• Nenhum resultado encontrado

Are iron oxide nanoparticles safe? Current knowledge and future perspectives

N/A
N/A
Protected

Academic year: 2021

Share "Are iron oxide nanoparticles safe? Current knowledge and future perspectives"

Copied!
11
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Journal

of

Trace

Elements

in

Medicine

and

Biology

j ou rn a l h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / j t e m b

Are

iron

oxide

nanoparticles

safe?

Current

knowledge

and

future

perspectives

Vanessa

Valdiglesias

a,1

,

Natalia

Fernández-Bertólez

a,b,1

,

Gözde

Kilic¸

c

,

Carla

Costa

d,e

,

Solange

Costa

d,e

,

Sonia

Fraga

d,e

,

Maria

Joao

Bessa

d,e

,

Eduardo

Pásaro

a

,

João

Paulo

Teixeira

d,e

,

Blanca

Laffon

a,∗

aDICOMOSAGroup,DepartmentofPsychology,AreaofPsychobiology,UniversidadedaCoru˜na,EdificiodeServiciosCentralesdeInvestigación,Campus

Elvi˜nas/n,ACoru˜na15071,Spain

bDepartmentofCellandMolecularBiology,UniversidadedaCoru˜na,FacultaddeCiencias,CampusAZapateiras/n,ACoru˜na15071,Spain cDivisionofMolecularToxicology,InstituteofEnvironmentalMedicine,KarolinskaInstitutet,Stockholm17177,Sweden

dDepartmentofEnvironmentalHealth,PortugueseNationalInstituteofHealth,RuaAlexandreHerculano,321,Porto4000-055,Portugal eEPIUnit—InstituteofPublicHealth,UniversityofPorto,RuadasTaipas,135,Porto4050-600,Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received29February2016

Receivedinrevisedform29March2016 Accepted30March2016

Keywords:

Ironoxidenanoparticles Invivostudies Invitrostudies Epidemiologicalstudies Toxicity

a

b

s

t

r

a

c

t

Duetotheiruniquephysicochemicalproperties,includingsuperparamagnetism,ironoxidenanoparticles (ION)haveanumberofinterestingapplications,especiallyinthebiomedicalfield,thatmakethemone ofthemostfascinatingnanomaterials.Theyareusedascontrastagentsformagneticresonanceimaging, intargeteddrugdelivery,andforinducedhyperthermiacancertreatments.Togetherwiththesevaluable uses,concernsregardingtheonsetofunexpectedadversehealtheffectsfollowingexposurehavebeen alsoraised.Nevertheless,despitethenumerousIONpurposesbeingexplored,currentlyavailable infor-mationontheirpotentialtoxicityisstillscarceandcontroversialdatahavebeenreported.AlthoughION havetraditionallybeenconsideredasbiocompatible–mainlyonthebasisofviabilitytestsresults– influ-enceofnanoparticlesurfacecoating,size,ordose,andofotherexperimentalfactorssuchastreatment timeorcelltype,hasbeendemonstratedtobeimportantforIONinvitrotoxicitymanifestation.Invivo studieshaveshowndistributionofIONtodifferenttissuesandorgans,includingbrainafterpassingthe blood-brainbarrier;neverthelessresultsfromacutetoxicity,genotoxicity,immunotoxicity, neurotoxic-ityandreproductivetoxicityinvestigationsindifferentanimalmodelsdonotprovideaclearoverviewon IONsafetyyet,andepidemiologicalstudiesarealmostinexistent.Muchworkhasstilltobedonetofully understandhowthesenanomaterialsinteractwithcellularsystemsandwhat,ifany,potentialadverse healthconsequencescanderivefromIONexposure.

©2016ElsevierGmbH.Allrightsreserved.

Contents 1. Introduction...54 2. Invitrostudies...54 2.1. Cellulareffects...54 2.1.1. ROSgeneration ... 55 2.1.2. Ionrelease...55 2.2. Geneticeffects...56 3. Invivostudies...56

3.1. Toxicokineticsandacutetoxicity...57

3.2. Genotoxicity...57

∗ Correspondingauthor.

E-mailaddress:blaffon@udc.es(B.Laffon).

1 Theseauthorscontributedequallytothiswork.

http://dx.doi.org/10.1016/j.jtemb.2016.03.017

(2)

3.3. Neurotoxicity...58 3.4. Immunotoxicity...58 3.5. Reproductivetoxicity...59 4. Epidemiologicalstudies ... 59 5. Concludingremarks ... 59 Conflictofinterest...60 Acknowledgements ... 60 References...60 1. Introduction

Nanotechnologyisrapidlyexpanding.Withtheincreased appli-cations of nanotechnology products, especially for biomedical purposes, concerns regarding the onset of unexpected adverse healtheffects followingexposurehavebeenalsoraised. Under-standingoftoxicologicalprofilesofengineerednanomaterialsis necessaryinordertoensurethatthesematerialsaresafeforuse andaredevelopedresponsibly,withoptimizationofbenefitsand minimizationofrisks.However,developmentandproductionof engineerednanomaterials are increasingfaster than generation oftoxicologicalinformation.Thislackofinformationonpossible adverseeffectsofnanomaterialshasbeentakenintoconsideration bymanyorganizationsworldwidesuchastheUSEnvironmental ProtectionAgency(EPA),theWorldHealthOrganization(WHO), the US National Institute for Occupational Safety and Health (NIOSH),theEuropeanCommission(EC)andtheOrganizationfor EconomicCo-operation andDevelopment(OECD).Official docu-mentshavebeenpreparedbytheseorganizationsaddressingthe needofdedicatedresearchonappropriatemethodologicalassays forassessingengineerednanomaterialstoxicity[1].Consequently, startingintheearly2000s,concernsaboutthepotentialhuman and environmental health effects of nanomaterials were being expressedbymanyscientists,regulators,andnon-governmental agencies.Indeed,asaproofofthegrowinginterestonthistopic, thenumberofscientificarticlespublishedon‘nanotoxicity’or ‘nan-otoxicology’increasedprogressively in thelast decade (around 1700sofar,accordingtoPubMeddatabase);before2005itwas almostnegligible.

Among engineered nanomaterials magnetic nanoparticles – madeofiron,cobalt,ornickeloxides–offerpromisingpossibilities inbiomedicalfieldmainlyduetotheirspecialphysicochemical fea-tures,includingtheirprovenbiocompatibilityandtheirmagnetic propertiesthatallowthemtobemanipulatedbyanexternal mag-neticfieldgradient[2].Particularly,nanoparticlesmadeofa ferro-orferromagneticmaterial,i.e.,ironoxidenanoparticles(ION),can exhibitauniqueformofmagnetismcalledsuperparamagnetism, whichappearswhentheIONsizeisbelowacriticalvalue– depend-ingonthematerial,buttypicallyaround10–20nm–,andwhen thetemperatureisabovetheso-calledblockingtemperature[3]. Thissuperparamagneticbehaviourishighlyusefulinbiomedicine foranumberofapplicationsmainlyrelatedtodiagnosis,tumour imaging,imagingofthecentralnervoussystemforneurovascular, neurooncologicalorneuroinflammatoryprocesses,anddrug deliv-ery[4,5].Indeed,clinicaluseofseveralIONascontrastagentsfor imagingwerealreadyapprovedbytheUSFoodandDrug Admin-istrationsince1996(USFDA)[6–8].Therefore,duetothecurrent andpromisingbiomedicalusesofIONinvolvingthedirectcontact withdifferenttissuesandorgans,studiesaddressingtheirpotential toxicityareespeciallyrelevant.

IONareusuallymadeofacrystallinecoreandasurface coat-ingforstabilizingthecorepropertiesandoptionallyforpreventing theaggregation.ThecrystallinecoreofION,madeofferri-(Fe3+)or

ferro-(Fe2+)magneticmaterial,isgenerallysynthesizedthrough

protocolswithcontrolledprecipitationofironoxidesinorganic

solution[9],orinaqueoussolutionbyaddingabase[10].Among theeightiron oxidesknown,magnetite(Fe3O4),maghemite (

␥-Fe2O3)andhematite(␣-Fe2O3)arethemostcommonlyuseddue

totheirpolymorphisminvolvingtemperature-inducedphase tran-sition; they have unique biochemical, magnetic, catalytic, and otherproperties which provide suitabilityfor specifictechnical andbiomedicalapplications[9].Surfaceofcommerciallyavailable nanoparticlesisnormallymodifiedbycoatingwithdifferent mate-rialsinordertostabilizethem,modifytheirbiodistribution,and enhancetheirbiocompatibility.Thiscoatingisappliedbyaddinga stabilizingcoatingmaterial[e.g.,citrate,dextran,carboxydextran, chitosan, pullulan, polyethylene glycol (PEG), polyvinyl alcohol (PVA),polyethylenimine(PEI),polyethyleneoxide(PEO), polysac-charide,albumin,lipids,etc.]tomonocrystalline(uniformIONwith closeparticlesizedistribution)orpolycrystalline(withsignificant sizevariance)ION[11].Furthermore,particlecoatingmaybe fur-thermodified,especiallyincaseofmedicaluses,withfluorescent dyesforimaging[12,13],targetingmolecules[13,14],drugs[15]or nucleicacids[16,17].Thisgreatvarietyofcoatingsleadstomany diversetypesofIONwithdifferentpotentialactionmechanisms andtoxicpatterns.

IONhavebeenreportedinmanystudiestobehighly biocom-patiblenanomaterialswithnoneorlowtoxicitywhichdonotpose aseriousthreattotheorganism[18–21].Despitebeing consid-eredasgenerallysafe,potentialIONtoxicitycannotbecompletely discardedsinceresultsfromstudiesonthisregardareoften con-tradictoryandIONeffectsatparticularlevels,suchasgeneticor carcinogenic,have beenpoorlyaddressed.Also, theireffects on wholeorganismsand,specially,humanhealthrisksrelatedto occu-pationalandenvironmentalexposuretoIONhavebeenscarcely evaluated.Onthisbasis,andinordertoimprovetheknowledgein thisfield,theaimofthisreviewwastocompiletheinvitro,invivo andepidemiologicalstudiesonIONtoxicitypublishedtodate.Thus, theresultsandconclusionsfromthemainIONtoxicologystudies wereanalysed,providingageneralviewofthecurrent informa-tiononIONsafetyavailableaswellashighlightingthemaingaps ofknowledgeinthefieldthatmustbefurtheraddressed.

2. Invitrostudies

2.1. Cellulareffects

MoststudiesanalysingIONtoxicity arefocusedoncytotoxic effectsofthesenanoparticlesoncellcultures.Anumberof differ-entcelllinesandtestingconditionshavebeenassessedreporting IONcellulareffectsatdifferentlevels,mainlydecreaseinviability, ROSproduction, andiron ion release,but alsoapoptosis induc-tion,cellcyclealterations,cellmembranedisruptions,cytoskeleton modifications, etc. An exhaustive revision of the former works canbefoundin somepreviouspapers[22,23].Since then, sev-eralstudiespublishedaddressing thepotentialIONcytotoxicity showingeneralnoneorlowcytotoxiceffectsofthese nanopar-ticles. For instance, no adverse cellular effects were found in primaryratcerebellarcortexastrocytestreated withPEI-coated ION (magnetite) [24], in cultured rat astrocytes treated with

(3)

citrate-ordimercaptosuccinate(DMSA)-coatedION(maghemite)

[25,26],inmurinebonemarrowcellstreatedwithbareor citrate-modified ION (Fe2O3) [21], in human T lymphocytes exposed

topolyacrylicacid(PAA)-coatedornon-coatedION (magnetite)

[27], in human mesenchymal stem cells treated with ferucar-botran (magnetite/maghemite-carboxydextran) [28], in human amnioticfluid cells(hAFC)[29]incubatedwith carboxydextran-coatednanomagnetite,inculturedprimaryratcerebellarneurons treatedwithDMSA-coatedION(maghemite)[30],or,ingeneral, afterexposureofmurinemicroglialcellstodifferentION[31–33].

Nevertheless,otherinvitrostudieshavereportedpositive cyto-toxicity outcomes after ION exposure. Szalay et al. [34] found thatION(magnetite)inducedmoderatetime-and concentration-dependentdecreaseinviabilityofVerocellsafter24hexposure, andlowgenerationofcytotoxicitywasobservedinL-929 fibrob-laststreatedwithIONmodifiedwithdifferentfunctionalgroups

[35–37]. Similarly, decreasesin viabilitywere foundin human alveolarepithelial A549 cells treated withION (Fe2O3)[38], in

culturedratastrocytesexposedtoaminosilane-orstarch-coated ION(magnetite)atphysiologicaltemperatures(34–40◦C)[39],in humanglioblastoma(T98GandU251MG)andurinarybladder car-cinoma(ECV304)celllinesaftertreatmentwithrhamnose-coated ION(magnetite)[40]andinhumanneuronal(SHSY5Y)andglial (A172)cellsexposedtooleicacid-coatedorsilica-coatedmagnetite nanoparticles[41].

Onthebasisofmostofthesestudies,IONseemtobeinitially safeforbiomedicalusesincetheirpotentialcytotoxiceffects,if any,areusuallyslightorlimitedtospecificconditions(e.g.,highest dosesand/orlongestexposuretimes),andcytotoxicityis consid-eredonly asadecreaseincellviability.However,otherreports havedemonstratedthatthesenanoparticlescanexertotherdrastic effectsonthecellwellbeing(reviewedinRef.[42]).Indeed, dif-ferentcellulareffects–mainlydependentonIONconcentration, timeofexposure,presenceandtypeofcoating,andcelltype eval-uated–havebeenreportedafterIONexposureininvitrostudies. Thoseeffectsincludeplasmaticmembraneimpairment[43,44],cell cyclealterations[45,46],cytoskeletondisruption[47],autophagy

[48,49],changesinmitochondrialmembranepotential[50,51],and alterationsincellmotility[52]andincellintegrity[53].

In summary, someauthorshave suggestedthat inconsistent resultsonIONcellulareffectsmayberelatedtonanoparticle fea-tures,mainlysizeandsurfacecoating[54,55].Thus,Lietal.[56]

carriedoutacomparativestudymeasuringsomecytotoxiceffects, namely intracellular enzymatic activity and membrane disrup-tion,inhumancervicalcancer(HeLa)celllineandimmortalized normalhumanretinalpigmentepithelial(RPE)celllineexposed toION(magnetite).ResultsobtainedshowedthatuncoatedION resultedtoxictobothHeLaandRPEcellsatahighconcentration (0.40mg/ml); however, atlow concentrations, cytotoxicitywas cell-typespecific,beingRPEcellsmoresusceptiblethanHeLacells. Witha similarapproach,Soenenetal.[57]testedfourdifferent IONtypes(dextran-coatedEndorem,carboxydextran-coated Reso-vist,lipid-coatedmagnetoliposomesandcitrate-coatedverysmall ironoxideparticles)onc17.2neuralprogenitorcells,and differ-entcytotoxicpotential relating tothetype of coatingwasalso observedinthiscase.Thus,citrate-coatedIONresultedthemost toxicand lipid-coatedonesweretheless toxic.MoreoverRivet etal.[55]investigatedtheresponseofprimarycorticalneuronsto aminosilane-,dextran-andpolydimethylamine-coatedION (mag-netite),andobserveddifferenteffectsdependingonnanoparticle doseandcoating. Furthermore,uncoatedION(magnetite)were found tobe non-cytotoxic to human lymphoblastoidTK6 cells and primary humanblood cells, while oleate-coated magnetite nanoparticleswerecytotoxicina dose-dependentmanner[58]. Similarly,uncoatedION(magnetite)prevented–whilePAA-coated ION prevented – apoptotic signalling and apoptosis in human

neutrophils in vitro [59]. In another study, aminosilane-coated nanomagnetitewasfoundtodecreaseviabilityofprimarycortical culturedneurons,butinadiversegradedependingonwhetherION werepositivelyornegativelycharged[60].Morerecently,Schütz etal.[48]reportedthatthestressresponseofHT29andCaco2cells wascell-andnanoparticle-specific.However,otherauthors sug-gestedthatIONconcentrationmaybeanevenmorecriticalfactor forcytotoxicitythansurfacemodificationorsize[36,61].

AstheION-inducedcytotoxiceffectsreportedintheliterature arefrequently relatedtoreactiveoxygenspecies (ROS) genera-tionandironionrelease,thesespecificoutcomesareaddressed separatelyinthefollowingsubsections.

2.1.1. ROSgeneration

Anumberofinvitrostudieshaveassociatedcytotoxicityinduced byIONwithoxidativestressandROSproduction[62–64].Thus, anincreasedgenerationofROSbyIONexposurewaspreviously observedin Chinesehamsterovary(CHO-K1) cells[65],murine macrophage J774 cells [66], different vascular endothelial cells

[67,68],Chinesehamsterlungcells [69],humanlungA549cells

[43,70],brainmicrogliacells[71],andglialT98GandU251MGand bladderECV304cells[40].However,otherstudiesreported nega-tiveresultsonROSproductionafterIONtreatment[72,73].Several authorshavesuggestedthatoxidativestressandROSgeneration inducedbyIONcanbeassociatedwiththepresenceandtypeof surfacecoating[65,72].Inanycase,thispresenceofhigh intracel-lularROSlevelsmay[63,68]ormaybenot[43,70]associatedwith ION-inducedcytotoxicity.

SincethebrainisparticularlyvulnerabletoROSdamage,a num-ber of studieshave evaluated oxidative stress consequences of treatmentwithdifferentIONonculturedneuralcells.WuandSun

[45]foundoxidativestress,decreaseinneuronviability,and activa-tionofJNK-andp53-mediatedpathwaystoregulatethecellcycle andapoptosisinPC12cellstreatedwithION(Fe3O4).Wangetal.

[74]observedthattreatmentwithION(␣-and␥-Fe2O3)ledto

gen-erationofROSandnitricoxide,cellproliferation,andphagocytosis inmousemicroglialBv2cells,andROSformationwasalsofoundin humanbrain-derivedendothelialcells(amodeloftheblood-brain tumourbarrier)treatedwitholeicacid-andpolyvinylamine-coated ION(Fe3O4)[75].Recently,Pettersetal.[71]comparedtheeffects

ofDMSA-coatedION(␥-Fe2O3)exposureondifferentbraincells,

namely,microglialcells,neuronsandastrocytes.Resultsshowed thatIONtreatmentinducedincreasesiniron content,ROS gen-erationandcelltoxicityin microglialcells butnotinastrocytes andneurons.Similarlytothesenegativeresultsinastrocytesand neuronalcells,Hohnholtetal.[76,77]reportedneithersubstantial ROSproductionnoranyalterationinthecellularthiolreduction potentialafterexposureofoligodendroglialOLN-93cellstoION (␥-Fe2O3).

2.1.2. Ionrelease

Duetoiron capacitytoswitchbetweenferric(Fe3+)and

fer-rous(Fe2+)ionicformsbyeasilyacceptinganddonatingelectrons

(reduction-oxidationreactions),itplaysacriticalroleinimportant organicmetabolicpathwayssuchascytochrome P450function, mitochondrialoxidativephosphorylation,oxygentransport,DNA synthesis,andforenergyproduction[78].Nevertheless,asexcess of thismetal canbeverytoxic, iron levelsintheorganismare strictlycontrolled.FreeironreleasedfromIONmetabolisationcan beincorporatedtothenormalcellularironpoolfromtheendocytic compartment[22].Thus,IONexposureinavarietyofcellscaused elevatedintracellularironconcentrations,dependentonthedose

[25,32,40,79].Therefore,thenormalbodycapacitytomanageiron shouldbetakenintoaccountwhenconsideringadministrationof highorfrequentlyrepeateddosesofION[20].

(4)

Apartfromnanoparticleexposurecharacteristics,alsocell fea-turescaninfluenceIONeffectssince,dependingoncelltype,iron ionsreleasedfromIONcanbeharmlessforcells[25,32,79],induce cytotoxicity[80],orevenbeusedbycellsfortheirownmetabolism, asitwasobservedforoligodendroglialOLN-93cells[76,77].A pos-sibleexplanationisthat,undernormalconditions,ironreleased fromION canbeaccumulated in cells where it isstored as an iron-ferritincomplextoannulthehightoxicity associatedwith freeiron[80,81].Hence,thisstoragelikelycontributestohighcell resistancetoiron toxicity andis especially relevantin the ner-voustissue,sinceeventheprolongedpresenceoflargeamounts ofaccumulatedIONdoesnotharmthesecells.Onthisregard,a recentreviewonIONuptakeandmetabolisminbrainastrocytes suggeststhattheefficientuptakeofextracellulariron(liberated slowlyfromION)byastrocytes,aswellastheirstrongup-regulation ofthesynthesisofferritincontributetothehighresistanceofthese cellstoirontoxicity.Soastrocytesdealwellwithanexcessofiron andprotectthebrainagainstiron-mediatedtoxicity [81].These resultsaresupportedbyrecentfindingsshowingthatastrocytes, andalsoneurons,are moreresistantagainstacuteIONtoxicity, likely due to a slow transfer of internalized nanoparticles into thelysosomal compartment, requiredfor iron ion release from ION[71].However,underpathologicalconditions(suchascancer, atherosclerosis,hypertensionorarthritis)ironmayeffectivelybe releasedfromferritinleadingtoincreasedoxidativedamageand causingcellulartoxicity[82,83].

2.2. Geneticeffects

AnumberofinvitrostudieshaveevaluatedtheeffectsofION exposureongeneticmaterial,mainlyby meansofcometassay and micronucleus(MN) approach. Still, there is lackof consis-tence in ION genotoxicity results, even at similar doses. Thus, cometassayevaluationofmurineL-929fibroblaststreatedwith ION (magnetite) coated with (3-aminopropyl)trimethoxysilane (APTMS),tetraethylorthosilicate(TEOS)-APTMS,orcitrateshowed aconcentration-dependentincreaseinDNAdamageregarding con-trolcells[36].SimilargenotoxiceffectsweredescribedafterION (magnetite)treatmentinalveolarA549and bronchialepithelial BEAS-2Bcells[84],embryonickidneyHEK-293cellsand periph-eralbloodlymphocytes[85],andinskinepithelialA431cells[86], andalsoinhumanlymphoblastoidTK6cellsandprimaryhuman leukocytesexposedtooleate-coatednanomagnetite[58].Usingthe samemethodology,Bhattacharyaetal. [87]foundDNAdamage inductionin human lung IMR-90fibroblasts and human BEAS-2Bcellstreatedwithnanohematite,andRajivetal.[44]observed DNAbreaksandchromosomeaberrationsinhumanlymphocytes exposed to ION (Fe2O3).Also MN production wasobserved in

humanlymphoblastoidMCL5 cells treated withdextran-coated maghemitenanoparticlesfor24h[88].Similarly,positiveresponse wasobservedinA549cellstreatedwithbarenanomagnetiteboth in thecomet assay and MN test, but the damagingeffect was reducedbysimultaneousexposuretoN-acetylcysteineorby pre-treatmentwithbutylated hydroxyanisole, both ROS scavengers

[70].However,itwasrecentlyreportedthatoxidativestressplays, atmost, only a marginal role in genotoxicity induction (evalu-atedbycometassay)bysurface-modifiedmagnetitenanoparticles

[89].

Still,studiesshowingnegativeresultsforIONgenotoxicityare even morefrequent. Karlssonet al. [38,90]observed no induc-tionofprimaryDNAdamage(cometassay)inA549cellsexposed toION(Fe2O3 and Fe3O4),but oxidativeDNAdamage was

pro-ducedbymagnetite nanoparticles.Also, MNfrequency wasnot foundtobe altered in humanlymphoblastoid cells after treat-mentwithuncoatednanomaghemiteorwithnanomagnetite,both uncoatedanddextran-coated[88].Likewise,Guichardetal.[91]

obtainedneither increase in DNA damage, evaluated bycomet assay, nor induction of MN formation using Fe2O3 (primarily

maghemite) and magnetite nanoparticles to treat Syrian ham-ster embryo cells. Genotoxicity caused by exposureof Chinese hamster lung cells toglutamic acid-coatedFe2O3 nanoparticles

wasassessedbyusingthesametestsandnosignificantpositive responsewasobtained,althoughcellredoxstatuswasslightly dis-turbed[69].Liuetal.[92]foundnoincreaseintheincidenceof chromosomeaberrationsinChinesehamsterlungcellstreatedwith ION(10nm)withpositivelychargedPEIsurfaceorwithneutral non-functionalPEG-coatedION(10and 30nm).Besides,normal humanfibroblastsexposed tomeso-2,3-dimercaptosuccinicacid (DMSA)-coatedmaghemitenanoparticlesshowedalsonoincreases inDNA damageattributedin parttotheinhibition ofpotential toxicity by the DMSA coating, which acts as a barrier avoid-ingdirectcontactbetweenfibroblastsandthenanoparticlecore

[93].DNAdamagewasneitherobservedaftertreatmentofL-929 fibroblastswithbareorTEOS-coatedION(magnetite)[36]orin lymphoblastoidTK6cellsandprimaryhumanleukocytestreated withuncoatednanomagnetite[58].Morerecently,Coutoetal.[27]

alsodemonstratedabsenceofIONeffects ongeneticmaterialof humanT-lymphocytesreportingnochromosomeaberrations in cellstreatedwithPAA-coatedandnon-coatednanomagnetitefor 48h.Inagreementwiththesestudies,Paolinietal.[40]reported absenceofgenotoxicandcarcinogeniceffectsofrhamnose-coated ION (magnetite)on mouse fibroblast Balb/c-3T3 cells. Further-more,anumberofstudiesevaluatingthepotentialmutagenicity inducedbydifferentIONbymeansofAmestest, withor with-outmetabolicactivation,werealsoreportedwithnegativeresults

[34,94,95].However,Gomaaetal.[85]describedbothpositiveand negativeresultsintheAmestestforION(magnetite)depending ontheadministereddoseandthepresenceofmetabolic activa-tion.Supportingthisobservation,Liuetal.[92]concludedrecently thatIONmutagenicitycouldbedependentonnanoparticlesizeand surfacecoatingafterhavingfoundapositivemutagenicresponse (Amestest)incellstreatedwithPEG-coatedION(10nm)butnot incells treatedwithPEI-coatedION(10nm)orPEG-coatedION (30nm).

3. Invivostudies

Since nanomaterial studies based oncell cultures are often inconsistent and might underestimate their effects, toxicity of nanomaterialsneedstobeexaminedinwholeanimalsystems[96]. Besides,nanomaterialuptakeanddistributioninthebodyare com-plexprocessesthatcannotbeproperlyaddressedinculturedcells, andinvitroparticlesizecanchangewhenusedinvivoduetothe additionaldepositionofsalts,opsonizationwithplasmaproteins, lipidsorcarbohydrates,dependingonthesurfacechargesofthe coatingmolecules,orduetotheclusteringofnanoparticlestoform conglomerates[5].Thus,invivostudiesonnanomaterialstoxicity areessentialandhaveanobviousadvantageoverinvitrotests, pro-vidingactualinformationaboutoveralleffectsonalivingorganism, includingthefinalcellortissuetargets.

However,invivostudies onIONtoxicity arestill scarceand alsoshowedcontroversialresults.Thus,negativeortrivialtoxicity resultswerereportedfordifferentIONinseveralorgansofWistar ratstreatedintravenously[97],intratracheally[34]ororally[98], inmiceexposedorally[99]orsubcutaneously[100],ingrowing chickensafteroraladministration[101],andinmonkeysanddogs intravenouslytreated[95].Onthecontrary,positivetoxicity out-comeswereobservedinseveralrodentmodelsexposedtoIONby pulmonary[64,102],intraperitoneal[47,103,104]orintravenous

(5)

3.1. Toxicokineticsandacutetoxicity

Itisgenerallywellacceptedthatthetoxicokineticsof metal-licnanoparticlesdependsontheparticletype,size,surfacecharge, surfacecoating,proteinbinding,exposureroute,dose,andspecies

[106]. Bourrinet et al. [95] investigated ION toxicokinetics in rats and monkeys intravenously treated with ferumoxtran-10. The highest ION uptake was obtained in spleen, followed by central lymph nodes, peripheral lymph nodes, liver, and bone marrow,withageneraleliminationhalf-lifeofabout8-10days. StudiesdescribingIONtoxicokineticsinotherinvivomodels (usu-allyrodents)arefrequentlyaccompaniedbyassessmentofacute toxicityoutcomes.Severaloftheseworksreportedabsenceof tox-icityafter IONadministration. Thus, differentconcentrations of magnetite-zincoxidecore-shellnanoparticleswereinjected sub-cutaneously,weeklyforfourweeks,toC57BL/6micetoexamine tissuedistribution,excretionpatternandsystemictoxicity[100]. Nodistributionwasobservedtobrain,spleen,lung,kidneyorliver, andneitherchanges inzinc concentrationsin urineand faeces. Besides,absenceofsignificantmodificationsinmortality,clinical observations,bodyweight,foodintake,waterconsumption, uri-nalysis,haematology,serumbiochemistry,ororganweightswas reported.Justadose-dependentincreaseingranulomatous inflam-mationwasfoundattheinjectionsiteoftreatedanimals,butno otherhistopathological lesion in anyorgan couldbeattributed tothenanoparticleexposure.Moreover,nosystemicdistribution ofFe2O3 nanoparticlesorsignificantchanges intoxicity

param-eterswereobservedinSprague-Dawleyratsorallyadministered, dailyovera13-weekperiod[99].Ansciauxetal.[107] function-alizedseveralultrasmalliron oxideparticleswithpeptidesthat presentanaffinityforamyloid-␤peptide,forbeingusedinearly diagnosisofAlzheimer’sdisease.Theparticlescoupledtopeptide C-IPLPFYN-Cdemonstratedabilitytocrosstheblood-brainbarrier inmicewithoutanyfacilitatingstrategy,andaccumulatedinbrain 90minaftertheirintravenousinjection.However,notoxiceffects wereobservedafterexposureandnoneofthederivativestested wasfoundinanyorganoneweekafteradministration; elimina-tionhalf-lifewasabout3h.Recently,Yangetal.[108]investigated thesize-dependentinvivokinetics,toxicityandgeneexpression changescausedbycarboxyl-coatedION(magnetite,diameters10, 20, 30, and 40nm). They demonstrated that ION accumulated primarilyinliver and spleenof Kunmingmiceonthefirst day post-intravenous injection, following a size-dependent pattern, with10nmnanoparticlesshowingthehighestuptakebyliverand 40nmnanoparticlesthehighestuptakebyspleen.Moreover,10nm IONwereclearedfasterfromliverandkidneys,butenteredmore readilybrainanduterus,whereas40nmIONaccumulatedmore readilybutwereeasilyeliminatedinspleen.Noapparentsignsof acutetoxicitywereobserved,butIONexposurewasabletochange theexpressionlevelofsensitivegenesrelatedtooxidativestress, irontransport,metabolicprocesses,andapoptosis,amongothers. Likewise,Chamorroetal.[101]reportedaccumulationof nanopar-ticlesinliver,spleen,orduodenumofgrowingchickenschronically exposedtolowdosesofION(␥-Fe2O3)byoralroute;faeceswere

themainexcretionroute.Itwasalsonoticedthatironionswere releasedasaconsequenceofthepartialIONtransformationbythe acidgastricenvironment,buttheywereabsorbedenhancingthe ferricoverferrouspathway.Besides,nomortalityoradversesigns orsymptomswereobserved.Lackoftoxiceffectswasalsoreported inratstreatedwithION(II,III)sincenohistopathologicalalterations werefoundintheseanimalsafterasingleintratrachealinstillation

[34].

Nevertheless,oppositetoallthesestudies,anumberofworks havedescribedacuteanimaltoxicityafterIONexposure.Kumari etal.[109]reportedthatWistarratsexposedorallytoION(Fe2O3)

for28 days showeddistributionofthe nanoparticlestoseveral

organs,includingbrain,andtoxicsignssuchasdullness,irritation and moribundconditions,but nomortality.Increasediron con-tent,changesinhomeostasisoftraceelementsandimmunological alterationswereobservedinseveralorgansofmicethatreceived asingleION(magnetite)doseinjectedthroughthetailvein[110]. Nanoparticleswereprimarilydistributedtoliverat1week post-injection,and ironlevelsincreasedremarkablyin thymus,lung, heart,liver,andspleenat4weekspost-injection;at13weeks post-injection,ironlevelswerethehighestinthespleen.Furthermore, Kwonetal.[111]studiedthebiodistributionandbiomodificationof ION(Fe3O4and␣-Fe2O3)inDaphniamagnaandfoundanumberof

morphologicalchanges(e.g.,irregularshapedmicrovilli,epithelial cellprotrusion,anddilatationofcytoplasmicinclusion)inthegut tissuesofthesecrustaceans,along withbacterialcolonizationof thegutlumen,afterIONexposure,evenwithoutpenetratingthese tissues.TheauthorssuggestedthattheseeffectsmaybeduetoION biomodificationsprobablyinvolvingoxidativedissolutionofFe3O4

followedbyarapidprecipitationofferricoxideorhydroxide. Tworecentindependent studiesreportedalsorelevanttoxic effectsinmouseandratlungsafterIONadministration.RaduBalas etal.[112]evaluatedbiochemicalandhistopathologicalchangesin CD-1miceexposedtoIONcoatedwithphospholipid-based poly-mericmicellesbyintravenousinjection.Alterationsinactivityof severalenzymes–includingcatalase,glutathionereductase,lactate dehydrogenase,superoxidedismutaseandglutathioneperoxidase –werefoundintreatedanimalsregardingthecontrols. Further-more,histopathological modifications,dose-dependentdecrease ofthemouselungcapacityandmajorchangesintheexpression ofapoptosismarkerswerealsohighlighted.AndSadeghietal.[64]

evaluatedtheeffectsofIONonlungtissueofadultmaleWistar ratsafterpulmonaryinhalation.Administerednanoparticles pen-etratedthecirculation,rapidlyreachedliver,andcausedserious inflammationinlungandlivertissues.Resultsalsoshowed signif-icantincreaseoffreeradicalsandreductionofglutathioneinlung tissue,togetherwithpulmonaryemphysemaandinterstitial hyper-emiainlungs,andhepaticinjuriesthatledtoreleaseofhepatic enzymestothebloodserum.

In addition, Baratliet al.[113] examinedthe effects of ION (Fe3O4)onmitochondrialrespiratorychaincomplexactivitiesand

mitochondrial coupling in young (3 months) and middle-aged (18months)ratlivers,findinginterestingdifferencesdepending onanimalage.In youngindividuals,IONexposuredidnotalter mitochondrialfunction;however,nanoparticlesdose-dependently impairedallcomplexesofthemitochondrialrespiratorychainin middle-agedratliver.AndGustafssonetal.[114]investigatedthe inflammatoryandimmunologicalresponsestoIONinhealthy non-sensitizedmice,andinsensitizedmicewithanestablishedallergic airwaydisease.Animalswereexposedtohematitenanoparticles forupto7daysanddifferenttoxicresponses–including alter-ationsinwhitebloodcelllevelsandreductionofalveolarspace– wereobservedhighlydependentontheinitialmouserespiratory features.

Takingtheresultsfromallthesestudiestogether,itseemsthat differencesfoundintheliteratureregardingIONtoxicokineticsand associatedtoxicityarerelatedtonanoparticlesize[108],crystalline phaseanddissolutionrate[111],administereddose[101],andage

[113]orpreexistentpathologicalstate[114]ofthestudyanimals. 3.2. Genotoxicity

In vivo studies addressingthe potential genotoxic effects of IONarescarceintheliterature,andresultsobtainedfromthem are notconclusive yet.Different typesof DNA alterations were foundin a number ofanimal studiesafter IONexposure. Thus, DNA-protein crosslinksandoxidative DNAdamage (8-hydroxy-deoxyguanosine)were observedin hepatic and renal tissuesof

(6)

Kunmingmicetreateddailyfor1weekwithmagnetite nanoparti-clesviaintraperitonealinjection[103].AnincreaseinMNfrequency wasalsodetectedinbonemarrowcellsofmiceintraperitoneally exposed to magnetite nanoparticles[104], or after intravenous administrationofpolyasparticacid-coatedION(magnetite)[105]. Totsuka et al. [115] examined genotoxic effects of magnetite nanoparticlesinmiceintratracheallyinstilled,obtainingsignificant increasesinDNAadductlevels,oxidativestressandDNAbreaksin treatedanimalsascomparedwithcontrols.Inaddition, inflamma-torycellinfiltrationandfocalgranulomatousformationswerealso observedinlungsofexposedmice,suggestingthatan inflamma-toryresponsemightbeinvolvedingenotoxicityinducedbyIONin micelungs[116].Recently,AlFarajetal.[102]performeda lon-gitudinalstudyonBalb/cmiceintrapulmonaryadministeredION (PEG-coatedmagnetitemodifiedwithnegative[carboxyl]or pos-itive[amine]terminal)acutelyandsub-acutely.Accumulationof IONwasdetectedintheliverafterhigh-doseadministration. Fur-ther,asignificantincreaseinlipidperoxidation,DNAdamageand geneexpressionofCCL-17andIL-10biomarkerswasobservedin bothacuteandsub-acutesets.Theeffectsobservedresultedsurface coating-dependent,showingIONwithcarboxylterminalaslightly prominenteffectcomparedtotheaminemodification.

Despite these works, severalin vivo studies reported nega-tiveresultsongenotoxic effectsafterION exposure.Estevanato etal.[117]evaluatedgenotoxiceffectsofmaghemitenanoparticles encapsulatedwithinalbumin-basednanospheresonfemaleSwiss miceintraperitoneallyinjectedbyperformingMNtest systemat-icallyfrom30minuntil30daysafterinjection,andnoevidence ofMNproductionwasfoundinanycase.AlsonoincreaseinMN frequencywasobservedinbonemarrowcellsfromKunmingmice exposedbyabdominalinjectiontomagnetitenanoparticleseither naked[118]orcombinedwithdaunorubicin[47].Similarly,single andrepeatedintravenous(bolus)administrationof ferumoxtran-10(anultrasmallsuperparamagneticIONcontrastagent)didnot produceincreaseofMNfrequencyinmicebonemarrowafter24 or48hofexposure[95].Inthesamestudy,genotoxicitywas addi-tionallymeasuredbyassessingDNArepairasunscheduledDNA synthesis(UDS)inprimaryhepatocyteculturesfromtreatedrats, butnegativeresultswereobtainedalsointhiscase.Moreover,Liu etal.[92]foundnegativegenotoxicresponse,evaluatedbymeans ofMNtest,inmaleNIHmiceintraperitoneallyexposedtoPEG-and PEI-coatedION.Besides,Fe2O3(primarilymaghemite)

nanoparti-clesorallyadministeredinasingledosetoWistarratswereeasily abletopass acrosstheintestinalbarrier and,eventhoughthey weremainlyaccumulatedinliver,spleen,kidney,heartandbone marrow,theydidnotcauseDNAdamage(accordingcometassay results)andMNproductioninperipheralleukocytesor chromo-someaberrationsinbonemarrowcells[98].

TogetherwiththehighvariabilityinIONtypeanddosetested, experimentaldesignmay alsohelpexplain thenon-concordant resultsobtainedfromgenotoxicityassessmentofthese nanopar-ticles.Hence,someauthorshighlightedtheneedofcarryingouta rangeofgenotoxicityassaysinthesamestudyinordertocover allthepotentialformsof DNAdamageandaccordingly provide properconclusionsonthegenotoxicpotentialof nanomaterials

[119,120].Furthermore,possibleinterferenceofnanoparticleswith standardgenotoxicitymethodologiesisusuallynotconsideredin thesestudiesand itshouldbe,since interferencehasbeen pre-viouslydemonstratedtobelikelypresent,altering theobtained results[121,122].

3.3. Neurotoxicity

IONhavebeenshowntodisplaytheabilitytocrossthe blood-brainbarrierafteroral[123],inhalatory[111],andintraperitoneal

[124]administration,andtodirectlyreachthebrainthroughthe

olfactorynerveafterintranasalinstallation[125].Thisabilitymakes themespeciallyeligibleformedicalpurposesonnervoussystem, suchasdrugdeliveryandimagingdiagnostics,butalsopotentially harmfulforthissystem.Hence,aspecialattentionmustbepayedto thenervoustissuephysiologyandbehaviouraloutcomesinanimal studies.Nevertheless,unliketheconsiderableamountofstudies addressinginvitroeffectsofIONonneuralcells,thenumberof invivostudiesonpotentialneurotoxicityofthesenanoparticlesis quiterestricted.

Most of the in vivo studies on ION neurotoxicity employed ratsasexperimentalmodel.Hence,Kumarietal.[109]observed dullnessand irritationinWistar ratsafter28 daysof oraldaily exposuretoION(Fe2O3).Moreover,asignificantdose-dependent

inhibition of total, Na+-K+, Mg2+ and Ca2+-ATPases in brain, as

wellas acetylcholinesterase in brain and red blood cells, were foundinexposedanimals,suggestingthatIONexposuremayaffect synaptictransmissionandnerveconduction.Similarly,Bourrinet et al.[95] observed differentphysiological responses,including signs of polypnea, exophthalmos and mydriasis in this species afterintravenoustreatmentofION(ferumoxtran-10),althoughno neurobehavioural,neurovegetative,orpsychotropiceffectswere detected.Morerecently,Kimetal.[126]treatedSprague-Dawley rats with different ION (DMSA-coated maghemite, and DMSA-, PEG- and PEG-Au-coated magnetite) by intraneural injection (sciaticnerve);IONcausedimmunecellinfiltration,neural inflam-mationand apoptosis,andinducedneuralantioxidantresponse. Thesameyear,Wuetal.[127]detectedaregionaldistributionof ION(magnetite)inbrainofratsintranasallyinstilledforsevendays. IONinducedoxidativedamageinstriatumbutnotin hippocam-pus,despitethepresenceofnanoparticlesinbothregionsresulted particularlyhigh.

Agreeingwiththesestudiesonrats,neurotoxicityofIONhas beenalsoreportedinmiceand fish.Inmice,intranasal admin-istrationofFe2O3 nanoparticlesinducedpathologicalalterations

in olfactory bulb, hippocampusand striatum; microglial prolif-eration,activationandrecruitmentwerealsoobservedinthese areas,especiallyintheolfactorybulb[74].Inaddition,micetreated withmagnetitenanoparticlesbyintragastricadministrationwere reportedtoshowlessactivityandaslightlossofappetite[123].In fish,dextran-coatedFe3O4nanoparticlesintraperitoneally

admin-istered to adult zebrafish were found to accumulate in brain inducingapoptosisandinhibitionofacetylcholinesteraseinthis tis-sue.Moreover,althoughnoalterationsintheexpressionofgenes associatedwithinflammationwereobserved,increasedlevelsof ferricironandenhancedmRNAlevelsofcaspase-8,caspase-9and transcriptionalfactorAP-1inbrainoftreatedanimalswerealso detected[129].

3.4. Immunotoxicity

ImmunotoxiceffectsrelatedtoIONexposurewerealsoreported some recent in vivo studies. Park et al. [130] investigated the tissue distribution and immunotoxicity of ION (Fe2O3) in

six-week-oldmaleIRCmiceafterintravenousinjection.Increasediron levelsregardingthecontrolwerefoundinalltissuesevaluated, notablein liver,spleen andthymus, and alsoalterations inthe immunesystemwereobservedintreatedanimals.Thoseincluded increasedlevelsofwhitebloodcellsandneutrophils,interleukin (IL)-8secretionandlactatedehydrogenaserelease.Likewise, sys-temic administration of dextran-stabilized IONalso resulted in enhancedproliferationofmitogen-stimulatedspleen-derived lym-phocytesandsecretionofIL-1␤inmaleWistarratsafter7days ofintravenousadministration[131].Sadeghietal.[64]observed serious inflammation in lungs and liver of Wistar rats treated withION(Fe2O3)bypulmonaryadministrationaswellas

(7)

Similarly, Gustafsson et al. [114] observed an immunological response in mice exposed to ION (hematite). They described increasedlevelsof neutrophils,eosinophils,andlymphocytesin theairwaysofhealthymiceondays1and2post-exposure,but decreaseoflymphocytesinsensitized(withanestablished aller-gicairway disease)mice.Opposite totheseresults, Wangetal.

[128]foundnosignificantdifferencesinsplenocyteproliferation or cytokine release in mice fed with magnetite nanoparticles. However,despiteproportionsofT-lymphocytesubsetswerenot alteredafterlowIONexposures,CD3(+)CD4(+)andCD3(+)CD8(+) T-lymphocytesubsetswerehigherinanimalsexposedtomedium andhighIONdosesthatinthecontrolgroup.Finally,Parketal.

[110]foundthatmagnetitenanoparticlesintravenously adminis-teredtomicecandisturbhomeostasisoftheimmuneregulation. Particularly,after13weekspost-injection,theyobservedincreased percentagesofneutrophilsandeosinophils,enhanced releaseof lactate dehydrogenase, and elevated secretion of IL-8 and IL-6 inthebloodoftreatedanimals.Furthermore,expressionof anti-genpresentationrelated-proteinsandmaturationofdendriticcells resultedinhibitedafterIONexposurewhereasexpressionofseveral chemokineswasenhancedinsplenocytes.

3.5. Reproductivetoxicity

SimilartothereportsonIONneurotoxicityorimmunotoxicity, thenumberofstudiesaddressingreproductivetoxicityofIONis scarce.Initially,IONwereconsideredtoshowlowdevelopmental toxicityorteratogeniceffectsafterhavingexposedXenopus lae-visembryos(FrogEmbryoTeratogenesisAssayXenopus,FETAX assay)toION(Fe2O3)for48handobservingnomortalityor

sig-nificantmalformation; slightharmfuleffects, namelyvariations intotal body lengthandsnout ventlength,wereonly notedat thehighestconcentrationtested[132].Thesameyear,Noorietal.

[133]evaluatedIONeffectsonreproductionandoffspringofmice treatedwithDMSA-coatedmagnetitenanoparticles.Eventhough noadverseeffectsongestationandfoetalgrowthwereobserved, asignificantdecreaseintheoffspringgrowthandmaturationafter birthandabout70%deathbeforereachingpubertywerereported. Besides,maleoffspringshoweddecreaseinthelevelsof spermato-gonia,spermatocytes,spermatidsandmaturesperms,suggesting thatembryoandfoetalmousedevelopmentmightbedisruptedby placentaandfoetusexposuretoION.Agreeingwiththeseresults, alaterstudyonzebrafish(Daniorerio)showedthatuncoatedION (␣-Fe2O3)induceddevelopmentaltoxicityinearlylifestagesofthis

species,includingmortality,hatchingdelay,andembryonic malfor-mation[134].AndalsoFe2O3nanoparticles(primarilymaghemite)

werefoundtoinducecytotoxicityandROSproductioninSyrian hamsterembryocellsexposedfor72h[91].However,Piccinetti etal.[135]recentlyobservedthatsilica-coatedmagnetite nanopar-ticlesdonotinduceanytoxicityinzebrafishlarvaeexposedthrough foodforupto15days.Inthiscase,nanoparticleswereexcreted throughfaeces,andtheydidnotactivatedetoxificationprocesses orpromotetissue/cellinjuryinlarvaeoradultindividuals.

IONeffectsonfertility,reproductiveperformance, embryotoxic-ity,foetotoxicity,andteratogenicitywerealsoevaluatedinratsand rabbitsexposedtoferumoxtran-10[95].Althoughnoeffectswere generallyobservedonfertilityorearlyembryonic development, mildlymaternaltoxicityandmajorfoetalskeletalmalformations weredescribed in both species. Recently, developmental toxic-ityandbiodistributionofa singledoseversusmultipledosesof IONwithpositiveornegativesurfacecharges(PEI-coatedFe2O3

orPAA-coatedFe2O3,respectively)werealsoinvestigatedinvivo

in pregnant CD-1 mice [136]. In this case, multiple doses of positively-chargednanoparticlesgivenoverseveraldaysresulted insignificantlyincreasedfoetaldeathsandaccumulationofiron inthefoetalliverandplacenta.Thesameauthorsalsoevaluated

theeffectsofprenatalexposuretotheseIONonmiceduring criti-calstagesoforganogenesis[137].AlowdoseofIONdidnotinduce toxicity,butfoetallossesandmorphologicalalterationsoftheuteri andtestesofsurvivingoffspringwereobservedafterhighIONdose exposure.Furthermore,theeffectsatshort-orlong-termvaried dependingonthetypeofIONemployed.

4. Epidemiologicalstudies

Epidemiologicalstudies in thenanotoxicology field are very scarce. A limited number of nanomaterials, including titanium dioxide(TiO2)nanoparticles,carbonnanotubes(CNT)or

inciden-talultrafinenanoparticles,havebeenevaluatedsofartodetermine thehealthrisksassociatedwiththeiroccupationalexposure[138]. Properpopulationstudiesonenvironmentalnanomaterial expo-sureareevenmorelimited,almostinexistent.Thissignificantlack ofstudiesis likelyrelated tothedifficultyof characterisingthe exposurepatterns.For instance,thenanoparticle componentof theenvironmentalairparticulatepollutionhasnotbeen specifi-callymeasuredevermainlybecauseitisnotpossibletoseparate nanoparticlerelatedeffectsfromtheeffectsoflargerparticulates thatwereomnipresent[139].

Inthisregard,fieldstudiesontheexposurecharacteristicsof manufacturednanoparticlesarerelevant,buttheyarealsolimited thusfar.InthecaseofION,anddespitethegreatrelevanceoftesting thepotentialharmfuleffectsoftheseparticularnanoparticleson humanhealth,todatejusttworecentstudieshaveaddressedthis issue.Xingetal.[140]studiedtheexposurecharacteristics (par-ticlenature,metric-dependentconcentrationandparticlesize)of airborneIONgeneratedbythemanufacturingprocessesofFe2O3

nanomaterialsinafactoryinZhejiangprovince(EastChina).Inthis study,relevantbaselinedataonthecharacteristicsofIONexposure whichcouldbeusedforfurtherepidemiologicalstudieswere estab-lished. Thus, theyobservedthat nanoparticle generationability relatedtothedifferentworkingactivities(powderscreening, mate-rialfeedingandpackaging)varieddependingontheirnatureand thattheparticleconcentrationexhibitedperiodicityandactivity relevance.Althoughnopotentialadversehealthoutcomes associ-atedwithIONexposurewereaddressedinthisstudy,itsfindings highlightedtherelevanceofevaluatingthepotentialhealthrisks relatedtoIONinworkplaceswhereexposuretothesenanoparticles isespeciallynoticeable.Additionally,Pelclovaetal.[141]analysed differentoxidativestressbiomarkersin exhaledbreath conden-sate(EBC)andurinesamplesof14workersoccupationallyexposed toiron oxideaerosol (with more than80% of particles smaller than100nmindiameter)duringironoxidepigmentproduction foranaverageof10±4years,and14matchedcontrols.Almost alltheoxidativestressbiomarkersevaluated,includingmarkers oflipid,nucleicacidandproteinoxidation,resultedincreasedin EBCofworkersregardingthecontrolindividuals.Nodifferences inoxidativemarkersofbothgroupswerefoundinurinesamples. Theseresultsemphasizethenecessitytoperiodicallymonitorfor potentialadversehealtheffectsallIONexposedemployees, includ-ingresearchworkerswhoaredirectlyexposedbyhandlingthese nanoparticlesinthelab.

5. Concludingremarks

Dueto theiruniquephysicochemical properties, IONhave a numberof interestingcurrentand potentialfuture applications, especiallyinthebiomedicalfield,thatmakethemoneofthemost fascinatingnanomaterials.Amongotheruses,theyarecurrently employedincelllabelling,drugtargeting,genedelivery,biosensors, hyperthermiatherapy,anddiagnostics,andtheyhavepromising futureusesintherapiesagainstcancerandotherdiseases.However,

(8)

allthesemedicalapplicationsrequireinternalizationof IONfor efficientdiagnosisortreatment,leadingtopotentialrisks associ-atedwithexposure.Astheseapplicationsareincreasinginnumber andinbenefits,thereisanimperativeneedtocomprehensively investigateandelucidatethebiologicalundesirableconsequences ofexposuretothesenanomaterials.Still,despitethenumerousION purposesbeingexplored,insufficientand/orcontroversial informa-tionisavailableontheirpotentialtoxicity.

ThispaperrevisedthetoxiceffectsofIONreportedsofarby dif-ferentinvitro,invivoandepidemiologicalstudies.Theanalysisofall datacollectedhighlightsthelackofconsensusinestablishingthe toxicitymechanismassociatedwithIONexposure,mainlydueto thehighvariabilityofparticlespresentamongthedifferentstudies. Thepresence[48],chemicalcomposition[65],andcharge[60]of surfacecoatingseemtobecriticalfactorsforIONtoxicity;usually barenanoparticlesaremoretoxicthanthecoatedones.But experi-mentalconditions,suchascell/tissuetype,concentration,exposure time,administrationpathwayandpresenceofproteincorona,can alsoinfluencetoxicityresults. Specialattentionmustbepaidto thetechnicalproceduresemployedfor toxicityevaluation,since IONhavebeenrecentlyproventointerferewiththeapproaches commonlyusedforcytotoxicity[41,58]andgenotoxicity[121,122]

evaluation,leadingtoobtainfalsepositiveresults.

Togetherwiththelownumberofstudiespublished,especially thoseperformedinwholeorganisms,thereisindeedamarked dif-ficultytosetupcomparisonsandestablishatoxicitypatternfor IONmainlybecauseofthedifferentnanoparticlestested,butalso tothelackofmethodologicalstandardization.Duetothevarietyof mechanismsthatcouldleadtonanomaterialinducedcelltoxicity,a batteryofharmonizedtestingsystemsisrequiredtoestablishthe presumptivetoxicpotentialofIONatdifferentlevels.Moreover, inordertomakeresultsobtainedintheseinvestigationsonION withdifferentcoatingsandcharacteristicscomparable,theuseof standardizedmethods,includingpropertestingofpotential inter-ferenceswithstandardprotocols,ishighlydesirableineachcase.

Insummary,IONtoxicity,althoughsuspectedtobelow, can-notbeproperlyestablishedyetsinceresultsfrominvitrostudies are often contradictory, in vivo studies are scarce, and human epidemiologicalstudiesarealmostinexistent.Hence,inviewof theextremelyusefulpresentandpromisingfutureapplicationsof ION,especiallythoserelatedtobiomedicalpurposeswhichinvolve theirdirectintroductioninthehumanbody, theinteractions of thesenanomaterialswithcellularsystems,aswellasthepotential adversehealthconsequencesofIONexposure,requiretobefully understood,andmuchworkhasstilltobedoneinthisfield.

Conflictofinterest

Theauthorsdidnotreportanyconflictofinterest.

Acknowledgements

ThisworkwassupportedbyXuntadeGalicia(EM2012/079),the projectNanoToxClass(ERAERASIINN/001/2013),andbyTD1204 MODENACOSTAction.

References

[1]R.Colognato,M.V.D.Z.Park,P.Wick,W.H.DeJong,Interactionswiththe humanbody,in:B.Fadeel,A.Pietroiusti,A.A.Shvedova(Eds.),Adverse EffectsofEngineeredNanomaterials—Exposure,Toxicology,andImpacton HumanHealth,1stedition,Elsevier,2012,pp.3–24.

[2]A.K.Gupta,M.Gupta,Synthesisandsurfaceengineeringofironoxide nanoparticlesforbiomedicalapplications,Biomaterials26(2005) 3995–4021.

[3]M.Lu,M.H.Cohen,D.Rieves,R.Pazdur,FDAreport:ferumoxytolfor intravenousirontherapyinadultpatientswithchronickidneydisease,Am. J.Hematol.85(2010)315–319.

[4]D.L.Huber,Synthesis,properties,andapplicationsofironnanoparticles, Small1(2005)482–501.

[5]H.Ittrich,K.Peldschus,N.Raabe,M.Kaul,G.Adam,Superparamagneticiron oxidenanoparticlesinbiomedicine:applicationsanddevelopmentsin diagnosticsandtherapy,Rofo185(2013)1149–1166.

[6]C.W.Lu,Y.Hung,J.K.Hsiao,M.Yao,T.H.Chung,Y.S.Lin,S.H.Wu,S.C.Hsu, H.M.Liu,C.Y.Mou,C.S.Yang,D.M.Huang,Y.C.Chen,Bifunctionalmagnetic silicananoparticlesforhighlyefficienthumanstemcelllabeling,NanoLett. 7(2007)149–154.

[7]P.Reimer,T.Balzer,Ferucarbotran(Resovist):anewclinicallyapproved RES-specificcontrastagentforcontrast-enhancedMRIoftheliver: properties,clinicaldevelopment,andapplications,Eur.Radiol.13(2003) 1266–1276.

[8]H.S.Sharma,P.K.Menon,J.V.Lafuente,Z.P.Aguilar,Y.A.Wang,D.F. Muresanu,H.Mossler,R.Patnaik,A.Sharma,Theroleoffunctionalized magneticironoxidenanoparticlesinthecentralnervoussysteminjuryand repair:newpotentialsforneuroprotectionwithCerebrolysintherapy,J. Nanosci.Nanotechnol.14(2014)577–595.

[9]H.Y.Wu,M.C.Chung,C.C.Wang,C.H.Huang,H.J.Liang,T.R.Jan,Ironoxide nanoparticlessuppresstheproductionofIL-1betaviathesecretory lysosomalpathwayinmurinemicroglialcells,Part.FibreToxicol.10(2013) 46.

[10]M.Mohapatra,S.Anand,Synthesisandapplicationsofnano-structurediron oxides/hydroxides—areview,Int.J.Eng.Sci.Technol.2(2010)127–146.

[11]K.Turcheniuk,A.V.Tarasevych,V.P.Kukhar,R.Boukherroub,S.Szunerits, Recentadvancesinsurfacechemistrystrategiesforthefabricationof functionalironoxidebasedmagneticnanoparticles,Nanoscale5(2013) 10729–10752.

[12]F.Bertorelle,C.Wilhelm,J.Roger,F.Gazeau,C.Menager,V.Cabuil, Fluorescence-modifiedsuperparamagneticnanoparticles:intracellular uptakeanduseincellularimaging,Langmuir22(2006)5385–5391.

[13]F.Yan,Y.Wang,S.He,S.Ku,W.Gu,L.Ye,Transferrin-conjugated, fluorescein-loadedmagneticnanoparticlesfortargeteddeliveryacrossthe blood-brainbarrier,J.Mater.Sci.Mater.Med.24(2013)2371–2379.

[14]L.Agemy,D.Friedmann-Morvinski,V.R.Kotamraju,L.Roth,K.N.Sugahara, O.M.Girard,R.F.Mattrey,I.M.Verma,E.Ruoslahti,Targetednanoparticle enhancedproapoptoticpeptideaspotentialtherapyforglioblastoma,Proc. Natl.Acad.Sci.U.S.A.108(2011)17450–17455.

[15]E.E.Hassan,J.M.Gallo,Targetinganticancerdrugstothebrain.I:enhanced braindeliveryofoxantrazolefollowingadministrationinmagneticcationic microspheres,J.DrugTarget.1(1993)7–14.

[16]J.T.Jenkins,D.L.Halaney,K.V.Sokolov,L.L.Ma,H.J.Shipley,S.Mahajan,C.L. Louden,R.Asmis,T.E.Milner,K.P.Johnston,M.D.Feldman,Excretionand toxicityofgold-ironnanoparticles,Nanomedicine9(2011)356–365.

[17]M.Kumar,M.Yigit,G.Dai,A.Moore,Z.Medarova,Image-guidedbreast tumortherapyusingasmallinterferingRNAnanodrug,CancerRes.70 (2010)7553–7561.

[18]S.M.Hussain,K.L.Hess,J.M.Gearhart,K.T.Geiss,J.J.Schlager,Invitrotoxicity ofnanoparticlesinBRL3Aratlivercells,Toxicol.InVitro19(2005)975–983.

[19]H.A.Jeng,J.Swanson,Toxicityofmetaloxidenanoparticlesinmammalian cells,J.Environ.Sci.HealthATox.Hazard.Subst.Environ.Eng.41(2006) 2699–2711.

[20]A.Kunzmann,B.Andersson,C.Vogt,N.Feliu,F.Ye,S.Gabrielsson,M.S. Toprak,T.Buerki-Thurnherr,S.Laurent,M.Vahter,H.Krug,M.Muhammed, A.Scheynius,B.Fadeel,Efficientinternalizationofsilica-coatedironoxide nanoparticlesofdifferentsizesbyprimaryhumanmacrophagesand dendriticcells,Toxicol.Appl.Pharmacol.253(2011)81–93.

[21]S.Y.Paik,J.S.Kim,S.J.Shin,S.Ko,Characterizationquantification,and determinationofthetoxicityofironoxidenanoparticlestothebone marrowcells,Int.J.Mol.Sci.16(2015)22243–22257.

[22]S.J.Soenen,M.DeCuyper,Assessingironoxidenanoparticletoxicityin vitro:currentstatusandfutureprospects,Nanomedicine(Lond.)5(2010) 1261–1275.

[23]W.H.Suh,K.S.Suslick,G.D.Stucky,Y.H.Suh,Nanotechnology, nanotoxicology,andneuroscience,Prog.Neurobiol.87(2009)133–170.

[24]H.H.Yiu,M.R.Pickard,C.I.Olariu,S.R.Williams,D.M.Chari,M.J.Rosseinsky, Fe3O4-PEI-RITCmagneticnanoparticleswithimagingandgenetransfer

capability:developmentofatoolforneuralcelltransplantationtherapies, Pharm.Res.29(2012)1328–1343.

[25]M.Geppert,M.C.Hohnholt,K.Thiel,S.Nurnberger,I.Grunwald,K.Rezwan, R.Dringen,Uptakeofdimercaptosuccinate-coatedmagneticironoxide nanoparticlesbyculturedbrainastrocytes,Nanotechnology22(2011) 145101.

[26]M.Geppert,M.C.Hohnholt,S.Nurnberger,R.Dringen,Ferritinup-regulation andtransientROSproductioninculturedbrainastrocytesafterloadingwith ironoxidenanoparticles,ActaBiomater.8(2012)3832–3839.

[27]D.Couto,R.Sousa,L.Andrade,M.Leander,M.A.Lopez-Quintela,J.Rivas,P. Freitas,M.Lima,G.Porto,B.Porto,F.Carvalho,E.Fernandes,Polyacrylicacid coatedandnon-coatedironoxidenanoparticlesarenotgenotoxictohuman Tlymphocytes,Toxicol.Lett.234(2015)67–73.

[28]C.Y.Yang,J.K.Hsiao,M.F.Tai,S.T.Chen,H.Y.Cheng,J.L.Wang,H.M.Liu, DirectlabelingofhMSCwithSPIO:thelong-terminfluenceontoxicity, chondrogenicdifferentiationcapacity,andintracellulardistribution,Mol. ImagingBiol.13(2011)443–451.

[29]P.Bigini,V.Diana,S.Barbera,E.Fumagalli,E.Micotti,L.Sitia,A.Paladini,C. Bisighini,L.DeGrada,L.Coloca,L.Colombo,P.Manca,P.Bossolasco,F.

(9)

Malvestiti,F.Fiordaliso,G.Forloni,M.Morbidelli,M.Salmona,D.Giardino,T. Mennini,D.Moscatelli,V.Silani,L.Cova,Longitudinaltrackingofhuman fetalcellslabeledwithsuperparamagneticironoxidenanoparticlesinthe brainofmicewithmotorneurondisease,PLoSOne7(2012)e32326.

[30]C.Petters,R.Dringen,Accumulationofironoxidenanoparticlesbycultured primaryneurons,Neurochem.Int.81(2015)1–9.

[31]H.B.Na,G.Palui,J.T.Rosenberg,X.Ji,S.C.Grant,H.Mattoussi,Multidentate catechol-basedpolyethyleneglycololigomersprovideenhancedstability andbiocompatibilitytoironoxidenanoparticles,ACSNano6(2012) 389–399.

[32]J.T.Rosenberg,A.Sachi-Kocher,M.W.Davidson,S.C.Grant,IntracellularSPIO labelingofmicroglia:highfieldconsiderationsandlimitationsforMR microscopy,ContrastMediaMol.Imaging7(2012)121–129.

[33]J.Wu,T.Ding,J.Sun,Neurotoxicpotentialofironoxidenanoparticlesinthe ratbrainstriatumandhippocampus,Neurotoxicology34(2013)

243–253.

[34]B.Szalay,E.Tatrai,G.Nyiro,T.Vezer,G.Dura,Potentialtoxiceffectsofiron oxidenanoparticlesininvivoandinvitroexperiments,J.Appl.Toxicol.32 (2012)446–453.

[35]M.Mahmoudi,A.Simchi,A.S.Milani,P.Stroeve,Celltoxicityof superparamagneticironoxidenanoparticles,J.ColloidInterfaceSci.336 (2009)510–518.

[36]S.C.Hong,J.H.Lee,J.Lee,H.Y.Kim,J.Y.Park,J.Cho,J.Lee,D.W.Han,Subtle cytotoxicityandgenotoxicitydifferencesinsuperparamagneticironoxide nanoparticlescoatedwithvariousfunctionalgroups,Int.J.Nanomed.6 (2011)3219–3231.

[37]S.Huang,C.Li,Z.Cheng,Y.Fan,P.Yang,C.Zhang,K.Yang,J.Lin,Magnetic Fe3O4@mesoporoussilicacompositesfordrugdeliveryandbioadsorption,J.

ColloidInterfaceSci.376(2012)312–321.

[38]H.L.Karlsson,J.Gustafsson,P.Cronholm,L.Moller,Size-dependenttoxicity ofmetaloxideparticles—acomparisonbetweennano-andmicrometersize, Toxicol.Lett.188(2009)112–118.

[39]N.J.Schaub,D.Rende,Y.Yuan,R.J.Gilbert,D.A.Borca-Tasciuc,Reduced astrocyteviabilityatphysiologicaltemperaturesfrommagnetically activatedironoxidenanoparticles,Chem.Res.Toxicol.27(2014) 2023–2035.

[40]A.Paolini,C.P.Guarch,D.Ramos-Lopez,J.deLapuente,A.Lascialfari,Y. Guari,J.Larionova,J.Long,R.Nano,Rhamnose-coatedsuperparamagnetic iron-oxidenanoparticles:anevaluationoftheirinvitrocytotoxicity, genotoxicityandcarcinogenicity,J.Appl.Toxicol.36(2015)510–520.

[41]C.Costa,F.Brandao,M.J.Bessa,S.Costa,V.Valdiglesias,G.Kilic,N. Fernandez-Bertolez,P.Quaresma,E.Pereira,E.Pasaro,B.Laffon,J.P.Teixeira, Invitrocytotoxicityofsuperparamagneticironoxidenanoparticleson neuronalandglialcells.Evaluationofnanoparticleinterferencewith viabilitytests,J.Appl.Toxicol.36(2016)361–372.

[42]S.J.Soenen,M.DeCuyper,Assessingcytotoxicityof(ironoxide-based) nanoparticles:anoverviewofdifferentmethodsexemplifiedwithcationic magnetoliposomes,ContrastMediaMol.Imaging4(2009)207–219.

[43]M.Watanabe,M.Yoneda,A.Morohashi,Y.Hori,D.Okamoto,A.Sato,D. Kurioka,T.Nittami,Y.Hirokawa,T.Shiraishi,K.Kawai,H.Kasai,Y.Totsuka, EffectsofFe3O4magneticnanoparticlesonA549cells,Int.J.Mol.Sci.14

(2013)15546–15560.

[44]S.Rajiv,J.Jerobin,V.Saranya,M.Nainawat,A.Sharma,P.Makwana,C. Gayathri,L.Bharath,M.Singh,M.Kumar,A.Mukherjee,N.Chandrasekaran, Comparativecytotoxicityandgenotoxicityofcobalt(II,III)oxide,iron(III) oxide,silicondioxide,andaluminumoxidenanoparticlesonhuman lymphocytesinvitro,Hum.Exp.Toxicol.35(2016)170–183.

[45]J.Wu,J.Sun,Investigationonmechanismofgrowtharrestinducedbyiron oxidenanoparticlesinPC12cells,J.Nanosci.Nanotechnol.11(2011) 11079–11083.

[46]E.J.Park,S.W.Kim,C.Yoon,Y.Kim,J.S.Kim,Disturbanceofionenvironment andimmuneregulationfollowingbiodistributionofmagneticironoxide nanoparticlesinjectedintravenously,Toxicol.Lett.243(2016)67–77.

[47]W.Wu,Q.He,C.Jiang,Magneticironoxidenanoparticles:synthesisand surfacefunctionalizationstrategies,NanoscaleRes.Lett.3(2008) 397–415.

[48]P.Schutz,M.Bally,Z.Stanga,U.Keller,Lossofappetiteinacutelyillmedical inpatients:physiologicalresponseortherapeutictarget?SwissMed.Wkly. 144(2014)w13957.

[49]M.Shi,L.Cheng,Z.Zhang,Z.Liu,X.Mao,Ferroferricoxidenanoparticles induceprosurvivalautophagyinhumanbloodcellsbymodulatingthe Beclin1/Bcl-2/VPS34complex,Int.J.Nanomed.10(2015)207–216.

[50]S.Dwivedi,M.A.Siddiqui,N.N.Farshori,M.Ahamed,J.Musarrat,A.A. Al-Khedhairy,Synthesis,characterizationandtoxicologicalevaluationof ironoxidenanoparticlesinhumanlungalveolarepithelialcells,Colloids Surf.BBiointerfaces122(2014)209–215.

[51]M.T.Zhu,Y.Wang,W.Y.Feng,B.Wang,M.Wang,H.Ouyang,Z.F.Chai, Oxidativestressandapoptosisinducedbyironoxidenanoparticlesin culturedhumanumbilicalendothelialcells,J.Nanosci.Nanotechnol.10 (2010)8584–8590.

[52]S.M.CromerBerman,Kshitiz,C.J.Wang,I.Orukari,A.Levchenko,J.W.Bulte, P.Walczak,CellmotilityofneuralstemcellsisreducedafterSPIO-labeling, whichismitigatedafterexocytosis,Magn.Reson.Med.69(2013)255–262.

[53]K.Astanina,Y.Simon,C.Cavelius,S.Petry,A.Kraegeloh,A.K.Kiemer, Superparamagneticironoxidenanoparticlesimpairendothelialintegrity andinhibitnitricoxideproduction,ActaBiomater.10(2014)4896–4911.

[54]E.Ying,H.M.Hwang,Invitroevaluationofthecytotoxicityofironoxide nanoparticleswithdifferentcoatingsanddifferentsizesinA3humanT lymphocytes,Sci.TotalEnviron.408(2010)4475–4481.

[55]C.J.Rivet,Y.Yuan,D.A.Borca-Tasciuc,R.J.Gilbert,Alteringironoxide nanoparticlesurfacepropertiesinducecorticalneuroncytotoxicity,Chem. Res.Toxicol.25(2012)153–161.

[56]L.Li,K.Y.Mak,J.Shi,H.K.Koon,C.H.Leung,C.M.Wong,C.W.Leung,C.S.Mak, N.M.Chan,W.Zhong,K.W.Lin,E.X.Wu,P.W.Pong,Comparativeinvitro cytotoxicitystudyonuncoatedmagneticnanoparticles:effectsoncell viability,cellmorphology,andcellularuptake,J.Nanosci.Nanotechnol.12 (2012)9010–9017.

[57]S.J.Soenen,U.Himmelreich,N.Nuytten,M.DeCuyper,Cytotoxiceffectsof ironoxidenanoparticlesandimplicationsforsafetyincelllabelling, Biomaterials32(2011)195–205.

[58]Z.Magdolenova,M.Drlickova,K.Henjum,E.Runden-Pran,J.Tulinska,D. Bilanicova,G.Pojana,A.Kazimirova,M.Barancokova,M.Kuricova,A. Liskova,M.Staruchova,F.Ciampor,I.Vavra,Y.Lorenzo,A.Collins,A.Rinna, L.Fjellsbo,K.Volkovova,A.Marcomini,M.Amiry-Moghaddam,M.Dusinska, Coating-dependentinductionofcytotoxicityandgenotoxicityofironoxide nanoparticles,Nanotoxicology9(Suppl.1)(2013)44–56.

[59]D.Couto,M.Freitas,V.Vilas-Boas,I.Dias,G.Porto,M.A.Lopez-Quintela,J. Rivas,P.Freitas,F.Carvalho,E.Fernandes,Interactionofpolyacrylicacid coatedandnon-coatedironoxidenanoparticleswithhumanneutrophils, Toxicol.Lett.225(2014)57–65.

[60]Z.Sun,V.Yathindranath,M.Worden,J.A.Thliveris,S.Chu,F.E.Parkinson,T. Hegmann,D.W.Miller,Characterizationofcellularuptakeandtoxicityof aminosilane-coatedironoxidenanoparticleswithdifferentchargesin centralnervoussystem-relevantcellculturemodels,Int.J.Nanomed.8 (2013)961–970.

[61]Z.Chen,J.J.Yin,Y.T.Zhou,Y.Zhang,L.Song,M.Song,S.Hu,N.Gu,Dual enzyme-likeactivitiesofironoxidenanoparticlesandtheirimplicationfor diminishingcytotoxicity,ACSNano6(2012)4001–4012.

[62]M.Auffan,W.Achouak,J.Rose,M.A.Roncato,C.Chaneac,D.T.Waite,A. Masion,J.C.Woicik,M.R.Wiesner,J.Y.Bottero,Relationbetweentheredox stateofiron-basednanoparticlesandtheircytotoxicitytoward

Escherichiacoli,Environ.Sci.Technol.42(2008)6730–6735.

[63]K.Buyukhatipoglu,A.M.Clyne,Superparamagneticironoxidenanoparticles changeendothelialcellmorphologyandmechanicsviareactiveoxygen speciesformation,J.Biomed.Mater.Res.A96(2011)186–195.

[64]L.Sadeghi,V.YousefiBabadi,H.R.Espanani,ToxiceffectsoftheFe2O3

nanoparticlesontheliverandlungtissue,Bratisl.Lek.Listy116(2015) 373–378.

[65]C.C.Hanot,Y.S.Choi,T.B.Anani,D.Soundarrajan,A.E.David,Effectsof iron-oxidenanoparticlesurfacechemistryonuptakekineticsand cytotoxicityinCHO-K1cells,Int.J.Mol.Sci.17(2015).

[66]S.Naqvi,M.Samim,M.Abdin,F.J.Ahmed,A.Maitra,C.Prashant,A.K.Dinda, Concentration-dependenttoxicityofironoxidenanoparticlesmediatedby increasedoxidativestress,Int.J.Nanomed.5(2010)983–989.

[67]A.Hanini,A.Schmitt,K.Kacem,F.Chau,S.Ammar,J.Gavard,Evaluationof ironoxidenanoparticlebiocompatibility,Int.J.Nanomed.6(2011)787–794.

[68]M.T.Zhu,B.Wang,Y.Wang,L.Yuan,H.J.Wang,M.Wang,H.Ouyang,Z.F. Chai,W.Y.Feng,Y.L.Zhao,Endothelialdysfunctionandinflammation inducedbyironoxidenanoparticleexposure:riskfactorsforearly atherosclerosis,Toxicol.Lett.203(2011)162–171.

[69]T.Zhang,L.Qian,M.Tang,Y.Xue,L.Kong,S.Zhang,Y.Pu,Evaluationon cytotoxicityandgenotoxicityofthel-glutamicacidcoatedironoxide nanoparticles,J.Nanosci.Nanotechnol.12(2012)2866–2873.

[70]M.Konczol,S.Ebeling,E.Goldenberg,F.Treude,R.Gminski,R.Giere,B. Grobety,B.Rothen-Rutishauser,I.Merfort,V.Mersch-Sundermann, Cytotoxicityandgenotoxicityofsize-fractionatedironoxide(magnetite)in A549humanlungepithelialcells:roleofROS,JNK,andNF-kappaB,Chem. Res.Toxicol.24(2011)1460–1475.

[71]C.Petters,K.Thiel,R.Dringen,Lysosomalironliberationisresponsiblefor thevulnerabilityofbrainmicroglialcellstoironoxidenanoparticles: comparisonwithneuronsandastrocytes,Nanotoxicology(2015)1–11.

[72]H.Hildebrand,D.Kuhnel,A.Potthoff,K.Mackenzie,A.Springer,K.Schirmer, Evaluatingthecytotoxicityofpalladium/magnetitenano-catalystsintended forwastewatertreatment,Environ.Pollut.158(2010)65–73.

[73]A.Lindemann,K.Ludtke-Buzug,B.M.Fraderich,K.Grafe,R.Pries,B. Wollenberg,Biologicalimpactofsuperparamagneticironoxide nanoparticlesformagneticparticleimagingofheadandneckcancercells, Int.J.Nanomed.9(2014)5025–5040.

[74]Y.Wang,B.Wang,M.T.Zhu,M.Li,H.J.Wang,M.Wang,H.Ouyang,Z.F.Chai, W.Y.Feng,Y.L.Zhao,Microglialactivation,recruitmentandphagocytosisas linkedphenomenainferricoxidenanoparticleexposure,Toxicol.Lett.205 (2011)26–37.

[75]B.H.Kenzaoui,C.C.Bernasconi,H.Hofmann,L.Juillerat-Jeanneret, Evaluationofuptakeandtransportofultrasmallsuperparamagneticiron oxidenanoparticlesbyhumanbrain-derivedendothelialcells, Nanomedicine(Lond.)7(2012)39–53.

[76]M.Hohnholt,M.Geppert,R.Dringen,Effectsofironchelators,ironsalts,and ironoxidenanoparticlesontheproliferationandtheironcontentof oligodendroglialOLN-93cells,Neurochem.Res.35(2010)1259–1268.

[77]M.C.Hohnholt,M.Geppert,R.Dringen,Treatmentwithironoxide nanoparticlesinducesferritinsynthesisbutnotoxidativestressin oligodendroglialcells,ActaBiomater.7(2011)3946–3954.

(10)

[78]A.Shander,M.D.Cappellini,L.T.Goodnough,Ironoverloadandtoxicity:the hiddenriskofmultiplebloodtransfusions,VoxSang.97(2009)185–197.

[79]M.Geppert,M.Hohnholt,L.Gaetjen,I.Grunwald,M.Baumer,R.Dringen, Accumulationofironoxidenanoparticlesbyculturedbrainastrocytes,J. Biomed.Nanotechnol.5(2009)285–293.

[80]N.Singh,G.J.Jenkins,R.Asadi,S.H.Doak,Potentialtoxicityof

superparamagneticironoxidenanoparticles(SPION),NanoRev.1(2010).

[81]M.C.Hohnholt,R.Dringen,Uptakeandmetabolismofironandironoxide nanoparticlesinbrainastrocytes,Biochem.Soc.Trans.41(2013)1588–1592.

[82]D.W.Reif,Ferritinasasourceofironforoxidativedamage,FreeRadic.Biol. Med.12(1992)417–427.

[83]M.Valko,D.Leibfritz,J.Moncol,M.T.Cronin,M.Mazur,J.Telser,Free radicalsandantioxidantsinnormalphysiologicalfunctionsandhuman disease,Int.J.Biochem.CellBiol.39(2007)44–84.

[84]J.Kain,H.L.Karlsson,L.Moller,DNAdamageinducedbymicro-and nanoparticles–interactionwithFPGinfluencesthedetectionofDNA oxidationinthecometassay,Mutagenesis27(2012)491–500.

[85]I.O.Gomaa,M.H.Kader,T.A.Salah,O.A.Heikal,Evaluationofinvitro mutagenicityandgenotoxicityofmagnetitenanoparticles,DrugDiscov. Ther.7(2013)116–123.

[86]M.Ahamed,H.A.Alhadlaq,J.Alam,M.A.Khan,D.Ali,S.Alarafi,Ironoxide nanoparticle-inducedoxidativestressandgenotoxicityinhumanskin epithelialandlungepithelialcelllines,Curr.Pharm.Des.19(2013) 6681–6690.

[87]K.Bhattacharya,M.Davoren,J.Boertz,R.P.Schins,E.Hoffmann,E.Dopp, TitaniumdioxidenanoparticlesinduceoxidativestressandDNA-adduct formationbutnotDNA-breakageinhumanlungcells,Part.FibreToxicol.6 (2009)17.

[88]N.Singh,G.J.Jenkins,B.C.Nelson,B.J.Marquis,T.G.Maffeis,A.P.Brown,P.M. Williams,C.J.Wright,S.H.Doak,Theroleofironredoxstateinthe genotoxicityofultrafinesuperparamagneticironoxidenanoparticles, Biomaterials33(2012)163–170.

[89]M.Mesarosova,K.Kozics,A.Babelova,E.Regendova,M.Pastorek,D. Vnukova,B.Buliakova,F.Razga,A.Gabelova,Theroleofreactiveoxygen speciesinthegenotoxicityofsurface-modifiedmagnetitenanoparticles, Toxicol.Lett.226(2014)303–313.

[90]H.L.Karlsson,P.Cronholm,J.Gustafsson,L.Moller,Copperoxide nanoparticlesarehighlytoxic:acomparisonbetweenmetaloxide nanoparticlesandcarbonnanotubes,Chem.Res.Toxicol.21(2008) 1726–1732.

[91]Y.Guichard,J.Schmit,C.Darne,L.Gate,M.Goutet,D.Rousset,O.Rastoix,R. Wrobel,O.Witschger,A.Martin,V.Fierro,S.Binet,Cytotoxicityand genotoxicityofnanosizedandmicrosizedtitaniumdioxideandironoxide particlesinSyrianhamsterembryocells,Ann.Occup.Hyg.56(2012) 631–644.

[92]Y.Liu,Q.Xia,Y.Liu,S.Zhang,F.Cheng,Z.Zhong,L.Wang,H.Li,K.Xiao, Genotoxicityassessmentofmagneticironoxidenanoparticleswithdifferent particlesizesandsurfacecoatings,Nanotechnology25(2014)425101.

[93]M.Auffan,L.Decome,J.Rose,T.Orsiere,M.DeMeo,V.Briois,C.Chaneac,L. Olivi,J.L.Berge-Lefranc,A.Botta,M.R.Wiesner,J.Y.Bottero,Invitro interactionsbetweenDMSA-coatedmaghemitenanoparticlesandhuman fibroblasts:aphysicochemicalandcyto-genotoxicalstudy,Environ.Sci. Technol.40(2006)4367–4373.

[94]R.Weissleder,D.D.Stark,B.L.Engelstad,B.R.Bacon,C.C.Compton,D.L. White,P.Jacobs,J.Lewis,Superparamagneticironoxide:pharmacokinetics andtoxicity,AJRAm.J.Roentgenol.152(1989)167–173.

[95]P.Bourrinet,H.H.Bengele,B.Bonnemain,A.Dencausse,J.M.Idee,P.M. Jacobs,J.M.Lewis,Preclinicalsafetyandpharmacokineticprofileof ferumoxtran-10,anultrasmallsuperparamagneticironoxidemagnetic resonancecontrastagent,Invest.Radiol.41(2006)313–324.

[96]S.S.Teske,C.S.Detweiler,Thebiomechanismsofmetalandmetal-oxide nanoparticles’interactionswithcells,Int.J.Environ.Res.PublicHealth12 (2015)1112–1134.

[97]K.Volkovova,R.D.Handy,M.Staruchova,J.Tulinska,A.Kebis,J.Pribojova,O. Ulicna,J.Kucharska,M.Dusinska,Healtheffectsofselectednanoparticlesin vivo:liverfunctionandhepatotoxicityfollowingintravenousinjectionof titaniumdioxideandNa-oleate-coatedironoxidenanoparticlesinrodents, Nanotoxicology9(Suppl.1)(2015)95–105.

[98]S.P.Singh,M.F.Rahman,U.S.Murty,M.Mahboob,P.Grover,Comparative studyofgenotoxicityandtissuedistributionofnanoandmicronsizediron oxideinratsafteracuteoraltreatment,Toxicol.Appl.Pharmacol.266(2013) 56–66.

[99]J.W.Yun,S.H.Kim,J.R.You,W.H.Kim,J.J.Jang,S.K.Min,H.C.Kim,D.H. Chung,J.Jeong,B.C.Kang,J.H.Che,Comparativetoxicityofsilicondioxide, silverandironoxidenanoparticlesafterrepeatedoraladministrationto rats,J.Appl.Toxicol.35(2015)681–693.

[100]J.W.Yun,J.H.Yoon,B.C.Kang,N.H.Cho,S.H.Seok,S.K.Min,J.H.Min,J.H.Che, Y.K.Kim,Thetoxicityanddistributionofironoxide-zincoxidecore-shell nanoparticlesinC57BL/6miceafterrepeatedsubcutaneousadministration, J.Appl.Toxicol.35(2015)593–602.

[101]S.Chamorro,L.Gutierrez,M.P.Vaquero,D.Verdoy,G.Salas,Y.Luengo,A. Brenes,F.JoseTeran,Safetyassessmentofchronicoralexposuretoiron oxidenanoparticles,Nanotechnology26(2015)205101.

[102]A.AlFaraj,A.P.Shaik,A.S.Shaik,Effectofsurfacecoatingonthe

biocompatibilityandinvivoMRIdetectionofironoxidenanoparticlesafter intrapulmonaryadministration,Nanotoxicology9(2015)825–834.

[103] P.Ma,Q.Luo,J.Chen,Y.Gan,J.Du,S.Ding,Z.Xi,X.Yang,Intraperitoneal injectionofmagneticFe3O4-nanoparticleinduceshepaticandrenaltissue

injuryviaoxidativestressinmice,IntJ.Nanomed.7(2012)4809–4818.

[104] M.L.L.Freitas,L.P.Silva,R.B.Azevedo,V.A.P.Garcia,L.M.Lacava,C.K. GrisÃ3lia,C.M.Lucci,P.C.Morais,M.F.DaSilva,N.Buske,R.Curi,Z.G.M. Lacava,Adouble-coatedmagnetite-basedmagneticfluidevaluationby cytometryandgenetictests,J.Magn.Magn.Mater.252(2002)396–398.

[105] N.Sadeghiani,L.S.Barbosa,L.P.Silva,R.B.Azevedo,P.C.Morais,Z.G.M. Lacava,Genotoxicityandinflammatoryinvestigationinmicetreatedwith magnetitenanoparticlessurfacecoatedwithpolyasparticacid,J.Magn. Magn.Mater.289(2005)466–468.

[106] Z.Lin,N.A.Monteiro-Riviere,J.E.Riviere,Pharmacokineticsofmetallic nanoparticles,WileyInterdiscip.Rev.Nanomed.Nanobiotechnol.7(2015) 189–217.

[107] E.Ansciaux,C.Burtea,S.Laurent,D.Crombez,D.Nonclercq,L.VanderElst, R.N.Muller,Invitroandinvivocharacterizationofseveralfunctionalized ultrasmallparticlesofironoxide,vectorizedagainstamyloidplaquesand potentiallyabletocrosstheblood-brainbarrier:towardearlierdiagnosisof Alzheimer’sdiseasebymolecularimaging,ContrastMediaMol.Imaging10 (2015)211–224.

[108] L.Yang,H.Kuang,W.Zhang,Z.P.Aguilar,Y.Xiong,W.Lai,H.Xu,H.Wei,Size dependentbiodistributionandtoxicokineticsofironoxidemagnetic nanoparticlesinmice,Nanoscale7(2015)625–636.

[109] M.Kumari,S.Rajak,S.P.Singh,S.I.Kumari,P.U.Kumar,U.S.Murty,M. Mahboob,P.Grover,M.F.Rahman,Repeatedoraldosetoxicityofironoxide nanoparticles:biochemicalandhistopathologicalalterationsindifferent tissuesofrats,J.Nanosci.Nanotechnol.12(2012)2149–2159.

[110] E.J.Park,S.Y.Oh,Y.Kim,C.Yoon,B.S.Lee,S.D.Kim,J.S.Kim,Distributionand immunotoxicitybyintravenousinjectionofironnanoparticlesinamurine model,J.Appl.Toxicol.36(2016)414–423.

[111] D.Kwon,H.W.Nho,T.H.Yoon,X-rayandelectronmicroscopystudiesonthe biodistributionandbiomodificationofironoxidenanoparticlesinDaphnia magna,ColloidsSurf.BBiointerfaces122(2014)384–389.

[112] M.RaduBalas,I.M.DinPopescu,A.Hermenean,O.L.Cinteza,R.Burlacu,A. Ardelean,A.Dinischiotu,Exposuretoironoxidenanoparticlescoatedwith phospholipid-basedpolymericmicellesinducesbiochemicaland histopathologicalpulmonarychangesinmice,Int.J.Mol.Sci.16(2015) 29417–29435.

[113] Y.Baratli,A.L.Charles,V.Wolff,L.BenTahar,L.Smiri,J.Bouitbir,J.Zoll,M. Sakly,C.Auger,T.Vogel,H.Abdelmelek,O.Tebourbi,B.Geny,Age modulatesFe3O4nanoparticleslivertoxicity:dose-dependentdecreasein

mitochondrialrespiratorychaincomplexesactivitiesandcouplingin middle-agedascomparedtoyoungrats,BiomedRes.Int.2014(2014) 474081.

[114] A.Gustafsson,U.Bergstrom,L.Agren,L.Osterlund,T.Sandstrom,A.Bucht, Differentialcellularresponsesinhealthymiceandinmicewithestablished airwayinflammationwhenexposedtohematitenanoparticles,Toxicol. Appl.Pharmacol.288(2015)1–11.

[115] Y.Totsuka,K.Ishino,T.Kato,S.Goto,Y.Tada,D.Nakae,M.Watanabe,K. Wakabayashi,Magnetitenanoparticlesinducegenotoxicityinthelungsof miceviainflammatoryresponse,Nanomaterials4(2014)175–188.

[116] K.Ishino,T.Kato,M.Kato,T.Shibata,M.Watanabe,K.Wakabayashi,H. Nakagama,Y.Totsuka,ComprehensiveDNAadductanalysisreveals pulmonaryinflammatoryresponsecontributestogenotoxicactionof magnetitenanoparticles,Int.J.Mol.Sci.16(2015)3474–3492.

[117] L.Estevanato,D.Cintra,N.Baldini,F.Portilho,L.Barbosa,O.Martins,B. Lacava,A.L.Miranda-Vilela,A.C.Tedesco,S.Bao,P.C.Morais,Z.G.Lacava, Preliminarybiocompatibilityinvestigationofmagneticalbuminnanosphere designedasapotentialversatiledrugdeliverysystem,Int.J.Nanomed.6 (2011)1709–1717.

[118] D.Chen,Q.Tang,X.Li,X.Zhou,J.Zang,W.Q.Xue,J.Y.Xiang,C.Q.Guo, BiocompatibilityofmagneticFe3O4nanoparticlesandtheircytotoxiceffect

onMCF-7cells,Int.J.Nanomed.7(2012)4973–4982.

[119] N.Singh,B.Manshian,G.J.Jenkins,S.M.Griffiths,P.M.Williams,T.G.Maffeis, C.J.Wright,S.H.Doak,NanoGenotoxicology:theDNAdamagingpotentialof engineerednanomaterials,Biomaterials30(2009)3891–3914.

[120] J.Zhao,V.Castranova,Toxicologyofnanomaterialsusedinnanomedicine,J. Toxicol.Environ.HealthBCrit.Rev.14(2011)593–632.

[121] Z.Magdolenova,Y.Lorenzo,A.Collins,M.Dusinska,Canstandard genotoxicitytestsbeappliedtonanoparticles?J.Toxicol.Environ.HealthA 75(2012)800–806.

[122] G.Kilic¸,N.Fernández-Bertólez,C.Costa,S.Costa,J.P.Teixeira,E.Pásaro,B. Laffon,V.Valdiglesias,Effectsofsílica-coatedironoxidenanoparticleson SH-SY5Ycells,Toxicol.Res.5(2016)235–247.

[123] J.Wang,Y.Chen,B.Chen,J.Ding,G.Xia,C.Gao,J.Cheng,N.Jin,Y.Zhou,X.Li, M.Tang,X.M.Wang,Pharmacokineticparametersandtissuedistributionof magneticFe3O4nanoparticlesinmice,Int.J.Nanomed.5(2010)861–866.

[124] J.S.Kim,T.J.Yoon,K.N.Yu,B.G.Kim,S.J.Park,H.W.Kim,K.H.Lee,S.B.Park, J.K.Lee,M.H.Cho,Toxicityandtissuedistributionofmagneticnanoparticles inmice,Toxicol.Sci.89(2006)338–347.

[125] J.Wang,B.Chen,N.Jin,G.Xia,Y.Chen,Y.Zhou,X.Cai,J.Ding,X.Li,X.Wang, ThechangesofTlymphocytesandcytokinesinICRmicefedwithFe3O4

magneticnanoparticles,Int.J.Nanomed.6(2011)605–610.

[126] W.Wu,B.Chen,J.Cheng,J.Wang,W.Xu,L.Liu,G.Xia,H.Wei,X.Wang,M. Yang,L.Yang,Y.Zhang,C.Xu,J.Li,BiocompatibilityofFe3O4/DNRmagnetic

Referências

Documentos relacionados

Key words: Magnetite Nanoparticles, radionuclide, imaging, therapy, targeted drug delivery, iron oxide.. * Author

This paper analyses the model of Adult Education and Training (AET) in Portugal, taking under consideration the two available reports on this recent domain, which

No entanto, todas as dúvidas, quer a nível de tradução, de redação de texto ou a nível estilístico, assim como qualquer indicação do gestor do projeto,

Por fim, selecionei como ângulo de ataque inicial as narrativas temáticas do espetáculo, considerando os atravessamentos interpretativos/estéticos diversos que poderiam

A metodologia de trabalho adotada incidiu sobre um estudo qualitativo da temática, através de análise de casos, dados e exemplos de organizações que já utilizam Sistemas

The use of EDC/NHS chemistry for the establishment of amide bonds between the carboxylic acid groups from MNP-DMSA and the free amine groups in gum Arabic proved to be an efficient

Nesse romance, que traz, já no título, a referência às relações entre a Bahia e o Rio de Janeiro, acompanhamos o movimento diaspórico empreendido por Tia Amina, a qual