• Nenhum resultado encontrado

Проектирование трансверсально-изотропной пластинки ступенчато переменной толщины при изгибе с учётом поперечных сдвигов Design of transversely isotropic plate of stepwise variable thickness at bending, taking into account transverse shear

N/A
N/A
Protected

Academic year: 2017

Share "Проектирование трансверсально-изотропной пластинки ступенчато переменной толщины при изгибе с учётом поперечных сдвигов Design of transversely isotropic plate of stepwise variable thickness at bending, taking into account transverse shear"

Copied!
8
0
0

Texto

(1)

Ի Ի ՈՒԹ ՈՒ Ի Ի Ի Ի Ղ Ի

69, №2, 2016

539.3

Ё

. ., . .

. , , :

: - , ,

.

Keywords: transversely isotropic plate, transverse shifts, optimal design. . ., Պ . .

,

, ,

և

: Ո

, և

:

Belubekyan E.V., Poghosyan A.G.

Design of a transversely isotropic plate of stepwise variable thickness under bending accounting for transverse shifts

Based on the enhanced theory of plate bending that takes into account the effect of transverse shifts, the problem of optimal design of rectangular transversely isotropic plate, reinforced in its middle part with additional isotropic layers, is solved. The optimal geometric parameters of the additional layers are determined that provide the highest rigidity of the structure for its given dimensions and total weight.

ё , ,

- ,

ё .

ё ,

ё ё .

.

ё ,

,

ё - .

, ё ё ,

.

, ё . .

[1], ,

(2)

ё . ё ,

ё

ё . ё ё

, ё .

[2-4].

.

ё h

b

L 

2 , - ,

ё 1

2abh ,

q

( .1).

ё . .

[1] a h1

ё , ё

, ё h0,

.

.1. ё я и и

.

ё

ё .

:

a x

L 

 , axL ё axa ё

( xa).

0xL.

a

a

b

L

L

y

x

1

h

h

1

h

x

(3)

(p1) -

h ё (p2)

1 2h

h , x0, xa

0 

y , yb, xL.

ё [1]

(p1,2) :

 

p p

p

q

x

y

K





 

,

 

 

 

   

 

3 3 2

( ) ( )

11 3 12 66 2 11 2

2 2

66 2 12 66

2

0

p p

p p p p

p p p p

w

w

D

D

D

P

x

x y

x

P

P

P

K

y

x y

 

 

 

 

 

 

, (1)

 

   

 

 

   

 

3 3 2

22 3 12 66 2 11 2

2 2

66 2 12 66

2

0

p p

p p p p

p p p p

w

w

D

D

D

P

y

y x

y

P

P

P

K

x

x y

 

 

 

 

 

 

.

:

y0 yb

0 

p

w ,

M

 yp

0

,

 

p

0

,

p

1, 2

y0,

y

b

, (2)

x0

2

0

 

, 2 0

 

x w

,

M

xy 2

0

x0, (3)

x

L

0 1 

w , Mx 1 0,

 

1

0

x

L

,

(4)

x

а

, 2

1 w

w

2 2

2 2

0 0

1 2

1 2

,

4

3

4

3

z

z

w

h

w

h

x

x

  

  

1 2

 1  2

x

x M

M  ,M1xyMxy 2 ,

 1  2

x x

N

N

x

a

.

(5)

(

p

1

,

2

) [1]:

    2   2    

11 2 12 2 11 12

,

p p p p

p p p p p

x

w

w

M

D

D

P

P

x

y

x

y





 

(4)

    2   2    

11 2 12 2 11 12

,

p p p p

p p p p p

y

w

w

M

D

D

P

P

y

x

y

x





 

  (6)

    2  

66 66

2

p p p

,

p p p

xy

w

M

D

P

x y

y

x





 

 

 p  p

,

x p

N

K

N

 yp

K

 p

p

.

p

w

p,

p

p1,2

– , (6)

.

ё  p

ik

D

p1, 2

:

  ,

12 3

1 B h

Dikik  

 

2

,

12

1 3 3

1 1

3

2 B h B h h h

Dikikik  

11 2

,

1

E

B

 

12 1

2 ,

E

B

,

1 2 12

66  

E G

B

  ,

1 12 1 1

11

E

B  1 1 1

12 2

1

,

1

E

B

 

   

1 1 1

66 12

1

,

2 1

E

B

G

 

E,

, G12

, E1,

1, G12 1 – .

 p ik

P , K p :

  ,

120 5

1 B h

Pikik

  ,

12 3

1 Gh

K  

   

,

2 2

24

2 1 2 1 1

3 1 2               

h B J Rh h h

G A J B

Pik ik ik

 2  1

3 12 4

2

2

,

K

Ah

G J

G J

 1

1

1 12

,

2

h

A

h

h

G

G

 1

1 1 12

1 ,

4

hh h

h

G

R

G

,

h

h

h

h

J

 

20

2

48

2 2 1 3 1  

, 2 2 30 1 2 2 6

2 5 5

1 3 3 1 2 1 2                                                      

h h h h h h h h

(5)

,

h

h

h

h

J

 

12

2

4

2 2 1 3 , 8 2 6 1 2 2 3 3 1 2 1 1 4                        

h h h h h h

J

G

.

const

q

,

w

p,

p,

p

p1,2

, (1) (2) (3), [1]:

axL ( , p1)

         

2

1 1 1 1

1 1 4 1 2 3 4

1,3.. 11

4

1

ch

sh

sh

ch

sin

,

n

n n n n n n n n n

n n

q

f

w

C

x C x

x C

x C x

x

y

nD

 

 

 

 

 

   

 

       

   

       

1 1 2 11 2 4 1

1 1 1 1

1,3.. 5 6 1 1 1 2 11 2 4 3 1

1,3.. 1 1 1 1

5 6

2

sh

ch

sin

,

ch

sh

2

4

ch

sh

cos

.

sh

ch

n n n n n

n n

n

n n n n

n

n n n n n

n

n n

n n n n

B

C

x C

x

G

y

C

x C

x

B

q

C

x C

x

n

G h

G

y

C

x C

x

   

 

 

 

 

 

(7)

 0xa ( ё , p2)

                              2

1 2 2

1 2 4 1 2

1,3.. 11

2

2 2 1

2 11

1 2 2 2 6

1,3..

2

2 2 2

2 11

1 2 2 2 6

1,3..

4

1

ch

sh

sin

,

2

sh

sh

sin

,

2

4

ch

ch

cos

n

n n n n n

n n

n

n n n n n n

n n

n n n n n n

n n

q

f

w

C

x C

x

x

y

nD

D

C

x

C

x

y

K

D

q

C

x C

x

y

n

K

K

     

 

 

 

 

 

 

 

.

(8) : n

n

b

 

,  1 2

(6)

2

2

10 1

Eh

f

G

 

,

   2 2 11 1

K P

f  .

 p in

C (p1,2; i1, 2,...,6 ) (4) (5), (7) (8) , wp,

p,

p

p1,2

,

(6) – .

a

h

1,

ё , . .

: :

,

max

min

p

p

x

w

w

x

 

a

,

p1,2

,

(9)

: a L h

h10 (10)

1 1 1

0.01

  

h

0.25

,

0.01

  

2

h

2

h

1

0.25

2

.

  (11)

(10) ,

(11) ё .

:

  

1

L

a

,

L a

 

b

;

 

1

b

,

Lab;

 

2

2 ,

a

b

a

2 ,

 

2

b

, 2ab.

[5]. .

Ч ё ,

ё

q

const

 

2

L b

1, 2

,

20 . 0 , 10 . 0 , 05 . 0 /  h b

h , h0 0.1h, ё

:

12 12 11

0.3

B

B

B

  

,

G

12

G

12

B

11

  

1

2 0.35

,

2

11

1

0, 2.6, 5, 10

G

G B

  

G E

E G

, B11 1 B11 1 B112,

   

6 . 0 11 1 12 1

12 B B

B ,   13 1 1 11 0.7

1 12

1     

G G G B

G .

0   G

E ё

,

E G

 

2.6, 5, 10

– ё .

L a

a 2 ,

h

1

h

1

b

,

ё 4

0 3

11h 12q b

B w

w

. ё

0

w

,

, ё

(7)

h

E

G

a

h

1 w0102 w102 k

1

0.05

0 0.337 0.00742 0.1654 0.1457 1 2.6 0.2915 0.00858 0.1708 0.1526 1.047 5.0 0.2915 0.00858 0.1710 0.1530 1.050 10.0 0.2915 0.00858 0.1711 0.1538 1.056

0.1

0 0.337 0.01484 0.1654 0.1457 1 2.6 0.334 0.01498 0.1745 0.1631 1.119 5.0 0.332 0.01506 0.1786 0.1644 1.128 10.0 0.323 0.01548 0.1796 0.1669 1.145

0.2

0 0.4 0.025 0.1654 0.1492 1 2.6 0.4 0.025 0.2017 0.1942 1.301 5.0 0.4 0.025 0.2083 0.1994 1.336 10. 0.4 0.025 0.2233 0.2107 1.412

2

0.05

0 0.05 0.05 0.4124 0.2909 1 2.6 0.05 0.05 0.4180 0.2986 1.026 5.0 0.05 0.05 0.4188 0.2987 1.027 10.0 0.05 0.05 0.4214 0.2989 1.027

0.1

0 0.1 0.05 0.4124 0.32186 1

2.6 0.2635 0.01897 0.4320 0.3374 1.048 5.0 0.2635 0.01897 0.4336 0.3389 1.053 10.0 0.2625 0.01905 0.4375 0.3422 1.064

0.2

0 0.267 0.03745 0.4124 0.3245 1 2.6 0.262 0.03817 0.4684 0.3743 1.153 5.0 0.26 0.03846 0.4829 0.3803 1.172 10.0 0.256 0.03906 0.5017 0.3935 1.212

ё

k

w

cor

w

cl ,

ё

, ,

ё ( 40%

 

1

20%

 

2

).

,

ё ё

ё , ё

(8)

, (11),

ё ,

 

1

10 . 0 

h

 

2,

ё (

a

=

0

.

05

). , ё

ё , ё .

,

 

2

h

=

0

.

05

:

x

=

0

.

272

,

x

=

0

.

, ё .

[4],

,

ё ё .

. ,

ё ё

,

,

, ё

ё ё .

1. . . . .: , 1987. 360 .

2. Э. ., . ., . .

- ,

. // . . . 2012. .65, № 1. .35-42.

3. . ., . . -

. // ,

, 2012, .9, № 1, .127-131.

4. Belubekyan E.V. Poghosyan A.G., Khanikyan V.M. Bending of the rectangular plate made of composite material, strengthened by additional layers or stiffening ribs. //Proceedings of 3rd international conference on contemporaru problems in architecture

and construction Beijing, China Nov.20-24, 2011, P. 2-1 - 2-6.

5. . . .: , 1975. 266 .

х:

я Э и – и и , .

E-mail: ebelubekyan@yahoo.com

я и – . .- . ., . .«

»,

( ) . : 0009, , . , 105. Т .: (+37499) 099662335 E-mail: arevpoghosyan@mail.ru

Referências

Documentos relacionados

Power demand of the mixer’s drive reveals the mixer’s operating characteristics and reliable monitoring of the mixing processes involving the evaluation of power consumption

Basing on the results of MANOVA test it has been observed that the strongest significant effect on an increase of the tensile strength R m exerted the addition of Mg, followed by

Abstract: As in ancient architecture of Greece and Rome there was an interconnection between picturesque and monumental forms of arts, in antique period in the architecture

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Then, both the thickness of the sheets and of the core of the sandwich plate are taken as design variables leading to the results of Table 6... Sandwich plate

In this study, using the nonlocal elasticity continuum plate model, the effects of the temperature change on the vibration frequency of orthotropic and isotropic rectangular

Figures 1 and 2 depict the transverse displacement response of a simply supported isotropic rectangular plate under the action of concentrated forces moving at variable velocity

For a typical design problem of a plate of variable thickness, we analyze the one- dimensional situation through a variational reformulation to discover that, in contrast with