• Nenhum resultado encontrado

Braz. J. Phys. vol.31 número2

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.31 número2"

Copied!
5
0
0

Texto

(1)

Analysis of SiO

2

Thin Films Deposited by PECVD

Using an Oxygen-TEOS-Argon Mixture

CarlosE. Viana, Ana N. R.da Silva,NiltonI. Morimoto,

LSI-EPUSP,S~aoPaulo,SP, Brazil

and OlivierBonnaud

GMV,UPRESA6076, Universityof RennesI,Rennes,Frane

Reeivedon15May,2000

This study analyses the inuene of the argon ow on the Plasma Enhaned Chemial Vapor

Deposition(PECVD)of silionoxidethinlmsbyusingTEOSassilion soure. Theargonow

inreasesthedepositionrate,howeveritalsoanreatessomedefetsinthedepositedlm. Several

haraterizationtehniqueswereusedtoanalyzethedepositedlms. Thepreseneofargon,inthe

gasphase,modiestheplasmaomposition,thesurfaeroughnessofsilionwafer,andthesurfae

reation. Theoptimumargon owranges between65and 80sm to obtaina silion oxide thin

lmwithhighqualityintermsofrefrativeindex,smoothness,anduniformity.

I Introdution

Plasma Enhaned Chemial Vapor Deposition

(PECVD) by using tetraethylorthosiliate (TEOS),

as silion soure, isawell-known tehnique to deposit

silionoxidethinlms[1,2℄.Theadvantageofthis

teh-niqueistodepositsilionoxidewithahighrateandat

lowtemperature,that isompatiblewithalargerange

ofappliations. Indeed,aswellinverylargeintegrated

iruitproesswithverythinjuntionsasinlargearea

eletronis usingglass substrates,atemperaturelower

than600 Æ

Cisrequired[3℄. However,forthisratherlow

temperature, the silion oxide lm an present

stru-tural and eletrial defets. Thus, additional studies

areneededtooptimizetheproesstoimprovethe

ma-terial. Awaytomodifythelmpropertiesistohange

the dissoiation onditions of TEOS and thus to add

agas in theplasma. We propose, in this work,to use

a mixture of argon, oxygen and TEOS in the plasma

[4℄. Then,weanalyzetheinueneoftheargonowon

the silionoxide thin lmsdepositedby PECVDonto

silion substrate. The presene of argon modies the

plasma omposition and the deposition rate and also

anreatesomedefets,moreespeiallyattheSi/SiO

2

interfae. The main objetiveis thus to optimize the

qualityofthe silionoxidelm byhangingtheargon

ow.

Afterapresentationoftheexperimentalonditions

of the developed proess, several explanations of the

analysesandoptimalonditionsaredrawn.

II Experimental

Thehome made PECVD luster tool system, used in

this study, was desribed before [5,6℄. It has three

proesshambers,aloadlokandasample

manipula-tionhamber. Silionwafers(100),p-type,10-20.m,

75 mm in diameter were used assubstrate. The

sub-strateswereleaned usingthepiranhaandRCA

stan-dard leaning proesses followed by a dip in diluted

HF. The silion oxide depositions were arried out in

theonditionspresentedin Table1. TheTEOS,

oxy-gen, and argon gases are mixed in a speial hamber

before entering theproess reatorto guarantee a

ho-mogeneousmixture. Theargonow,expressedinsm,

istheanalyzedparameter.

From Ellipsometry measurements, using a

wave-length of 632.8 nm, the thikness and the refrative

indexweredetermined. Forthe wet ethingrate

mea-surement,weusedadilutedHFsolution(1:100).

The Composition of the plasma, in term of

moleulesand radials,isdedued from Optial

Emis-sion Spetrosopy (OES). Fourier Transform Infrared

Spetrosopy(FTIRS)wasusedtodeterminethe

hem-ialbonding statesof the lms. To evaluatethe

on-tamination as well at the Si/SiO

2

interfae as in the

(2)

Table1: proessparametersusedinallthesilionoxide

depositionproesses.

TEOSow(sm) 6.5

Oxygenow(sm) 450

Argonow(sm) 0to200

Proesspressure(Torr) 1

Temperature( Æ

C) 375

RFpower(W) 400

Distanebetweeneletrodes(mm) 10

Afterthedepositionproess,somesampleswere

an-nealed in a onventional furnae at 600 Æ

C during 12

hours, aluminum ontatMOS apaitorswere

imple-mentedforI-Vmeasurements.Thealuminumlayerwas

annealed at430 Æ

Cin forminggasduring 30min. The

nalapaitortestellareais300300m 2

.

III Results and Disussions

Theinueneofargonowonthedepositionand

eth-ingrateswereanalyzed.

Fig. 1showsthedepositionandethingratein

fun-tion of the argonow. One an observe tworegions.

Therst one(0-65 smof argon)in whih the

depo-sitionrate dereases, theseond one(100-200 smof

argon) in whih the deposition rate inreases. In the

rst region, the slight dereasing of the ething rate

showsthatthedensityofthedepositedlmsinreases.

This an be attributed to the argon bombardment of

the surfae, whih desorbs the ative speies. In the

gasphase,theeetoftheargonisnotsigniant,

de-spiteitshigheratomimassoftheargonionompared

withtheoxygen,beausethepartialpressureistoolow.

Intheseondregion,thesurfaebombardmentalways

inreasesbutthedepositionrateinreases,whihis

at-tributed to the higher ollision rate in the gas phase

promotingthedeompositionoftheTEOS[7,8℄. Butit

provokesalso struturaldefets asonrmed by AFM

and-Ramanresults.

Figure1. Depositionand ethingratesof thesilion oxide

lmsasa funtionof theargon ow. Aninreasingargon

owinduesrstadereaseandthenaninreaseofthe

de-positionrate withaorrelatedmodiation ofthe ething

The refrative index of the silion oxide lms was

1.4580.007andthuslosetothermaloxideone.

More-over,weobservedthat therefrativeindexhadno

sig-niantvariationin depth, during thewet ething

ex-periment. Thismeansthatdespitethevariationofthe

ethingrate,theompositionofthelmisalmost

on-stantandtheporosityremainslow.

1) OESanalysis

To determine the omposition of the plasma and

to understand the role of argon ow, OES analysis

was performed [7,8℄. Fig. 2 shows the oxygen,

ar-bon monoxide, and argon optial emission intensities

in funtionofargonow.

Figure 2. OESmeasurementsofthe O,CO and Ar

emis-sionintensityinthegasphaseduringdeposition. TheCO

emission inreases with the argon ow suggesting an

en-hanementoftheTEOSoxidation.

TheslightandonstantinreaseoftheobservedCO

emissionsuggestsanenhanementoftheTEOS

oxida-tionproessbytheargonaddedtothegasmixture. An

inreaseofO

2

emissionisalsoobservedthatmeansthat

theargonenhanesthegenerationofexitedoxygenin

theplasma.

2) FTIRSanalysis

Fig. 3showsatypialspetraofthedeposited

sili-onoxide. Fortheargonow(0-65sm),weobserved

theregularstrething,bendingandrokingabsorbane

bands of silion oxide lms and also the Si-OH

ab-sorbane band. For higher argonow(100-200 sm)

the Si-OH absorbane band was not deteted

show-ing low hydrogen inorporation during the deposition

[9,10,11℄. Moreover,theindependeneofthespetra,in

funtionoftheargonow,onrmsthealmostonstant

(3)

Figure 3. FTIRSspetraofsamplesdeposited with

dier-entargonowsaddedtothetotalux. Thethreeobserved

peaksorrespondtosilion-oxygen bonds;noSi-OH peaks

arepresent.

3) AFM analysis

Fig. 4 shows theAFM images of thesilion wafer

surfaeafterremovingthesilionoxidelayer.

First of all, an inrease of the argon ow, up to

100sm,leadstoaninreaseoftheaverageroughness

(seeTable2). Thisanbeexplainedbytheinreasing

bombardmentofthesilionsurfaeatthebeginningof

the deposition proess, by the morenumerous speies

presentintheplasma. Asmentionedabove,this

bom-bardmentalwaysinreaseswiththeargonow.

Forargonowshigherthan100sm,weobservea

strongdereaseoftheroughness. Thisbehavioranbe

explained by thebreakingof theadsorbedTEOS

sub-produtsatthesilionsurfaebythehigher

bombard-ment ofargonions. This bombardmentalso dereases

theinitialsilionroughness.

Moreover,oneanobservethepreseneofsmall

par-tilesatthesurfae,whihwerenotremovedbytheHF

solution treatment. These partiles are the unreated

[(Et-O)

3

Si-OH℄radialsremainingontothesilion

sur-fae. Aswellforthelowestasfor highestargonows,

the partile density is higher. This an be orrelated

to the deposition rate. When the deposition rate

in-reases,these adsorbedpartileshavenotreatedwith

oxygenandsomeofthemremainonthesurfaeandare

plasma bombardment, for high argon ows, promotes

aninreasingoftheroughnessanddefetsdensityofthe

silionsurfaeinreasingtheprobabilityoftrappingof

theunreated TEOSradials. Thisresultisonrmed

by-Ramananalysis.

Table 2: AFMmeasurementsobtained from the

sam-plesshowedin Fig. 4.

Argon Partiles/Area RMS Peak-Valley

Flow Density Roughness Roughness

(sm) (m

2

) (nm) (nm)

0 88 0.54 47

50 35 0.47 42

100 13 0.61 77

120 33 0.05 0.03

135 44 0.12 0.14

150 44 0.06 0.04

168 41 0.12 0.21

180 41 0.12 0.30

200 39 0.09 0.12

4.-RAMANanalysis

Puntualandlargedefets inthesilionoxidethin

lms are observed on -RAMAN images asshown in

Fig. 5.

Theso-alled\waferdefet"inthisgureisrelated

tothepre-existinglinedefetonthewafersurfae. We

expeted that the so-alled puntual defets have the

same origin. Fig. 6 shows the -RAMAN spetrum

madeinsidethepuntualdefet. ThepreseneofC=C

bondsonrmsthattheunreatedradialsaretrapped

bythesurfaestruturaldefets.

Thismeansthatthe\puntualdefets"are

arbon-based defets and ome from unreated TEOS

frag-mentsadsorbedat thesurfaeat thebeginningof the

deposition proess. Note that the wafer defets just

revealthis phenomenon. Oneannote that exept at

(4)

Figure4. AFMimagesofthesilionwafersurfaeafterremovingthesilion oxidelayer(usingadilutedHF 1:100H

2 O-DI

solution)andaordingtotheargonowvariation: a)withouttheargonow,b)100sm,)135smandd)150sm.

Figure5. -RAMANimageofsilionoxidelayerdeposited

withanargonow of135sm. Thesurfae appears

uni-formandsmoothexeptedatwaferdefets. Thesepuntual

defetsappearorrelatedtotheeetsobservedbyAFM.

Figure6. Typial-RAMANSpetrumofapuntualdefet

asshownFig. 5. Thearbonbondsonrmthepreseneof

2) EletrialCharaterization

Fig. 7shows typialJ-E urvesobtained from the

MOSapaitorsimplementedwithTEOSsilionoxide.

Table 3 shows the extrated parameters from the

J-Eurvesforseveralargonows. Theleakageurrent

density (J

LK

) values were obtained with a 4 MV/m

eletrialeld appliedtotheapaitors.

Figure 7. J-E urves from MOS apaitors implemented

with an argon ow of 65 sm. The annealing eet

de-reasestheleakageurrentdensityandinreasesthe

(5)

Table3: Leakageurrentand breakdown strength

a-ording the annealing time and as a funtion of the

argonowextratedfromJ-EurvesofFig. 7.

F

Ar

Annealing J

LK

(A)at E

BD

(sm) Time(h): 4MV/m (MV/m)

65 as-deposited 7:410 7

10.4

12 5:510

9

10.6

150 as-deposited 4:410 6

9.3

12 4:410

9

10.5

180 as-deposited 1:310 5

8.5

121:510 8

10.4

We anobserve an inreaseof theleakage urrent

densitywiththeargonow. Fortheas-deposited

sam-plesoneanobservethesamebehaviorafterannealing.

Theannealingeetivelydereasestheleakageurrent

density and inreases the breakdown strength. Thus,

thebestargonowrangesaround65sm.

IV Conlusions

Inordertoimprovethestruturalandeletrialquality

ofsilionoxidedepositedbyPECVDtehniqueandby

using TEOS assilion soure, we haveintrodued

ar-gon intheplasma. Wehavestudied silionoxidelms

depositedonmonorystallinesilionsubstrate. The

in-ueneofthepreseneofargonowin thereatorhas

dierent aspets. On one hand, whatever the argon

ow,therefrativeindex,measuredbyellipsometry,is

very lose to thermal oxide one that means that the

silionoxide isalwayslosetostoihiometri

omposi-tion. Ontheotherhand,aninreaseoftheargonow

dereasesrstthedepositionrateandtheninreasesit.

Inthe sametime,the roughnessof thesilionsurfae,

analyzed from AFM is ontinuously inreased due to

the bombardmentof additionalspeies present in the

plasma. Somepuntualdefets werealsodetetedbut

they appear at the strutural defets of the substrate

surfae. These arbon-baseddefets are more present

whenthedepositionrateinreasesasdetetedbyAFM

analysis beausetheyanberapidlyoverlayed.

Asaonlusion,by theargonowitispossibleto

get a silion oxide lm with high quality in term of

refrativeindex,smoothness,and uniformity. The

sili-onsubstrate surfaehasto befreeof defets to

min-imize puntual defets in thesilion oxide lm, whih

ould aet the eletrial behavior. Thebest results,

meansdenserlm,areobtainedforanargonowthat

rangesfrom65to80sm,thatorrespondsalsotothe

lowest leakageurrentdensity.

Aknowledgements

The authors aregrateful to Dr. M^onia A. Cotta,

N.M.HassanandDr. Sebasti~aoS. G.S.Filhoforthe

AFManalysis,toDr. M.L.P.Silvaforthe-RAMAN

measurements, to Dr. R. D. Mansano and Dr. L. S.

Zambon for their help at the leaning room, to

Car-losC. Nasimento and Gilberto K. Nishioka for their

tehnial support. Finanial support from FAPESP,

CNPq CAPES/COFECUB and FINEP are gratefully

aknowledged.

Referenes

[1℄ F.FraassiR.d'Agostino,andPFaviaJ.Eletrohem,

So.,139,2636 (1992).

[2℄ S.C.DeshmukhandE.S.Aydil,J.Va.S.Tehnol.B

14738(1996).

[3℄ K. Mourgues, F. Raoult, T. Mohammed-Brahim, D.

Briand,O.Bonnaud,Mat.Res.So.Symp.Pro.,471,

155(1997).

[4℄ C.E.Viana,A.N.R.daSilva,andN.I.Morimoto,

\Ar-gonInueneinthePETEOSSilionOxideDeposition

Proess", Pro. of International Conferene on

Miro-eletronisand Pakaging, Curitiba-PR (Brazil), 1998,

pp.481-483

[5℄ N.I. Morimoto, J.W.Swart, \A ClusterToolSystem

for Silion Oxide Deposition"; Pro. of X Congresso

daSoiedade Brasileira deMiroeletr^onia, Canela-RS

(Brazil),july1995,pp.393-409

[6℄ N.I. Morimoto, J.W. Swart\Developmentof a

Clus-ter Tool and Analysis of Deposition of Silion oxide

byTEOS/O

2

PECVD",RapidThermalandIntegrated

Proessing V, Mat. Res. So. Symp. Proeedings, vol.

429, 1996,pp.263-268.

[7℄ Y.Inoue, O.Tokai"Spetrosopi Studieson

Prepara-tionPlasmaSouresSi.Tehnol.,5,339(1996).

[8℄ R.Etemadi, C. Godet, and J. Perrin, Plasma Soures

Si.Tehnol.6,323(1997).

[9℄ P. Lange, L. Shmidt, M. Pelka, P. Hemiker, H.

BerntandWindbrake,J.Eletrohem.So.,139,1420

(1992).

[10℄ H.J.Shliwinski,etal.J.Eletrohem.So.,139,1730

(1992).

[11℄ S.K.Ray,C.K. Maiti, S.K.Lahiri, N.B.Chafrabarti,

Imagem

Fig. 1 shows the deposition and ething rate in fun-
Fig. 4 shows the AFM images of the silion wafer
Figure 4. AFM images of the silion wafer surfae after removing the silion oxide layer (using a diluted HF 1:100 H

Referências

Documentos relacionados

the low energy sattering of two fermions, in this theory, using a ut o (up to one loop), give the same results. as the alulation of the same quantities starting from the

the generalized GDH sum rule, whih are of interest to issues related to the spin of the proton as.. measured at high energies,

model: the presene of nonbaryoni \dark matter" in galaxies.. Using Newton's law

Studies of blak hole formation from gravitational ollapse have revealed interesting non-linear.. phenomena at the threshold of blak

We onsider the saling behavior in the ritial domain of superondutors at zero external

trap and laser system being built in Rio, to trap and perform high resolution spetrosopy on.. old hydrogen, is presented along with a disussion on the tehniques and

An ultrastati spaetime admits a globally dened oordinate system in whih the omponents of the metri tensor are time-. independent and the onditions g00 = 1 and goi =

mark the surfae of the Si/SiO2 substrate for loalization of the isolated SWNTs by using a