nonoperationalparametersontheRuhrstahl-Heraeus degassingprocess.MetallMaterTransB2017;48: 763–71.

[19]ZhuB,ChattopadhyayK,HuX,ZhangB,LiuQ,ChenZ. OptimizationofsamplinglocationintheladleduringRH vacuumrefiningprocess.Vacuum2018;152:30–9.

[20]ChenG,HeS,LiY,GuoY,WangQ.Investigationofgasand liquidmultiphaseflowintheRheinsahl-Heraeus(RH)reactor byusingtheEuler–Eulerapproach.JOM2016;68(8):2138–48.

[21]GengDQ,LeiH,HeJC.Simulationonflowfieldandmixing phenomenoninRHdegasserwithladlebottomblowing. IronmakSteelmak2012;39(6):431–8.

[22]WangYN,BaoYP,CuiH,ChenB,JiC.Finaltemperature predictionmodelofmoltensteelinRH-TOPrefiningprocess forIFsteelproduction.JIronSteelResInt2012;19(3):1–5.

[23]TosunI.Modellingintransportphenomena:aconceptual approach.Amsterdam(NL):Elsevier;2002.

Referências

Documentos relacionados

Tecnologicamente temos diversos programas específicos de (TCFC), para a obtenção de mensurações lineares, portantoiremos realizar um estudo comparativo entre dois

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

[r]

During the simulation of rod forward micro extruding characterized by wave h = 10µm and λ = 40µm, at the interface billet – container, following distributions of effective

mulheres. outra das estratégias, muito visível em Londres e Paris, foi a de criar espaços alternativos de exposição só para mulheres, algo que não agradava a todas, pois

The two points considered at the alternate sides, of the tangents through the diameter of the circle, and then the line joining these points divides the circle

Regarding short-term prediction of traffic flow only, a dynamic wavelet NNet model was used to predict hourly traffic flow, including time of the day and day of the week as variables

Resultados: Obteve-se amostragem de 18 artigos publicados, os cuidados considerados mais importantes para prevenção de pneumonia associada a ventilação mecânica adotados