• Nenhum resultado encontrado

Braz. J. Phys. vol.31 número2

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.31 número2"

Copied!
14
0
0

Texto

(1)

CP Violation: Past, Present, and Future

Jonathan L.Rosner

EnrioFermiInstituteandDepartment ofPhysis

UniversityofChiago,Chiago,IL60637USA

Reeivedon3January,2001

We disussthe historyof CPviolation and itsmanifestationsinkaon physis, itsexplanation in

termsofphasesoftheCabibbo-Kobayashi-Maskawamatrixdesribingharge-hangingweakquark

transitions,preditions for experimentsinvolving B mesons, and thelight itan shedonphysis

beyondtheStandardModel.

I Introdution

CPsymmetryanditsviolationareimportantguidesto

fundamentalquarkpropertiesandtotheunderstanding

ofthematter-antimatterasymmetryoftheUniverse. In

thisreview,anupdatedversionofonepresentedearlier

in the year [1℄, we desribe past, present, and future

aspets of CP violation studies. After an illustration

of fundamental isrete symmetriesin Maxwell's

equa-tions (Se. II), we reall the historyof CP violation's

disovery[2℄ in the deaysof neutralkaons (Se. III).

The produt CPT sofar seems to be onserved, asis

expetedin loal Lorentz-invariantquantum eld

the-ories [3℄. Wethen disusstheeletroweaktheory's

ex-planationof CPviolation[4℄in termsofphasesof the

Cabibbo-Kobayashi-Maskawa(CKM) [4, 5℄ matrix in

Se.IV),andmentionsomepresenttestsofthistheory

with kaons(Se.V)B mesons(Se.VI), andharmed

partiles(Se.VII). ThefutureofCPviolationstudies

(Se. VIII) is veryrih, with awide varietyof

experi-ments relevanttophysisbeyondtheStandard Model

andthebaryonasymmetryoftheUniverse.

II Disrete symmetries in

Maxwell's equations

The behavior of the Maxwell equations under the

disrete symmetries P (parity), T (time reversal), C

(hargeonjugation),andCPTissummarizedinTable

I.Eahtermbehavesasshown.

UnderP,wehave

E(x;t) ! E( x;t); B(x;t)!B( x;t); (1)

r ! r; j(x;t)! j( x;t): (2)

Eletri elds hange in sign while magneti elds do

not,andurrentshangein diretion. UnderT,

E(x;t) ! E(x; t); B(x;t)! B(x; t); (3)

Magneti elds hange in sign while eletri elds do

not,sinediretionsofurrentsarereversed. UnderC,

E(x;t) ! E(x;t); B(x;t)! B(x;t); (5)

(x;t) ! (x;t); j(x;t)! j(x;t): (6)

Both eletri and magneti elds hange sign, sine

theirsouresandjhangesign. Finally, underCPT,

spaeand timeare inverted but eletriand magneti

eldsretaintheirsigns:

E(x;t)!E( x; t); B(x;t)=B( x; t): (7)

AfundamentaltermintheLagrangianbehavingas

EB,whileLorentzovariant,wouldviolatePandT.

Suhatermseemstobestronglysuppressed,inviewof

thesmallvalueoftheneutroneletridipole moment.

Its absene is a mystery, but several possible reasons

havebeenproposed(see,e.g.,[6℄).

TABLEI.BehaviorofMaxwell'sequationsunder

disretesymmetries.

Equation P T C CPT

rE=4 + +

rB=0

rB 1

E

t =

4

j

rE+ 1

B

t

=0 + +

III CP symmetry for kaons

Some neutral partiles, suh as the photon, the

neu-tralpion,andtheZ 0

(2)

not. The neutral kaon K 0

, disovered in 1946 [7℄ in

osmi radiation, was assigned a \strangeness"

quan-tumnumberS=1inthelassiationshemeof

Gell-Mann and Nishijima [8℄ in order to explainits strong

produtionandweakdeay. Produtionwouldonserve

strangeness,whiletheweakerdeayproesswouldnot.

For this sheme to make sense it was then neessary

thattherealsoexistananti-kaon,theK 0

,withS= 1.

As Gell-Mann desribed this sheme at a seminar

at the Universityof Chiago, EnrioFermi askedhim

what distinguished theK 0

from theK 0

ifbothould

deayto , asseemed tobeobserved. This question

led Gell-Mann and Pais[9℄ to propose that the states

ofdenitemassandlifetime were

K

1 =

K 0

+K 0

p

2

(C =+); (8)

K

2 =

K 0

K 0

p

2

(C = ); (9)

(10)

withtheK

1

allowedbyCinvariane(thenthoughtto

beapropertyofweakinterations)todeayto and

the K

2

forbidden to deay to . The K

2

would be

allowed to deay only to three-body nal states suh

as +

0

and thus would have a muh longer

life-time. It was looked for and found in 1956 [10℄. The

disoverythat theweakinterations violatedC andP

but apparentlypreservedtheprodutCP[11℄ ledto a

reastingoftheaboveargumentthroughthe

identia-tionCP(K

1

)=+(K

1

),CP(K

2

)= (K

2 ).

The K

1 {K

2

system an be illustrated using a

de-generate two-state example suh as a pair of oupled

pendula [12℄ or the rst exitations of a drum head.

Thereisnowaytodistinguishbetweenthebasisstates

illustratedinFig. 1(a),in whih thenodallinesareat

anglesof45 Æ

withrespettothehorizontal,andthose

inFig. 1(b),in whihtheyarehorizontalandvertial.

Figure1. Basis statesforrstexitationsof adrumhead.

(a)Nodallinesat45 Æ

withrespettohorizontal;(b)

hor-Ifaylandsonthedrum-headatthepointmarked

\", thebasis (b) orresponds to eigenstates. Oneof

the modes ouplesto the y; the other doesn't. The

basis in (a) is likethat of (K 0

;K 0

), while that in (b)

islikethatof(K

1 ;K

2

). Neutralkaonsareproduedas

in (a), while they deayas in (b), with they

analo-goustothe state. Theshort-livedstate(K

1 ,inthis

CP-onserving approximation) has a lifetime of 0.089

ns, whilethelong-livedstate('K

2

)lives600times

aslong,for52ns.

In1964Christenson, Cronin,Fith, and Turlay [2℄

found that indeed onein about500long-lived neutral

kaons did deayto +

, and one in about1000

de-ayedto 0

0

. Thestatesofdenitemassandlifetime

ouldthenbewritten, approximately,as

K

S

(\short")'K

1 +K

2 ;

K

L

(\long")'K

2 +K

1

; (11)

withaparameterwhosemagnitudewasabout210 3

andwhosephasewasabout45 Æ

. Sinethestatesof

def-inite massandlifetime were nolongerCPeigenstates,

CPhad tobeviolatedsomewhere. However,for many

yearswastheonlyparameterdesribingCPviolation.

Oneouldmeasureitsmagnitudeandphasemoreand

morepreisely(inludinglearningaboutRe()through

a study of harge asymmetries in K

L

!

l

), but

its origin remained a mystery. One viable theory

in-ludeda\superweak"one[13℄whihpostulatedanew

interation mixing K 0

=ds andK 0

=s

dbut with no

otheronsequenes.

KobayashiandMaskawaoeredanewopportunity

to desribe CP violation by boldly postulating three

quarkfamilies[4℄whenharm(the lastmemberof the

seondfamily)hadnotyetevenbeenrmlyestablished.

In the diagram of Fig. 2 desribing the seond-order

weak transition ds ! s

d through intermediate states

involvingpairsofquarksi;j=u;;twithharges2/3,

the phases of omplexweak ouplingsan have

phys-ial eets. As longas there are at least three quark

families, one annot redene quark phasesso that all

suhouplingsarereal,andoneangenerateanonzero

valueof.

Figure 2. Box diagram desribing the seond-order weak

mixingofaK 0

=dswithaK 0

=s

d. Thereisanother

dia-gramwithvertialW +

(3)

Thetime-dependeneofthetwo-omponentK 0

and

K 0

systemisgovernedbya22massmatrixM[14℄:

i

t 2

4 K

0

K 0

3

5

=M 2

4 K

0

K 0

3

5

; (12)

where M = M i =2, and M and are Hermitian

matries. Theeigenstates(11)thenorrespondto the

eigenvalues

S;L =m

S;L i

S;L

=2,with

' Im(

12

=2)+iImM

12

S

L

: (13)

UsingdataandthemagnitudeofCKMmatrixelements

one an show [14℄ that the seond term dominates.

Sine the mass dierene m

L m

S

and width

dier-ene

S

L

arenearlyequal,thephaseof

L

S is

about=4,sothatthephaseofisalso=4(mod ).

Itiseasyto modeltheCP-onservingneutralkaon

systemintable-topsystemswithtwodegeneratestates

[12℄. The demonstrationof CP violation requires

sys-tems that emulate Im(M

12

)6=0orIm(

12

)6=0. One

an ouple two idential resonant iruits

\diretion-ally" to eah other (see Fig. 3sothat theenergy fed

from iruit1 to iruit2 diersfrom that fed in the

reversediretion[15℄. Devieswiththispropertyutilize

Faraday rotationof theplane of polarization of

radio-frequenywaves;somereferenesmaybefoundin[16℄.

This asymmetriouplingalsoisinherentin the

equa-tionsofmotionofaspherial(or\onial")pendulum

in arotatingoordinate system [17℄, so that the

Fou-aultpendulumisademonstration(thoughperhapsnot

\table-top")ofCPviolation. Aballrollingwithvisous

damping in a rotating vase of elliptial ross setion

holdsmorepromiseforalaboratorysetting[16℄. Inall

suhasestheCP-violatingeetisimposed\fromthe

outside," leaving open the question of whether some

\new physis" isgoverningthe orrespondingeet in

partilephysis.

Figure3. Coupled\tank"iruitsillustratingtheK 0

K 0

system. TheouplingimpedaneZmustbeasymmetrito

emulateCPviolation.

IV Kobayashi-Maskawa theory

of CP violation

The interations of quarks with W

bosons are

de-sribedby

L

int =

g

p

2 [

U 0

L

W (+)

D

0

L

+H::℄; (14)

wheretheprimedquarksare \weakeigenstates":

U 0

2

6

6

4 u

0

0

t 0

3

7

7

5 ; D

0

2

6

6

4 d

0

s 0

b 0

3

7

7

5

: (15)

Intheweak-eigenstatebasis,themassterminthe

La-grangian,

L

m = [

U 0

R M

U U

0

L +

D 0

L M

D D

0

L

+H:: ℄; (16)

will involvea general33matrixM, whih requires

separateleftandrightunitarytransformations

R y

Q M

Q L

Q =

Q

(17)

toobtainadiagonal matrix

Q

withnon-negative

en-tries. Ifwedeneunprimed(mass)eigenstatesby

Q 0

L =L

Q Q

L ; Q

0

R =R

Q Q

R

(Q=U; D); (18)

theinteration Lagrangianmaybeexpressedas

L

int =

g

p

2 [

U

L

W (+)

VD

L

+H:: ℄; (19)

whereV L y

U L

D

is theCabibbo-Kobayashi-Maskawa

(CKM) matrix. As a result of its unitarity, V y

V =

VV y

=1,theZqqouplingsin theeletroweaktheory

are avor-diagonal. Sine it ontains no information

aboutR

U or R

D

, V providesonly partial information

aboutM

Q .

Fornu-typequarksandnd-typequarks,V isnn.

Sineitisunitary,itanbedesribedbynreal

param-eters. Relativequarkphasesaountfor2n 1ofthese,

leavingn 2

(2n 1)=(n 1) 2

physialparameters. Of

these,n(n 1)=2(thenumberofindependentrotations

in n dimensions) orrespond to angles, while therest,

(n 1)(n 2)=2,orrespondtophases.

Forn=2,wehaveone angle and nophases. The

matrix V then an always be hosen as orthogonal

[5, 18℄. For n = 3, we have three angles and one

phase, whih in general annot be eliminated by

ar-bitrary hoies of phases in the quark elds. It was

thisphasethat motivatedKobayashiand Maskawa[4℄

to introdue athird quarkdoublet in 1973when only

twowereknown. (Thebottomquarkwasdisoveredin

1977 [19℄, and thetop in 1994 [20℄.) The

Kobayashi-MaskawatheoryprovidesapotentialsoureofCP

(4)

substantial CP asymmetries in the deays of mesons

ontaining b quarks. The pattern of harge-hanging

weaktransitionsamong quarksisdepitedinFig. 4.

Figure 4. Pattern of harge-hanging weak transitions

amongquarks. Solidlines: relativestrength1;dashedlines:

relative strength 0.22; dot-dashed lines: relative strength

0.04; dotted lines: relative strength 0:01. Breadths of

levelsdenoteestimatederrorsinquarkmasses.

A onvenient parametrization of the CKM matrix

utilizesahierarhy[21℄wherebymagnitudesofelements

areapproximatelypowersofsin

'0:22,where

istheGell-Mann{Levy{Cabibboangle[5,22℄desribing

strangepartiledeays. The matrixmaybeexpressed

as

V = 2

6

6

4 1

2

2

A

3

( i)

1

2

2

A 2

A 3

(1 i) A

2

1

3

7

7

5 ;

(20)

whererowsdenoteu; ; tandolumnsdenoted; s; b.

We learn jV

b

j = A 2

' 0:0410:003 from the

dominant deays of b quarks, whih are to harmed

quarks [23, 24℄. Smaller errors are quoted in most

reviews [25℄ whih take dierent views of the

domi-nantly theoretial soures of error. As an indiation

that this number is still in some ux we note a new

measurementjV

b

j=0:0460:004bytheCLEOgroup

[26℄.) Similarly, we shalltake from harmess b deays

jV

ub =V

b

j=0:0900:025=( 2

+ 2

) 1=2

[27℄, leading

to 2

+ 2

= 0:410:11, whereas smaller errors are

quotedbymostauthors.

Figure 5. Unitarity triangle for CKM elements. Here

+i=V

ub =A

3

;1 i=Vtd=A 3

.

AsaresultoftheunitarityoftheCKMmatrix,the

quantitiesV

=A 3

=+i,V

td =A

3

=1 i,and

1form atrianglein the (;)plane (Fig. 5). Westill

do not have satisfatory limits on the angle of this

\unitarity triangle." Further information omes from

thefollowingonstraints:

1. Mixingof neutralB mesonsisdominatedbytop

quarkontributionsto graphssuh asFig. 2butwith

external quarksd

b for B 0

or s

b for B

s

. For example,

themasssplitting in thenonstrangeneutralB system

is

m

d

=0:4870:014ps 1

f 2

B B

B jV

td j

2

; (21)

where f

B

is the B meson deay onstant and B

B =

O(1)is the\vauumsaturationfator,"desribingthe

degree to whih graphs suh as Fig. 2 desribe the

mixing. Reentestimates[28℄givef

B p

B

B

=23040

MeV.Consequently,onends[23℄j1 ij=0:87

0:21. Neutral strangeB mesons are haraterized by

[29℄

m

s f

2

B

s B

Bs jV

ts j

2

>15ps 1

: (22)

Sine jV

ts

j ' jV

b

j is approximately known, this

information mainly serves to onstrain the produt

f

Bs p

B

Bs

and,giveninformationontheratioofstrange

andnonstrangeonstants[30℄,thevalueofjV

td

j,leading

toj1 ij<1:01. Thelargetopmass,m

t

=1745

GeV[31℄,isruialforthesemixings tobesolarge.

2. CP-violating K 0

{K 0

mixing through the box

graphsofFig. 2aountsfortheparameter[31℄

=(2:2710 3

)e i43:3

Æ

ImM

12 f

2

K B

K Im(V

2

td );

(23)

leadingtoaonstraint[23,24℄

(1 +0:39)=0:350:12 : (24)

Herewehaveusedf

K

=161MeVandB

K

=0:870:13

[32℄. If top quarkswere fully dominant the left-hand

sideofthis equationwouldbejust(1 ). Theterm

0.39in braketsisaorretionduetoharmedquarks.

Figure6. Regionof(;)speiedbyonstraintsonCKM

matrixparameters.Solidsemiirlesdenotelimitsbasedon

jVub=Vbj=0:0900:025;dashedarsdenotelimits0:66

j1 ij1:08basedonB 0

{B 0

mixing;dot-dashedar

denotes limit j1 ij<1:01 based onB

s {B

s

mixing;

dottedlinesdenotelimits(1 +0:39)=0:350:12based

onCP-violatingK 0

{K 0

mixing. Rays:1limitsonsin2

(seeSe.VI).Theplottedpointat(;)'(0:20;0:28)lies

(5)

The onstraints are plotted on the (;) plane in

Fig. 6. Also shown are the1 bounds on sin2, to

bedisussedpresently,fromanaverage0:490:23[24℄

of OPAL, ALEPH, CDF, BaBar, and BELLE values.

Theallowedregionislargerthanthatfavoredbymany

otheranalyses[25℄.

V The CKM matrixand

predi-tions for kaon physis

V.1 K

S;L

! rates

Ifwedene

+

A(K

L !

+

)

A(K

S !

+

) ;

00

A(K

L !

0

0

)

A(K

S !

0

0

) ;

(25)

the possibility of dierent CP-violating eets in

statesof isospinI

=2andI

=0[33℄ givesriseto

a parameter 0

suh that

+

= + 0

,

00

= 2

0

.

Thefollowingratioofratiosthenandierfromunity:

R (K

L !

+

)

(K

S !

+

) =

(K

L !

0

0

)

(K

S !

0

0

)

=1+6Re

0

: (26)

Theratio 0

=isexpetedtobeapproximatelyrealina

CPT-invarianttheory[14℄. AkeypreditionoftheKM

theory is that 0

=should beanumber oforder 10 3

.

TwotypesofamplitudesontributetoK!deays.

1. Tree amplitudes, involvingthequarksubproess

s !uud, havebothI =1=2 andI =3=2

ompo-nentsandthusontributetobothI

=0andI

=2

states. Ina standardonvention[21℄, tree amplitudes

ontain no weak phases, sine they involve the CKM

elementsV

ud andV

us .

2. Penguinamplitudes, involvingthequark

subpro-esss!dwithanintermediatelooponsistingofaW

bosonandthequarksu; ; t,andinteratingwiththe

rest of the system through one or more gluons, have

only I = 1=2 and thus an only ontribute to the

I

=0state. Thetopquarkin theloopgivesriseto

aweakphasethroughtheCKMelementV

td .

A relative weak phase of I

= 0 and I

= 2

states is thus generated in the KM theory, leadingto

0

=6=0. Eletroweakpenguinamplitudes,inwhihthe

gluononneting the s ! d subproess to therest of

the diagram is replaed by aphoton or Z 0

, an have

both I = 1=2 and I = 3=2 omponents and tend

toredue thepreditedvalueof 0

=. Onerangeof

es-timates [34℄ nds abroad and somewhat asymmetri

probability distribution extendingfrom slightlybelow

zero to above 210 3

. Others (see artiles in [35℄)

permitslightlyhighervalues.

ReentexperimentsonRe( 0

=)[36, 37,38,39℄ are

summarized in TableII.(The error in the average

in-ludesasalefator[31℄of1.86.)Themagnitudeof 0

=

is onsistent with estimates based on the

Kobayashi-Maskawa theory. The qualitative agreement is

sat-isfatory, given that we still annot aount reliably

for the large enhanement of I = 1=2 amplitudes

withrespettoI=3=2amplitudesinCP-onserving

K!deays. MoredataareexpetedfromtheF

er-milab and CERN experiments, reduing the eventual

statistialerroron 0

=toapartin 10 4

.

V.2 K!l +

l information

1. The deay K +

! +

involvesloop diagrams

involving V

td

and a small harm orretion in suh a

waythattheombinationj1:4 ijisonstrained,

withapreditedbranhingratiooforder

B(K +

! +

)'10 10

j1:4 i

1:4

2

; (27)

orfortherangepermittedinFig.6,abranhingratioof

about(0:80:2)10 10

[40℄. Additionalunertainties

areassoiated withm

[41℄and jV

b

j. A measurement

ofB(K +

! +

) to 10%will helpto onstrain(;)

moretightlythanin Fig. 6orwill expose

inonsisten-iesinourpresentpitureofCPviolation.

UptonowtheBrookhavenE787Collaborationsees

onlyoneK +

! +

eventwithnegligiblebakground

[42℄,orrespondingto

B(K +

! +

) =(1:5 +3:4

1:2 )10

10

: (28)

Moredata areexpeted from thenal analysis of this

experiment, aswellas from a future versionwith

im-provedsensitivity.

TABLE II.Reentexperimental valuesforRe( 0

=).

Experiment Referene Value(10 4

)

2

FermilabE731 [36℄ 7:45:9 3.97

CERN NA31 [37℄ 23:06:5 0.35

FermilabE832 [38℄ 28:04:1 4.65

CERN NA48 [39℄ 14:04:3 1.44

Average 19:24:6

P

(6)

2. The deays K

L

!

0

l +

l should be

dom-inated by CP-violating ontributions, both indiret

()anddiret,with aCP-onserving\ontaminant"

from K

L !

0

!

0

l +

l . The diret ontribution

probes theparameter. Eah ontribution (inluding

theCP-onservingone)isexpeted toorrespondto a

0

e +

e branhing ratio of a few parts in 10 12

.

How-ever,K

L !

0

e +

e maybelimitedbybakgroundsin

the e +

e nal stateassoiated with radiation of a

photon in K

L ! e

+

e from oneof the leptons [43℄.

Presentexperimentalupperlimits(90%.l.) [44℄are

B(K

L !

0

e +

e )<5:110 10

;

B(K

L !

0

+

)<3:810 10

; (29)

still signiantly abovemost theoretial expetations.

(See, however,[45℄.)

3. The deay K

L

!

0

should be due

en-tirely to CP violation, and provides a lean probe of

. Its branhing ratio, proportional to A 4

2

, is

ex-peted to be about 310 11

. The best urrent

ex-perimental upperlimit(90% .l.) forthis proess [46℄

isB(K

L !

0

) <5:910 7

,severalorders of

mag-nitudeabovetheexpetedvalue.

V.3 Other rare kaon deays

1. The deay K

L

!

+

e +

e involvesthree

in-dependent momenta in the nal state and thus oers

theopportunitytoobserveaT-oddobservablethrough

aharateristidistributionintheanglebetweenthe

+

and e +

e planes. A CP-orT-violatingangular

asymmetryin this proess has reently been reported

[47,48℄.

2. The deay K

L

!

+

has been studied

withsuÆientlyhigh statististo permit agreatly

im-provedmeasurementof thevirtual-photonformfator

in K

L !

[49℄. Thismeasurementis usefulin

esti-matingthe long-distaneontribution to thereal part

ofthe amplitudein K

L !

()

()

!

+

, whih in

turnallowsonetolimittheshort-distaneontribution

toK

L !

+

.

V.4IstheCKMpitureofCPviolationorret?

The KM theory is omfortable with the observed

range of 0

=, and its predition for B(K +

!

+

)

is onsistent with the oneevent seen so far. Further

antiipated tests are the measurement through the

deayK

L !

0

(see below), andthe searh forCP

violationinhyperondeays,whihisalreadyunderway

[50,51℄. Onealsolooks forwardtoarihset ofeets

in deaysofpartilesontainingb quarks,partiularly

B mesons. We now desribethe experiments andthe

eetstheyareexpetedto see.

VI CP violation in B deays

VI.1 Currentand planned experiments

Asymmetri e +

e ollisions are being studied at

\B fatories": thePEP-II mahine at SLAC with the

BaBardetetor,andtheKEK-BolliderinJapanwith

the Belle detetor. ByJuly 2000, these detetors had

aumulated about 14 and 6 fb 1

of data at the

en-ergy ofthe (4S)resonane,whih deaysalmost

ex-lusivelytoB

B[52,53℄. AsofSeptember,2000,PEP-II

andKEK-Bwereprovidingabout150and100pb 1

per

dayto theirrespetivedetetors.

Further data on e +

e ollisionsat the (4S) will

beprovidedbytheCornellEletronStorageRingwith

theupgradedCLEO-IIIdetetor. TheHERA-b

exper-iment at DESY in Hamburg hopes to study b quark

prodution viatheollisionsof 920GeV protonswith

axedtarget. TheCDFandD0detetorsatFermilab

willdevoteasigniantpartoftheirprogramatRunII

of theTevatron to B physis. Oneanexpet further

resultsonB physisfromthegeneral-purposeLHC

de-tetorsATLASand CMS,andthedediateddetetors

at LHC-batCERNand BTeVat Fermilab.

VI.2 Types ofCP violation

Inontrasttoneutralkaons,whosemasseigenstates

dier in lifetime by nearly a fator of 600, the

or-responding B 0

{B 0

mass eigenstates are predited to

dier in lifetime by at most 10{20% for strange B's

[54, 55℄, and muh less for nonstrangeB's. Thus,

in-steadofmasseigenstateslikeK

L

,twomaintypesofB

deays are of interest: deays to CP eigenstates, and

\self-tagging"deays. Bothhavetheiradvantagesand

disadvantages.

1. Deays to CP eigenstates f = CP(f)

uti-lize interferene between diret deays B 0

! f or

B 0

! f and the orresponding paths involving

mix-ing: B 0

! B 0

! f orB 0

! B 0

! f. Final states

suh as f = J= K

S

provide examples in whih one

quark subproess is dominant. In this ase one

mea-suressin2withnegligibleorretions. Forf = +

,

onewouldmeasuresin2onlyifthediretdeaywere

dominatedbya\tree"amplitude(thequarksubproess

b!uud). With ontamination from thepenguin

sub-proessb!dexpetedtobeabout30%in amplitude,

one must measure deays to other states(suh as

0

and 0

0

)tosortoutamplitudes[56℄. Indeays

toCPeigenstates,onemustdeterminetheavorofthe

deayingB attimeofprodution.

2. \Self-tagging"deays involvenal statesf suh

as K +

whih an be distinguished from their

CP-onjugates

f. A CP-violating rate asymmetry arises

whentwoweakamplitudesa

i

withweakphases

i and

strongphasesÆ

i

(i=1;2)interfere:

A(B!f)=a

1 e

i(+

1 +Æ

1 )

+a

2 e

i(+

2 +Æ

2 )

;

A(

B!

f)=a e i(

1 +Æ

1 )

+a e i(

2 +Æ

2 )

(7)

The weak phase hanges sign under CP-onjugation,

while thestrong phasedoesnot. Therateasymmetry

isthen

A(f)

(f) (

f)

(f)+ (

f)

=

2a

1 a

2 sin(

1

2 )sin(Æ

1 Æ

2 )

a 2

1 +a

2

2 +2a

1 a

2 os(

1

2 )os(Æ

1 Æ

2 )

: (31)

The two amplitudes must have dierent weak and

strong phasesin orderforarateasymmetryto be

ob-servable. The CKM theory predits the weak phases,

but no reliable estimates of strong phases exist. We

shallnote somewaystoavoidthisproblem.

VI.3 Deays to CP eigenstates

Theinterferenebetweendiretandmixingtermsin

B deaystoCPeigenstatesmodulatestheexponential

deay(see,e.g.,[57℄):

d (t)

dt e

t

(1Im

0

sinmt); (32)

wheretheuppersignreferstoB 0

deaysandthelower

to B 0

deays. m is the mass splitting, and

0

ex-presses the interferene of deay and mixing

ampli-tudes. For f = J= K

S ,

0

= e

2i

, while for

f = +

,

0 ' e

2i

only to the extent that

pen-guin amplitudes anbe negleted in omparison with

the dominant tree ontribution. The time integralof

themodulationtermis

Z

1

0 dte

t

sinmt= 1 x

1+x 2

1

1

2

; (33)

where x m= . This expression is maximum for

x = 1, and 96% of maximum for the observed value

x'0:76.

The CDF Collaboration [58℄ \tags" neutral B

mesons at the time of their prodution and measures

thedeayrateasymmetryinB 0

(B 0

)!J= K

S . This

asymmetryarisesfromthephase2haraterizingthe

twopowersofV

td

intheB 0

{B 0

mixingamplitude. The

taggingmethods are oftwomain types. In

\opposite-side"methods,sinestronginterationsprodueb and

bin pairs,onelearnstheinitialavorofadeayingB

from the \other"b-ontaininghadron produed in

as-soiationwith it. \Same-side"methods [59℄utilizethe

fat that aB 0

tendsto beassoiatedmorefrequently

witha +

, andaB 0

with a , somewherenearbyin

phasespae.

Eletron-positron ollisions provide B mesons in

pairs at the .m. energy of the (4S) resonane,

just above threshold, in states of negative

harge-onjugation eigenvalue. It then beomes neessary to

distinguishthevertiesofthedeayingandtaggingB's

from one another when studying CP eigenstates. If t

andt 0

denotethe deayand taggingpropertimes,the

asymmetryfordeaytoaCPeigenstatewillbe

propor-tionaltosinm(t t 0

),whihvanisheswhenintegrated

overall times (see, e.g., [24℄ or[62℄). The BaBar and

BELLEresults were obtainedusing asymmetri e +

e

ollisions,withtypialvertexseparationsofabout250

m and 200 m. PEP-II, onstruted in the ring of

theoldPEPmahine,ollides9GeVeletronswith2.7

GeVpositrons,whileKEK-B,onstrutedinthe

TRIS-TAN tunnel, ollides8.5 GeV eletronswith 3.5 GeV

positrons. In symmetri ollisions the (4S) is

pro-duedatrestandtheproperpathlengthofadeaying

B isonlyabout30m.

BothBaBarandBELLEusedtagsbasedonleptons

andkaonsfrom B deays. BaBaralso usedtwoneural

netmethods. Thesamplesreported by thesummerof

2000[52,53℄areshowninTableIII.

The CDF result and ones from OPAL [60℄ and

ALEPH[61℄utilizingB'sproduedinthedeaysofthe

Z 0

are ompared with those from BaBar and BELLE

in TableIV. Theaverage [24℄orrespondsto the 1

raysplotted inFig. 6. Thereisnoontradition(yet!)

with the allowed region, but we look forward eagerly

toreduederrorsfromBaBarandBELLE.Newresults

areduetobepresentedin Februaryof 2001.

TABLEIII.Samples reportedinJuly2000byBaBarandBELLECollaborations

relevanttomeasurementofsin2.

Collab. Finalstate Number No.tagged

BaBar J= K

S

!J= +

121 85(50B

0

,35B 0

)

J= K

S

!J= 0

0

19 12(7B 0

,5B 0

)

0

K

S

!J= +

28 23(13B

0

,10B 0

)

Total 168 120

BELLE CP-oddmodes 92 52(40J= K

S )

J= K

L

102 42

J= 0

10 4

(8)

VI.4 \Self-tagging"deays

Atypial\self-tagging"modesuitableforthestudy

of \diret" CP violation is B 0

! K +

. The tree

amplitude [Fig. 7(a)℄ involves the quark subproess

b!suuwithCKMfatorV

ub V

us

(weakphase). The

penguinamplitude[Fig. 7(b)℄

b!swithintermediate

u; ; t quarkshasCKM fatorV tb V ts or V b V s (weak

phase or 0), depending on how the unitarity of the

CKMmatrixisused. Therelativeweakphasebetween

thetreeand penguin amplitudesthus isnon-zero,and

diretCPviolationanariseiftherelativestrongphase

Æ

T Æ

P

alsois non-zero. Theinterpretationof arate

dierene (B 0

!K +

)6= (B 0

!K

+

)requires

independentinformationonÆ

T Æ P .

b

d

W

s

u

u

d

(a)

b

d

g

u, c, t

W

s

u

u

d

(b)

Figure 7. Contributions to B 0

! K +

. (a)

Color-favored \tree"amplitude V

ub

Vus; (b)\penguin"

ampli-tudeV

tb Vts.

TABLEIV.Valuesofsin2impliedbyreent

measure-mentsoftheCP-violatingasymmetryinB 0

!J= K

S .

Experiment Value

OPAL[60℄ 3:2 +1:8

2:0 0:5

CDF[58℄ 0:79 +0:41

0:44

ALEPH[61℄ 0:84 +0:82

1:04 0:16

BaBar[52℄ 0:120:370:09

BELLE[53℄ 0:45

+0:43+0:07

0:44 0:09

Average 0:490:23

IfonemeasuresbothaCP-violatingasymmetryand

arateratiosuhas (B!K )= (B !K )or (B ! K 0 )= (B ! K

), one an eliminate

thestrongphasediereneandsolvefor [63,64,65℄.

Onemust deal with eletroweak penguins (whih also

aeted theinterpretation of 0

=). Oneproposal (see

the rst of Refs. [63℄) to extrat from the rates for

B + !( 0 K + ; + K 0 ; + 0

) andtheharge-onjugate

proesseswasawedby the negletof these

ontribu-tions,whihareimportant[66℄. However,theyanbe

alulated [65℄, so that measurementsof therates for

theseproessesanyieldusefulinformationon.

Aneessaryonditionfortheobservabilityofdiret

CP asymmetries basedonthe interfereneof two

am-plitudes, oneweaker thanthe other, is that onemust

beableto detetproessesatthe leveloftheabsolute

squareoftheweakeramplitude[67℄. Lettheweakphase

benear=2(the mostfavorablease). Thentherate

asymmetryAin Eq.(31)hasmagnitude

jAj=O 2A 1 A 2 A 2 1 +A 2 2 ' 2A 2 A 1 forA 2 A 1 : (34)

Dene a rate based on the square of eah amplitude:

N

i

=onst:jA

i j

2

. ThenjAj'2 p N 2 =N 1 .

ThestatistialerrorinAisbasedonthetotal

num-ber of events. For A

2

A

1

, one has ÆA ' 1= p

N

1 .

Then thesignianeof theasymmetry(innumberof

standarddeviations)is

A ÆA O(2 p N 2 ): (35)

Thus(asidefromthefatorof2)onemustbeabletosee

thesquareoftheweakeramplitudeatasigniantlevel

in order to see asigniant asymmetrydue to A

1 {A

2

interferene.

In searhing for diret CP asymmetries one thus

onsiders B deays with at least two amplitudes

hav-ing an expeted weak phase dierene, with a large

enoughratethat thesmalleramplitudealonewouldbe

detetable,and withagood hane forastrongphase

dierene.

Manybranhing ratiosfor harmlessB deaysare

one to several parts in 10 5

. Ratesassoiatedwith the

subdominantamplitudesareexpetedtobe 2

'1=20

ofthese. Thuswhensensitivitiestobranhingratiosof

afew parts in 10 7

are reahed, searhes fordiret CP

asymmetrieswill takeongreatsigniane.

Two proesses whose rates favor a weak phase

exeeding 90 Æ are B 0 ! + and B 0 ! K +

[65, 68, 69℄, whih favor destrutive and onstrutive

tree-penguin interferene, respetively. A t to these

and other proesses in the seond of Refs. [69℄ nds

=(114 +24

23 )

Æ

,grazingtheallowedregionofFig. 6but

inonsistent withsomemorerestritivets[25℄. Sine

the upper bound on is set by the limit on B

s {B

s

mixing,m

s

>15ps 1

,suhmixingshould bevisible

soon. There isahintofasignalat 17ps 1

[29℄.

TheTevatronandtheLHCwillproduemany

neu-tral B's deaying to +

, K

, and K +

K [70℄.

Eahofthese hannelshaspartiularadvantages.

1. The deays B 0

! K +

K and B

s

!

+

shouldbesuppressedunlessthesenalstatesare\fed"

byresatteringfrom otherhannels[71℄.

2. The deays B 0 ! + and B s !K + K an

yield viatime-dependenemeasurements[72℄.

3. A reent proposal for measuring [73℄ utilizes

thedeaysB 0 !K + , B + !K 0 + ,B s !K + ,

andtheorrespondingharge-onjugateproesses. The

B 0 ! K + and B s ! K +

peaks are well

sep-arated from one another and from B 0 ! + and B s !K +

K kinematially[70℄.

Theproposal of Ref. [73℄ is based on the

(9)

strong phaseÆ. ThedeaysB

!K

areexpeted

to be dominated by the penguin amplitude (there is

no tree ontribution exept through resatteringfrom

other nal states), so this hannel is notexpeted to

displayanyCP-violatingasymmetries. Thepredition

(B +

!K 0

+

)= (B !K 0

)thuswillhekthe

assumption that resattering eets an be negleted.

A typial amplitude is given by A(B 0

! K +

) =

[P +Te i(+Æ)

℄, where the signs are assoiated with

phaseonventionsforstates[74℄. Dening

R

A

0

(B

0

!K +

) (B 0

!K

+

)

2 (B +

!K 0

+

)

; (36)

R

s

A

s

(B

s

!K

+

) (B

s !K

+

)

2 (B +

!K 0

+

)

; (37)

andrT=P, ~

V

us =V

ud

,onends

R=1+r 2

+2rosÆos;

R

s =

~

2

+(r= ~

) 2

2rosÆos; (38)

A

0

= A

s

= 2rsinsinÆ: (39)

ThesumofRandR

s

allowsonetodeterminer. Using

R ,r,andA

0

,oneansolveforbothÆand. The

pre-dition A

s

= A

0

heks theavorSU(3) assumption

onwhihthese relationsarebased. An errorof10 Æ

on

seemsfeasiblewithforthomingTevatrondata.

ReentupperlimitsonCP-violatingasymmetriesin

B deaystolight-quarksystems[75℄,denedas

A

CP

(B!

f) (B!f)

(B!

f)+ (B!f)

; (40)

areshowninTableV.Nosigniantasymmetrieshave

beenseen,but sensitivitiesadequatetohekthe

max-imum predited values [76℄ jA K

+

CP

j 1=3 are being

approahed.

TABLE V. CP-violating asymmetries in deays of B

mesonstolightquarks.

Mode Signalevents A

CP

K +

80

+12

11

0:040:16

K +

0

42:1 +10:9

9:9

0:290:23

K

S

+

25:2 +6:4

5:6

+0:180:24

K +

0

100 +13

12

+0:030:12

! +

28:5 +8:2

7:3

0:340:25

VII The role of harm

VII.1 Mixing and CP violation

Thedominantdeaymodesoftheneutralharmed

0

0

strangeness, respetively, and not to CP eigenstates.

Thus D 0

{D 0

mixing induedby shared nal states is

expeted to be small. Short-distane ontributions to

mixingalsoareexpetedtobesmall. Thus,inontrast

totheaseofneutralkaonsandBmesons,oneexpets

small masssplittings, m= 1, and, in ontrast to

neutral kaons, also small width dierenes. The

de-greetowhihanellations amongontributionsof

in-termediate states suh as +

, K +

K , and K

to mixing suppress suh eets further is amatter of

debate[77℄. Ifanyratediereneisexpeted,itwould

be in thediretion favoring a slightly greater rate for

theCP-evenmasseigenstate.

CP violationin theharm setoris expeted tobe

smallintheStandardModel. Itisalsoeasytolookfor,

sineD mesons are easier to produe than B mesons

andtheStandardModelbakgroundislow.

Reent interestingstudies of mixing by the CLEO

[78℄and FOCUS[79℄ Collaborationshintatthe

possi-bilityof non-zero valuesof m, , orboth, but are

notyet statistially ompelling. Noevidene for

mix-ingis found by theFermilab E791Collaboration[80℄.

It may be neessary to invoke large nal-state phase

dierenesinordertoreoniletheCLEOandFOCUS

results [81℄. No CP-violating asymmetries have been

seen in harmed meson deays at the level of several

perent[80,82℄.

VII.2Spetrosopy

A wide variety of exited qq and q states are

aessible at CLEO and FOCUS. The qq states are

providing unique insights into baryon spetrosopy

[83, 84, 85℄, while the q states [86, 87℄, are

impor-tant soures of information about the orresponding

bq states, useful for \same-side"tagging of neutral B

mesons.

VIII The future

VIII.1Envisioned measurements

Future CP studies involvea broadprogram of

ex-perimentswithkaons,harmedandBmesons,and

neu-trinos.

1. Rare kaon deays: Measurement of the

branh-ing ratio for K

L

!

0

at the required sensitivity

(B ' 310 3

) is foreseen at Brookhaven National

Laboratory[88℄andtheFermilabMainInjetor[89℄. A

Fermilab proposal [90℄ seeks to aquire enoughevents

ofK +

! +

tomeasure jV

td

jtoapreisionof10%.

2. Charmedmesons: Whilegreatstrideshavebeen

taken in the measurementof mass and lifetime

dier-enesforCPeigenstatesoftheneutralharmedmesons

D 0

, [78, 79℄, it would be worth while to follow up

(10)

studies mayalso havemore to sayaboutmixing,

life-timedierenes,andCPviolationforharmedmesons.

3. B prodution insymmetri e +

e ollisions:

Al-thoughasymmetrie +

e ollidersarenowtakingdata

atanimpressiverate,theCLEOCollaborationis

on-tinuingwithanativeprogram. Itwillbeabletoprobe

harmlessB deaysdown to branhingratios of10 6

.

ItmaybeabletodetettheelusiveB 0

! 0

0

mode,

whoseratewillhelp pindownthepenguin amplitude's

ontribution and permit adetermination of the CKM

phase[56℄. Othernalstatesofgreatinterestatthis

levelinludeVPandVV,whereP;V denotelight

pseu-dosalarand vetormesons. A useful probeof

resat-tering eets[71℄ isthedeayB 0

!K +

K . This

de-ayisexpetedtohaveabranhingratioofonlyafew

partsin10 8

ifresatteringisunimportant,butouldbe

enhaned by morethan an order of magnitude in the

presene of resattering from other hannels. A

hal-lengingbut ruialhannel isB +

! +

, whoserate

will provide information on the ombination f

B jV

b j.

Rare deayssuh asB !X` +

` andB ! Xwill

probetheeetsofnewpartilesinloops.

4.Bprodutioninasymmetrie +

e ollisions:The

BaBar and Belle detetors have made a start at the

measurement of sin2 in B 0

! J= K

S

. The moving

enter-of-mass failitates both avor tagging and

im-provementofsignalwithrespettobakground. These

mahines will makepossiblea hostof time-dependent

studiesin suh deaysasB !, B !K,et., and

theirimpressiveluminositieswilleventuallyadd

signif-iantlytotheworld'stallyofdetetedB's.

5. Hadroni B prodution: The strange B's

an-not be produed at the (4S) whih will dominate

theattentionofe +

e olliders forsomeyearstoome.

Hadroni reations at high energies will produe

o-pious b's inorporated into nonstrange, strange, and

harmed mesons,and baryons. A measurementofthe

strange-B mixing parameterm

s

is likely to bemade

soon. B

s

deaysprovidevaluableinformationonCKM

phasesandCPviolation,asinB

s !K

+

K [72℄. The

width dierene expeted between the CP-even and

CP-odd eigenstates of the B

s

system [54, 55℄ should

bevisiblein thenextroundof experiments.

6. Neutrinostudies: Themagnitudesandphasesin

theCKMmatrixareonnetedwiththequarkmasses

themselves,whosepatternwewillnotunderstanduntil

wehavemappedoutasimilar patternfortheleptons.

Wewilllearnmuhaboutneutrinomassesandmixings

fromforthomingexperimentsattheSudburyNeutrino

Observatory[91℄, Borexino[92℄, K2K[93℄, and F

ermi-lab(BooNEandMINOS)[94℄.

VIII.2 Alikely parameter spae

OurknowledgeoftheCabibbo-Kobayashi-Maskawa

is likely to improve over the next few years [95, 96℄.

With sin(2)measured in B 0

!J= K

S

deays toan

1

errors onjV

ub =V

b

j redued to 10%,strange-B mixing

bounded by x

s

= m

s =

s

> 20 (the present bound

isalreadybetterthanthis!),andB(B +

! +

)

mea-suredto20%(givingf

B jV

ub j,orjV

ub =V

td

jwhen

om-binedwithB 0

{B 0

mixing),one ndstheresultshown

in Fig. 8.

Figure8. Plotin(;)ofantiipatedonstraintsonCKM

parametersintheyear2003. Solidurves:jV

ub =V

b

j;dashed

lines: onstraint on jV

ub =V

td

j by ombining measurement

of B(B +

! +

) withB 0

{B 0

mixing; dottedlines:

on-straint due to K (CP-violating K 0

{K 0

mixing);

dash-dotted line: limit due to xs; solid rays: measurement of

sin2to0:06.

Thenarrowrangeof(;)inreasesthehanethat

anynon-standardphysiswillshowupasa

ontradi-tionamong variousmeasurements,mostlikelyby

pro-viding additional ontributions to B 0

{B 0

mixing [97℄

butpossiblydiretlyaeting deays[98℄.

VIII.3 Baryon number of the Universe

The number of baryons in the Universe is muh

larger than theorresponding number of antibaryons.

Sakharovproposed[99℄threerequirementsforthis

pre-ponderane of matter over antimatter: (1) an epoh

in whih theUniverse wasnotin thermalequilibrium,

(2)aninterationviolatingbaryonnumber,and(3)CP

(andC)violation. Theobservedbaryonasymmetryis

notexplaineddiretlybytheCPviolationintheCKM

matrix; the eets are too small, requiring some new

physis. Twoexamplesarethefollowing:

1. Supersymmetry, in whih eah partile of spin

J hasa\superpartner"ofspin J1=2,aords many

opportunitiesfor introduing newCP-violatingphases

andinterationswhihouldaetpartile-antipartile

mixing [100℄.

2. Neutrino masses at the sub-eV level an signal

largeright-handedneutrino Majorana masses,

exeed-ing 10 11

GeV [101℄. Lepton number (L), violated by

suh masses, an be reproessed into baryon number

(B)byB Lonservinginterationsattheeletroweak

sale [102℄. New CP-violating interations must exist

at thehigh mass sale iflepton number is to be

(11)

be important to understand the leptoni analogue of

theCKMmatrix!

VIII.4 Surprises ahead?

The CKM theory of CP violation in neutral kaon

deays has passed a ruial test. The parameter 0

=

is nonzero, and has the expeted order of magnitude.

Tests using B mesons, inluding the observation of a

dierene in rates between B 0

! J= K

S and B

0

!

J= K

S

, are just aroundthe orner. Progressin

\tag-ging" neutralB's and rih information from

measure-mentsofmanyBdeayrateswillroundoutthepiture.

IfB deaysdonotprovideaonsistentsetofCKM

phasesin thenextfewyears,wewillre-examine other

proposed soures of CP violation. Most of these, in

ontrastto theCKMtheory,preditneutronand

ele-trondipole momentsveryloseto theirpresent

exper-imental upper limits. If, however, the CKM piture

remainsself-onsistent,weshouldask abouttheorigin

of theCKM phasesandtheassoiatedquarkand

lep-ton masses. It is probably time to start antiipating

thispossibility,giventheresilieneoftheCKMpiture

sineitwasrstproposednearly30yearsago.

I amlookingforwardto asurprisesuh asone

en-ounteredmanyyearsagowhenexploringasmallave

in Pennsylvania. We had entered it in the afternoon

and thought we had seen all its rooms, when I ame

upon another hamberwith ghostly stalatites

silhou-etted against the darknessbehind them. A breeze of

warmairsignaledthat I wasatually looking outside,

withthe\stalatites"thefaintlyglowingnightsky,and

thedarkspaestheshadowsofpinetrees. Suha

\per-eption shift" does not ome often, but is a welome

soureofwonder.

Aknowledgments

Itisapleasure tothankAdrianoNataleand

Roge-rioRosenfeldfortheinvitationto attendtheBrazilian

MeetingofPartilesandFieldsandfortheirwonderful

hospitalityinSaoPauloandSaoLoureno,andPatrik

Roudeau for onstrutive orrespondene. This work

wassupportedinpartbytheUnitedStatesDepartment

of EnergyunderGrantNo.DEFG0290ER40560.

Referenes

[1℄ J.L. Rosner,inPartile Physisand Cosmology: 2nd

Tropial Workshop, edited by Jose F. Nieves (New

York, Amerian Institute of Physis, 2000), pp. 283{

304.

[2℄ J. H.Christenson, J. W.Cronin, V. L. Fith,andR.

Turlay,Phys.Rev.Lett.13,138-140(1964).

[3℄ J. Shwinger, Phys. Rev. 91, 713-728 (1953); Phys.

Rev.94, 1362-1384 (1954); G. Luders, Kong. Danske

Vid. Selsk., Matt-fys. Medd. 28, No. 5, 1-17 (1954);

Ann. Phys. (N.Y.)2, 1-15 (1957); W.Pauli, inNiels

Bohr and the Development of Physis, edited by W.

[4℄ M.KobayashiandT.Maskawa,Prog.Theor.Phys.49,

652-657(1973).

[5℄ N.Cabibbo,Phys.Rev.Lett.10,531-532(1963).

[6℄ S.M. Barr,inTASI 94: CP ViolationandtheLimits

oftheStandardModel,Boulder,CO,29May{24June

1994,editedbyJ.F.Donoghue(WorldSienti,River

Edge,NJ,1995),pp.87-111.

[7℄ G.D.RohesterandC.C.Butler,Nature160,855-857

(1947).

[8℄ M. Gell-Mann, Phys. Rev. 92, 833-834 (1953); \On

theClassiationofPartiles,"1953(unpublished);M.

Gell-Mann and A. Pais, in Proeedings of the 1954

Glasgow Conferene on Nulear and Meson Physis,

editedbyE.H. Bellamy andR.G.Moorhouse

(Perg-amon, Londonand New York, 1955); M. Gell-Mann,

NuovoCim.4,Suppl.848-866(1956);T.Nakano and

K.Nishijima, Prog. Theor.Phys.10,581-582 (1953);

K.Nishijima, Prog. Theor.Phys.12,107-108 (1954);

Prog.Theor.Phys.13,285{304(1955).

[9℄ M.Gell-Mann andA.Pais, Phys.Rev.97,1387-1389

(1955).

[10℄ K.Lande,E.T.Booth,J.Impeduglia,andL.M.

Led-erman,Phys.Rev.103,1901-1904(1956).

[11℄ T.D.Lee,R.Oehme,andC.N.Yang,Phys.Rev.106,

340-345(1957);L. D.Landau, Nul.Phys.3,127-131

(1957).

[12℄ B.Winstein,inFesti-Val{Festshrift forValTelegdi,

ed.byK.Winter(Elsevier,Amsterdam,1988),pp.

245-265.

[13℄ L.Wolfenstein,Phys.Rev.Lett.13,562-564(1964).

[14℄ For reviews, see, e.g., R. G. Sahs, The Physis of

TimeReversalInvariane(UniversityofChiagoPress,

Chiago, 1988); K. Kleinkneht, in CP Violation,

edited by C. Jarlskog (World Sienti, Singapore,

1989),pp.41-104;J.L.Rosner,inTestingtheStandard

Model(Proeedingsofthe1990Theoretial Advaned

StudyInstituteinElementaryPartile Physis,

Boul-der,Colorado, 3{27 June, 1990),edited by M.Cveti

andP. Langaker(WorldSienti,Singapore, 1991),

pp.91-224;B.WinsteinandL.Wolfenstein,Rev.Mod.

Phys.63,1113-1148(1992);G.C.Brano,L.Lavoura,

andJ.P.Silva,CPViolation(Oxford,1999);I.I.Bigi

andA.I.Sanda,CPViolation(Cambridge,2000).

[15℄ J.L.Rosner,Am.J.Phys.64,982-985(1996).

[16℄ V. A. Kostelek y and

A. Roberts, Phys. Rev.D 63,

096002(2001).

[17℄ J.L.RosnerandS.A.Slezak,Am.J.Phys.69,44-49

(2001).

[18℄ J. D. Bjorken and S. L. Glashow, Phys. Lett. 11,

255-257(1964); Y. Hara,Phys.Rev.134,B701-B704

(1964); Z. Maki and Y. Ohnuki, Prog. Theor. Phys.

32,144-158 (1964); S.L. Glashow, J.Iliopoulos, and

L.Maiani,Phys.Rev.D2,1285-1292(1970).

[19℄ FermilabE288Collaboration,S.W.Herbetal.,Phys.

(12)

[20℄ CDFCollaboration, F. Abe et al., Phys. Rev.D 50,

2966-3026 (1944); 51, 4623-4637 (1994); 52,

2605-2609(1995);Phys.Rev.Lett.73,225-231(1994); 74,

2626-2631 (1995); D0 Collaboration, S.Abahiet al.,

Phys.Rev.Lett.72,2138-2142 (1994); 74,2422-2426

(1995); 74,2632-2637(1995);Phys.Rev.D52,

4877-4919(1995).

[21℄ L.Wolfenstein,Phys.Rev.Lett.51,1945-1947(1983).

[22℄ M. Gell-Mannand M. Levy, NuovoCim. 16,705-725

(1960).

[23℄ J. L. Rosner, Enrio Fermi Institute Report No.

EFI2000-42,hep-ph/0011184.Tobepublishedin

Pro-eedings of Beauty 2000, Kibbutz Maagan, Israel,

September13{18,2000,editedbyS.Erhan,Y.Rozen,

andP.E.Shlein,Nul.Inst.Meth.A,2001.

[24℄ J. L. Rosner, Enrio Fermi Institute Report No.

EFI2000-47,hep-ph/0011355.Tobepublishedin

Fla-vor Physis for the Millennium (Proeedings of the

TASI-2000 Summer Shool, Boulder, CO, June 5{30,

2000),editedbyJ.L.Rosner(WorldSienti,

Singa-pore,2001).

[25℄ F.Gilman, K.Kleinkneht, andZ.Renk, mini-review

onpp.110-114ofPartileDataGroup,C.Casoetal.,

Eur.Phys.J.C15,1-878(2000);A.AliandD.London,

DESY report DESY-00-026,hep-ph/0002167, in

Pro-eedingsofthe3rdWorkshoponPhysisandDetetors

forDAPHNE,Frasati,Italy,Nov.16{19,1999,edited

by S.Bianoet al.(INFN, 1999),pp.3{23; S.Stone,

Conferene Summary, Beauty 2000, hep-ex/0012162,

to be published in Proeedings of Beauty 2000 [23℄;

M. Ciuhini et al., Orsay preprint LAL 00-77,

hep-ex/0012308,tobesubmittedtoJHEP.

[26℄ CLEO Collaboration, J. P. Alexander et al.,

CLEO-CONF 00-3,presented at OsakaConferene XXX

In-ternationalConfereneonHighEnergyPhysis,Osaka,

Japan,July27{August2,2000.

[27℄ A. F. Falk, inProeedings of the XIXth International

SymposiumonLeptonandPhoton Interations,

Stan-ford, California, August 9{14 1999, edited by J.

Jaros and M. Peskin (World Sienti, Singapore,

2000), Eletroni Conferene Proeedings C990809,

174(2000).

[28℄ C.Sahrajda,tobepublishedinProeedingsofBeauty

2000[23 ℄.

[29℄ D.Abbaneo,presentedatConfereneonHeavyQuarks

atFixedTarget,RiodeJaneiro,Ot.9{19,2000,

hep-ex/0012010.Currentworldaveragesfornonstrangeand

strangeneutralB mixingamplitudesmaybefoundin

http://www.ern.h/LEPBOSC/.

[30℄ J.L. Rosner,Phys.Rev.D42,3732-3740 (1990).

[31℄ Partile DataGroup, C.Caso et al.,Eur. Phys.J.C

15,1-878(2000).

[32℄ V. Lubiz, Invited Talk at the XX Physis in

Colli-sionConferene,June29{July1,2000, Lisbon,

Por-tugal, Univ.of RomeIIIreportRM3-TH/00-15,

hep-ph/0010171.

[34℄ A.J.Buras,M.Jamin,andM.E.Lautenbaher,Phys.

Lett.B389,749-756(1996).

[35℄ See the artiles on 0

= by A. J. Buras, S. Bertolini,

R.Gupta, G.Martinelli, andW.A. BardeeninKaon

Physis,editedbyJ.L.RosnerandB.Winstein

(Uni-versityofChiagoPress,2001).

[36℄ Fermilab E731 Collaboration, L. K. Gibbons et al.,

Phys.Rev.Lett. 70,1203-1206 (1993); Phys.Rev.D

55,6625-6715(1997).

[37℄ CERN NA31Collaboration, G. D. Barr et al., Phys.

Lett.B317,233-242(1993).

[38℄ Fermilab E832/KTeV Collaboration, A. Alavi-Harati

etal.,Phys.Rev.Lett.83,22-27(1999).

[39℄ NA48 Collaboration, G. D. Barr et al., presented at

CERN seminar by

A. Ceui, Feb. 29, 2000 (unpublished).Follow the

linksonhttp://www/ern.h/NA48/foraopyofthe

transparenies.

[40℄ G.Buhallaand A.J.Buras,Nul.Phys.B548,

309-327(1999);G.Buhalla,inKaonPhysis[35 ℄.

[41℄ A.F.Falk,A.Lewandowski,andA.A.Petrov,Cornell

Univ.reportCLNS-00-1707,hep-ph/0012099.

[42℄ BrookhavenE787Collaboration,S.Adleretal.,Phys.

Rev.Lett.84,3768-3770 (2000).

[43℄ H.B.Greenlee,Phys.Rev.D42,3724-3731 (1990).

[44℄ Fermilab E-799-II/KTeV Collaboration, A.

Alavi-Haratietal.,preprinthep-ex/0011093( 0

e +

e ),Phys.

Rev.Lett.84,5279-8282 (2000)( 0

+

).

[45℄ P.Ko,Phys.Rev.D44,139-165(1991).

[46℄ Fermilab E-799-II/KTeV Collaboration, A.

Alavi-Haratietal.,Phys.Rev.D61,072006(2000).

[47℄ Fermilab E-799-II/KTeV Collaboration, A.

Alavi-Haratietal.,Phys.Rev.Lett.84,408-411(2000).

[48℄ NA48Collaboration,A.Laietal.,Phys.Lett.B496,

137-144(2000).

[49℄ KTeVCollaboration,G.BreeseQuinn,Ph.D.Thesis,

UniversityofChiago,May,2000(unpublished).

[50℄ CLEO Collaboration, D. E. Jae etal., Cornell

Uni-versityreportCLNS-98-1587,hep-ex/0009037

(unpub-lished).

[51℄ Fermilab E756Collaboration,K.B. Luket al.,Phys.

Rev.Lett.85,4860 (2000).

[52℄ BaBar Collaboration, reportedby D.Hitlin at Osaka

Conf.[26 ℄,hep-ex/0011024.

[53℄ BELLECollaboration,reportedbyH.AiharaatOsaka

Conf.[26 ℄,hep-ex/0010008.

[54℄ M.Beneke,G.Buhalla,andI.Dunietz,Phys.Rev.D

54,4419-4431(1996).

[55℄ D.Beirevietal.,Eur.Phys.J.C18,157-166(2000).

[56℄ M.GronauandD.London,Phys.Rev.Lett.65,

3381-3384(1990).

[57℄ I. Dunietzand J.L. Rosner, Phys.Rev.D34,

1404-1417(1986).

(13)

[59℄ M. Gronau, A. Nippe, and J. L. Rosner, Phys. Rev.

D47,1988-1993 (1993);M.GronauandJ.L.Rosner,

Phys.Rev.Lett.72,195-198(1994);Phys.Rev.D49,

254-264(1994);Phys.Rev.D63,054006(2001).

[60℄ OPAL Collaboration, K.Akersta et al.,Eur. Phys.

J.C5,379-388(()1998).

[61℄ ALEPHCollaboration,R.Barateetal.,Phys.Lett.B

492,259-274(2000).

[62℄ The BaBar PhysisBook: Physis atan Asymmetri

B Fatory,editedbyP.F.HarrisonandH.R.Quinn,

SLACReportSLAC-504,1998.

[63℄ M. Gronau, J. Rosner and D. London, Phys. Rev.

Lett. 73, 21-24 (1994); M. Gronau and J. L. Rosner,

Phys.Rev.Lett. 76, 1200-1203 (1996); Phys.Rev.D

57, 6843-6850 (1998); A. S. Dighe, M. Gronau, and

J. L. Rosner, Phys.Rev. D54,3309-3320 (1996); A.

S. Dighe and J. L. Rosner, 54, 4677-4679 (1996);

M. Gronauand D.Pirjol, Phys.Lett. B449,321-327

(1999);Phys.Rev.D61,013005(2000).

[64℄ R.Fleisher,Phys.Lett.B365,399-406(1996);Phys.

Rev. D58,093001 (1998); R.Fleisher and T.

Man-nel, Phys.Rev.D57,2752-2759 (1998); A.J.Buras,

R. Fleisher, and T.Mannel,Nul.Phys.B533,3-24

(1998); R.Fleisherand A.J.Buras, Eur.Phys.J.C

11,93-109 (1999);A. J.Burasand R.Fleisher,Eur.

Phys.J.C16,97-104(2000).

[65℄ M.NeubertandJ.L.Rosner,Phys.Lett.B441,

403-409(1998);Phys.Rev.Lett.81,5076-5079(1998);M.

Neubert,JHEP9902,014(1999).

[66℄ N. G.DeshpandeandX.-G. He, Phys.Rev.Lett. 74,

26-29 (1995); 74, 4099(E) (1995); O. F.Hernandez,

D. London, M.Gronau, andJ.L. Rosner,Phys.Rev.

D52,6374-6382(1995).

[67℄ G.Eilam,M.Gronau,andJ.L.Rosner,Phys.Rev.D

39,819-824(1989).

[68℄ M.GronauandJ.L.Rosner,Phys.Rev.D61,073008

(2000).

[69℄ X.-G.He,W.-S.Hou,andK.-C.Yang,Phys.Rev.Lett.

83,1100-1103(1999);W.-S.Hou,J.G.Smith,andF.

Wurthwein,preprinthep-ex/9910014(unpublished).

[70℄ F. Wurthweinand R.Jesik, talksfor WorkingGroup

1 presented at Workshop on B Physis at the T

eva-tron { Run II and Beyond, Fermilab, February 2000

(unpublished).

[71℄ B.Blok,M.Gronau,andJ.L.Rosner,Phys.Rev.Lett.

78, 3999-4002 (1997); 79, 1167 (1997); A. Falk, A.

L. Kagan, Y. Nir, and A. A. Petrov, Phys. Rev. D

57, 4290-4300 (1998); M. Gronau and J. L. Rosner,

Phys.Rev.D57,6843-6350(1998); 58,113005(1998);

R. Fleisher, Phys.Lett.B435,221-232 (1998);Eur.

Phys.J.C6,451-470(1999).

[72℄ R. Fleisher, Phys.Lett.B459,306-320 (1999);Eur.

Phys.J.C16,87-95(2000).SeealsoI.Dunietz,

Pro-eedingsoftheWorkshoponBPhysisatHadron

A-elerators, Snowmass,CO, 1993, pp.83{96; D.Pirjol,

Phys.Rev.D60,054020(1999).

[73℄ M.GronauandJ.L.Rosner,Phys.Lett.B482,71-76

[74℄ M. Gronau, O. F. Hernandez, D. London and J. L.

Rosner,Phys.Rev.D50,4529-4543 (1994).

[75℄ CLEOCollaboration, S.Chenetal.,Phys.Rev.Lett.

85,525-529(2000).

[76℄ M.GronauandJ.L.Rosner,Phys.Rev.D59,113002

(1999).

[77℄ H. Georgi, Phys. Lett. B 297, 353-357 (1992); L.

Wolfenstein,Phys.Lett.B164,170-172(1985);Phys.

Rev. Lett. 75, 2460-2461 (1995); J. Donoghue, E.

Golowih,B.R.Holstein,andJ.Trampeti,Phys.Rev.

D33,179-183(1986).

[78℄ CLEO Collaboration, R. Godang et al., Phys. Rev.

Lett.84,5038-5042(2000).

[79℄ FOCUSCollaboration, J.M. Link, et al.,Phys.Rev.

B485, 62-70 (2000); Phys.Rev.Lett. 86, 2955-2958

(2001).

[80℄ Fermilab E791 Collaboration, presented by A. J.

Shwartz, Univ. of Cininnati report UCTP-112-00,

hep-ex/0012006 (unpublished); J. A. Appel,

hep-ex/0002022, in Proeedings of the 3rd Workshop on

PhysisandDetetors forDAPHNE[25 ℄,pp.231{247.

[81℄ A.F. Falk, Y.Nir, andA. A. Petrov,JHEP 12, 019

(1999); S.Bergmann, Y.Grossman, Z. Ligeti, Y. Nir

andA.A.Petrov,Phys.Lett. B486,418-425 (2000);

I.I.BigiandN.G.Uraltsev,Nul.Phys.B592,92-106

(2000).

[82℄ See, e.g., FOCUS Collaboration, J. M. Link et al.,

Phys.Lett.B491,232-239(2000); 495,443(E)(2000).

[83℄ CLEOCollaboration,D.Cronin-Hennessyetal.,Phys.

Rev.D86,3730-3734 (2001).

[84℄ CLEOCollaboration,M.Artusoetal.,Cornell

Univer-sityreportCLNS00-1698,hep-ex/0010080.

[85℄ CLEOCollaboration, S.E. Csorna et al.,Phys.Rev.

86,4243-4246(2001).

[86℄ CLEOCollaboration, S.Anderson et al.,Nul. Phys.

A663,647-650(2000).

[87℄ FOCUS Collaboration, presented by F. L. Fabbriat

OsakaConf.[26℄,hep-ex/0011044;presentedbyC.

Ri-iardi,Nul.Phys.A663,651-654(2000).

[88℄ KOPIO Collaboration, in Rare Symmetry Violating

Proesses, proposal to the National Siene

Founda-tion,Otober1999,andBrookhavenNational

Labora-toryProposalP926(unpublished).

[89℄ KAMICollaboration,FermilabProposalP804

(unpub-lished).

[90℄ CKMCollaboration,FermilabProposalP905.

[91℄ SNOCollaboration, presented by R.vandeWaterin

Partile Physis andCosmology: 2ndTropial

Work-shop[1 ℄,pp.193-200.

[92℄ See the desription of this experiment at

http://almime.mi.infn.it/

[93℄ Super-KamiokandeCollaboration,presentedbyM.

(14)

[94℄ NuTeVCollaboration,presentedbyJ.Conradin

Par-tile Physis and Cosmology: 2nd TropialWorkshop

[1 ℄,pp.331-340;M.Shaevitz,ibid.,pp.105-121.

[95℄ J. L. Rosner, Nul. Phys. B Pro. Suppl. 73, 29-42

(1999).

[96℄ P.Burhatetal.,ReportoftheNSFElementary

Parti-lePhysisSpeialEmphasisPanelonBPhysis,July,

1998(unpublished).

[97℄ See, e.g., C. O. Dib, D. London, and Y. Nir, Int. J.

Mod.Phys.A6,1253-1266(1991);M.GronauandD.

London,Phys.Rev.D55,2845-2861 (1997).

[98℄ Y.GrossmanandM.P.Worah,Phys.Lett.B395,

241-249(1997);Y.Grossman,G.Isidori,andM.P.Worah,

Phys.Rev.D58,057504 (1998).

[99℄ A.D. Sakharov, Pis'maZh.Eksp.Teor. Fiz.5,32-35

(1967)[JETPLett.5,24-27(1967)℄.

[100℄ M. P. Worah, Phys. Rev. D 56, 2010-2018 (1997);

Phys.Rev.Lett.79,3810-3813(1997);M.Carena,M.

Quiros,A.Riotto,I.Vilja,andC.E.M.Wagner,Nul.

Phys. B503, 387-404 (1997); M. P. Worah, in Kaon

Physis[35 ℄.

[101℄ P.Ramond,inPartilePhysis andCosmology: 2nd

TropialWorkshop[1 ℄,pp.75-90.

[102℄ G. 't Hooft, Phys. Rev. Lett. 37, 8-11 (1976); M.

Fukugitaand T. Yanagida, Phys. Lett. B174, 45-47

(1986);M. A.Luty,Phys.Rev.D45,455-465(1992);

M. Plumaher, Zeit. Phys. C74, 549-559 (1997); W.

BuhmullerandM.Plumaher,Phys.Lett.B389,73{

77(1996); 431,354-362(1998);Phys.Rep.320,329{

339(1999).

[103℄ J. L. Rosner,inThe Albuquerque Meeting

(Proeed-ingsofthe8thMeeting,DivisionofPartilesandFields

oftheAmerianPhysialSoiety,Aug.2{6,1994,The

UniversityofNewMexio),editedbyS.Seidel(World

Sienti,Singapore,1995),pp.321-350;M.P.Worah,

Imagem

Figure 2. Box diagram desribing the seond-order weak
Figure 3. Coupled \tank&#34; iruits illustrating the K 0
Figure 4. Pattern of harge-hanging weak transitions
Fig. 6. Also shown are the 1 bounds on sin 2, to
+5

Referências

Documentos relacionados

We onsider the saling behavior in the ritial domain of superondutors at zero external

trap and laser system being built in Rio, to trap and perform high resolution spetrosopy on.. old hydrogen, is presented along with a disussion on the tehniques and

An ultrastati spaetime admits a globally dened oordinate system in whih the omponents of the metri tensor are time-. independent and the onditions g00 = 1 and goi =

Four-jet Higgs boson andidate with a reonstruted Higgs boson mass of 112.9 GeV/ 2. All four jets

and magneti harges, being dierent from monopoles (magneti or eletri), the topologial ontent.. of monopoles, surfae terms, Dira strings and hiral struture in the inlusion of

the ultra high energy osmi rays [21℄. From

are not modied by nonommutativity sine they are linear and no Moyal produts are required. The propagators are the same as in the

on new phenomena whih are not the usual neutrino osillations indued by masses and mixing... These solutions are based on dierent assumptions: a) resonant spin-avor preession