• Nenhum resultado encontrado

Diffraction of a Shear Plane Wave in Elastic Medium with Piecewise Homogeneous Infinite Inclusion

N/A
N/A
Protected

Academic year: 2017

Share "Diffraction of a Shear Plane Wave in Elastic Medium with Piecewise Homogeneous Infinite Inclusion"

Copied!
19
0
0

Texto

(1)

Ա Ա Ա Ի Ի ՈՒԹ ՈՒ ԻԱ Ա Ի Ա Ա ԻԱ Ի Ղ Ա Ի

60, №2, 2007

539.3

. ., . .

: , , ,

, , , ,

-Keywords: method integrated Fourier, asymprotic formulas, layer, surface waves, inclu-sion, functional equations, difraction, Winer-Hopff equation

Ա. .Ո , .Խ.

Ա

։ Ա ,

։Խ

:

, ( )

,

- -

:

:

, .

.

.

, ( )

,

- .

. .

A. R. Voskanyan, E. Kh. Grigoryan

Diffraction of a Shear Plane Wave in Elastic Medium with Piecewise Homogeneous Infinite Inclusion

(2)

in-clusion is considered. The infinite inin-clusion consists of two semi-infinite parts made of different materials. The problem’s solution is presented in the form of sum of its even and odd problems. The case of long waves is considered and these problems (the even and odd ones) are modeled in a corresponding way after which each of them is reduced to the solution of Wiener-Hopf functional equation. Asymptotic formulas are obtained for dis-placement’s amplitude and contacts stresses in the far field. The behaviors of contact stresses in the neighborhood of the bonding line of the semi-infinite parts of the inclusion are also obtained.

,

oxyz

,

-(

−∞< ≤ < <∞

)

1 x 0, y h, z

(

)

2 0 x , y h z,

Ω ≤ < ∞ < < ∞

2

h

( .1).

β

(

e

iωt , . .

,

t

– ,

ω

– )

( )

cos sin

,

ikx iky z

U

x y

=

e

− β− β (1)

/

k

= ω

C

– ,

C

= µ ρ

,

µ ρ

,

– ,

0

< β < π

/ 2

.

.

, ,

.

,

, [1].

[2]

,

cos sin

ikx iky z

U

=

e

− β− β

1 1

,

ρ

µ

µ

2

,

ρ

2

ρ

µ

,

ρ

(3)

.

( )

,

z

U

x y

(

)

1

cos sin cos sin

1

2

ikx iky ikx iky z

U

=

e

− β− β

+

e

− β+ β (2)

(

)

2

cos sin cos sin

1

2

ikx iky ikx iky z

U

=

e

− β− β

e

− β+ β (3)

.

:

( )

1

,

W x y

,

W

2

( )

x y

,

Е

, .

U

1( )1

( )

x y

,

,

U

2( )1

( )

x y

,

Е

, .

( )

( )

y

x

U

12

,

,

U

2( )2

( )

x

,

y

Е

, .

,

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

y

x

U

y

x

U

y

x

U

y

x

U

y

x

U

y

x

U

y

x

W

y

x

W

y

x

U

y

x

U

y

x

U

y

x

U

z

z z

z

,

,

,

,

,

,

,

,

,

,

,

,

) 2 ( 2 )

2 ( 1 2

) 1 ( 2 )

1 ( 1 1

2 1

2 1

+

=

+

=

+

=

+

=

∞ ∞

(4)

( )

( )

x

y

U

1

,

,

U

( )2

( )

x

,

y

,

U

z

( )

x

,

y

Е .

.

1.

:

`

W

1

( )

x

,

y

+

k

2

W

1

( )

x

,

y

=

0

(

y

>

h

,

−∞

<

x

<

,

−∞

<

z

<

)

(1.1)

( )

( )

( )

( )

0

,

,

12 11

1

1

+

=

U

x

y

k

U

x

y

1

(

y

<

h

,

−∞

<

x

<

0

,

−∞

<

z

<

)

(1.2)

( )

( )

( )

( )

0

,

,

22 12

2

1

+

=

U

x

y

k

U

x

y

2

(

y

<

h

,

0

<

x

<

,

−∞

<

z

<

)

(1.3) :

( )

( )1

( )

1 1

1

,

,

y h y h

W x y

U

x y

y

y

µ

= µ

−∞ < ≤

x

0

( )

( )2

( )

1 1

2

,

,

y h y h

W x y

U

x y

y

y

µ

= µ

(4)

(

x

h

)

U

( )

(

x

h

)

W

1

,

±

=

11

,

±

<

x

0

(

x

h

)

U

( )

(

x

h

)

W

1

,

±

=

12

,

±

0

x

<

(1.5)

( )

(

y

)

U

( )

(

y

)

U

11

0

,

=

12

+

0

,

( )1

( )

( )2

( )

1 1

1 2

0 0

,

,

x x

U

x y

U

x y

x

x

=− =+

µ

= µ

(1.6)

2 2 2 2

y

x

+

=

,

k

12

= ω

2

/

C

12,

k

22

= ω

2

/

C

22 Е ,

1 1

1

C

=

µ

ρ

,

2 2

2

C

=

µ

ρ

Е

,

µ ρ µ ρ

1

,

1

,

2

,

2 Е

, .

, . .

hk

1

<<

1

,

hk

2

<<

1

,

( )

(1)

1

,

U

x y

,

U

1(2)

( )

x

,

y

. (1.2) (1.3)

( )

( )

( )

( )

1

( )1

( )

0

1

1 1

1 2 1 2

1 1 2

=

+

+

q

x

h

x

V

k

dx

x

V

d

µ

<

x

0

(1.7)

( )

( )

( )

( )

1

( )2

( )

0

1

2 2

1 2 2 2

2 1 2

=

+

+

q

x

h

x

V

k

dx

x

V

d

µ

0

x

<

(1.8)

( )

( )

( )

( )

=

h

h

dy

y

x

U

h

x

V

,

2

1

1

1 1

1 (1.9)

( )1

( )

1( )1

( )

( )1

( )

( )1

(

)

1( )1

( )

1 1 1

,

,

,

,

yz yz

y h y h

U

x y

U

x y

q

x

x h

x

h

y

y

µ

τ

τ

µ

= =−

=

=

= −

− = −

( )

( )

( )

( )

=

h

h

dy

y

x

U

h

x

V

,

2

1

2

1 2

1 (1.10)

( )2

( )

1( )2

( )

( )2

( )

( )2

(

)

1( )2

( )

1 2 2

,

,

,

,

yz yz

y h y h

U

x y

U

x y

q

x

x h

x

h

y

y

µ

τ

τ

µ

= =−

=

=

= −

− = −

( )

( )

x

q

11 ,

q

1( )2

( )

x

Е ,

.

(1.6)

( )

( )

0

( )2

( )

0

( )

0

1

1

1

V

V

(5)

( )1

( )

( )2

( )

1 1

1 2

0 0

x x

dV

x

dV

x

X

dx

dx

=− =+

µ

= µ

=

(1.11)

( )

0 ,

V

X

– , .

( ) ( ) ( )

x

x

f

x

f

+

=

θ

,

f

( ) ( ) ( )

x

=

θ

x

f

x

(1.12)

( )

x

θ

– .

(1.11) (1.12), (1.7) (1.8), :

( )

( )

( )

(

)

( )

( )

(

)

1

1 1

1 2 2 2 2 2 2

1 1 1 1 1

0

i V

X

q

V

k

k

h

k

σ =

σ

σ

− σ

µ

− σ

µ

− σ

(1.13)

−∞ < σ < ∞

( )

( )

( )

(

)

( )

( )

(

)

2

2 1

1 2 2 2 2 2 2

1 2 2 2 2

0

i V

X

q

V

k

k

h

k

+

+

σ = −

σ

+

σ

− σ

µ

− σ

µ

− σ

(1.14)

−∞ < σ < ∞

V

1( )1

( )

V

1( )1

( )

x e dx

i x

− − σ

−∞

σ =

;

V

1( )2

( )

V

1( )2

( )

x e dx

i x

+ + σ

−∞

σ =

( )

( )

( )

( )

∞ −

− −

=

q

x

e

dx

q

11

σ

11 iσx ; ( )

( )

( )

( )

∞ −

+ +

=

q

x

e

dx

q

12

σ

12 iσx

,

k

1

,

k

2 ,

2 1

,

k

k

– .

( )

( )

(

( )

( )

( )

( )

)

x

q

x

q

y

y

x

W

y

y

x

W

h y h

y

+ −

− = +

=

+

=

2

1 1

1 1

1

,

,

2

µ

(1.15)

<

<

x

(

x

h

)

V

( )

( )

x

V

( )

( )

x

W

1

,

±

=

11−

+

12+

<

x

<

(1.16)

,

W

1

( )

x

,

y

( )

x

y

W

( )

x

y

U

( )

x

y

W

,

,

z

,

1

1 1

=

(1.17)

,

W

1

( )

x

,

y

(1.1).

(1.1)

(

)

(

)

2

1 2

1 2

,

,

0

d W

y

W

y

dy

′ σ

− γ

σ

=

γ = σ −

2 2

k

2 (1.18) (1.18),

(

)

1

,

1

y

W

′ σ

y

=

C e

−γ (1.19)

(6)

2 2 2 2

k

i k

σ −

= −

− σ

, . . (1.19)

.

2 2

k

α −

α = σ + τ

i

k

σ =

,

σ = −

k

, . .

k

,

k

[3].

, (1.15)

(1.19),

( )

( )

( )

( )

( )

(

) (

)

1 2

1 1

1 2 2

2 2

|

2

sin sin

sin

cos

h

h

q

q

C

e

k

k

kh

k

e

k

− +

γ

γ

σ +

σ

σ = −

+

µ σ −

π

β

β δ σ −

β

+

σ −

(1.20)

(1.16), (1.13), (1.14) –

-( )1

( )

1

q

σ

q

1( )2+

( )

σ

:

( )

( )

( )

( )

( )

( )

(

( )

)

( )

(

)

(

)

(

)

(

)

(

)

2 2 2 2

2 2

2 2

2 2 2 1 1

1 2 2 1

1 1 2 2

2 2 2 2 2 2 2 2

1 2 2 2 1 1

2 2 2

2 2 sin

2 2 2

2 2

1

1

1

1

0

sin

cos

2

cos

sin

cos

ikh

h

k

k

L

k

q

q

k

L

L

i

V

X

k

k

k

k

ih

k

k

k

e

k

i k

h

k

k

+ −

β

µµ

− σ

σ −

σ

µ

− σ

σ +

σ =

×

µ

− σ

σ

σ

⎛ ⎛

× σ

⎜ ⎜

+

⎟ ⎟

− σ

− σ

µ

− σ

µ

− σ

⎠ ⎠

µµ

β

β

− π

δ σ −

β

µ

β + µ

β

(1.21)

( )

(

)

( )

(

)

2 2 2 2

1 1 1

2 2 2 2

2 2 2

L

k

h

k

L

k

h

k

σ = µ σ −

− µ

− σ

σ = µ σ −

− µ

− σ

(1.22)

, , ,

k

1

>

k

,

k

k

2

>

.

L

1

( )

σ

L

2

( )

σ

±σ

1,

±σ

2,

(

)

2 2 2 2 2

1 1 1 1 1 1

2

2

4

2

k

k

k

σ =

+ λ − λ λ +

;

k

< σ <

1

k

1; 1

1

h

µ

λ =

µ

(

)

2 2 2 2 2

2 2 2 2 2 2

2

2

4

2

k

k

k

σ =

+ λ − λ λ +

;

k

< σ <

2

k

2; 2

2

h

µ

λ =

µ

,

,

−σ −σ

1

,

2 ,

σ σ

1

,

2

, ,

k

<

k

2

<

k

1. ,

1 2

(7)

( )

( )

2 2

2

1

2 2

1

k

K

K

k

− σ

σ =

σ

− σ

(1.23)

( )

( )

( )

1 2 1

1 2

L

K

L

σ

µ

σ =

µ

σ

(1.24)

( )

K

σ

.

( )

1

K

σ

,

( )

2 1

( )

( )

( ) ( )

1 1 1

1 2

L

K

K

K

L

+ −

σ

µ

σ =

=

σ

σ

µ

σ

( )

( )

1

R

K

+

σ =

e

+ σ ;

K

1

( )

σ =

e

R−( )σ

( )

( )

( 0)

0

ix i

R

R x e

dx

σ+ +

σ =

;

( )

( )

( )

0

0

ix i

R

R x e

σ−

dx

−∞

σ =

(1.25)

( )

2 1

( )

( )

1 2

1

ln

2

i x

L

R x

e

d

L

− σ

−∞

µ

σ

=

σ

π

µ

σ

,

K

1+

( )

α

Im

( )

α >

0

,

( )

1

K

α

Im

( )

α <

0

,

α = σ + τ

i

[3].

( )

( )

1

R

σ = Ο σ

σ → ∞

,

( )

(

(

)

1

(

)

)

0

ln

0

R

σ = Ο σ −

i

σ −

i

;

R

+

( )

σ = Ο σ +

(

(

i

0

)

−1

ln

(

σ +

i

0

)

)

, ,

K

±

( )

σ →

1

σ → ∞

.

( )

R

σ

, .2,

( )

(

( )

)

(

( )

)

1

2

0 0

1

1

ln

K

S

io

R

d

dS

i

io

S

io

io

σ =

ϕ τ

τ −

ψ

+

σ − − σ

π τ + σ −

π

− σ −

σ − − σ

(1.26)

( )

( )

R

+

σ

=

R

σ

(1.27)

.2

2 σ

1

σ

(8)

( )

(

)

(

(

)

)(

(

)

)

(

)

(

)

2 2 2 2 2 2

2 2 2 1

2 2 2 2 2 2 2 2

1 2 1 2

2 2 2 2

2 2 2 2

1 1 2 2

arctg

arctg

arctg

h

k

k

k

k

h

k

k

k

k

h

k

h

k

µ

+ τ µ

+ τ − µ

+ τ

ϕ τ =

=

µ

+ τ + µ µ

+ τ

+ τ

µ

+ τ

µ

+ τ

=

µ

+ τ

µ

+ τ

( )

(

)

(

(

) (

)(

)

)

(

)

(

)

2 2 2 2 2 2

2 2 1 1

2 2 2 2 2 2 2 2

1 2 1 2

2 2 2 2

2 2 2 2

1 1 2 2

arctg

arctg

arctg

h

k

S

k

S

k

S

S

k

S

h

k

S

k

S

k

S

k

S

h

k

S

h

k

S

µ

µ

− µ

ψ

=

=

µ

+ µ µ

µ

µ

=

µ

µ

,

(

1

0

)

1

i

(

S

)

S

− σ −

i

=

S

− σ

− πδ

− σ

(1.26),

( )

2

( )

1 1

k

K

K

k

+

σ =

+ σ

+

σ

+ σ

;

( )

2 1

( )

1

k

K

K

k

σ =

− σ

σ

− σ

(1.28)

(1.31), (1.23)

( )

( )

( )

( )

( )

( )

( )

2

1 1

1

q

K

q

F

K

+

− −

+

σ

+

σ

σ =

σ −

σ

(

)

(

(

)

)

(

)

2 2 2

2 2 sin

2 2 2

2 2

sin

cos

2

cos

cos

sin

cos

ikh

h

ik

k

k

k

e

K

k

i k

h

k

k

β +

µµ

β

β

π

δ σ −

β

β µ

β + µ

β

(1.29)

( )

1

( )

( )

2

( )

( )

1 2

0

X

0

X

F

σ =

F

σ

i V

σ

+

F

σ

i V

σ

µ

µ

(1.30)

( )

( ) ( )

2 2 2 22 2

1 2 2

2 1

h

k k

F

K

+

L

k

µµ σ −

− σ

σ =

σ

σ

− σ

(1.31)

( )

( ) ( )

2 2 2 2

2

h

k

F

K

+

L

µµ σ −

σ = −

σ

σ

(1.32)

,

( )

( ) ( )

2 2 2 22 2

1 2 2

2 1

1

2

i x

h

k k

F x

e

d

K

L

k

− σ +

−∞

µµ σ −

− σ

=

σ

π

σ

σ

− σ

(1.33)

( )

0

( )

( 0)

1 1

i i x

F

F x e

σ−

dx

−∞

(9)

( )

( )

( 0)

1 1

0

i i x

F

F x e

dx

σ+ +

σ =

(1.35)

( )

x

F

1 ,

(1.34)

F

1

( )

σ

( )

( )

(

) (

(

(

)

)

(

)

)

(

(

)

)

( )

(

) (

(

(

)

)

(

)

)

(

)

1

2

2 2

2 2 2 2

2 2

2

2 2 2 2 2 2 2 2 2

0 1 2 2

2

2 2

2 2

2

2

2 2 2 2 2 2 2 2 2

0 1 2 2

k

F

k d

h k

K i k k h k i io

k S

k S dS

S io

K S k S k S h k S

∞ + +

=

+

+ ⎜

=

+ + + + + −

⎜ ⎝

⎞ −

− ⎟

+

− −

− − + − ⎟

σ

τ

τ

µµ

τ

π

τ

τ

µ

τ

µ

τ

τ

σ

σ

µ

µ

(

11

0

)

(

21

0

)

A

B

k

i

i

σ

σ

σ

+

+

+

+

(1.36)

( )

1

F

+

σ

=

F

1

( )

σ

F

1

( )

σ

(1.37)

( )

σ

+

2

F

F

2

( )

σ

.

( )

( )

(

(

)

(

)

)

(

)

2

2 2 2 2 2 2

2 2

2

2 2 2 2 2 2 2

0

2 2

F

h

k

k

d

K

i

k

h

k

i

io

+

σ =

µµ

+ τ

+ τ

τ

= −

π

τ

µ

+ τ + µ

+ τ

τ + σ −

(1.38)

( )

(

(

)

(

)

)

(

)

(

)

2 2

2 2

2 1

2

2 2 2 2 2 2 2

2 0

2 2

k

k

S

D

k

S

dS

S

io

io

K

S

k

S

h

k

S

− +

− σ −

σ − σ +

µ

+ µ

(

)

( )

(

)

2 2

2 2 1

2 2

2 2

2

2 2

h

k

D

K

h

k

+

µµ σ −

= −

σ σ µ + µ σ −

(1.39)

( )

2

F

+

σ

=

F

2

( )

σ

F

2

( )

σ

(1.40)

(10)

(1.36), (1.37) (1.38), (1.39) (1.30), (1.29) , ,

(

)

1

1

2

cos

cos

0

cos

0

i

k

k

i

k

i

π δ σ −

β =

σ −

β −

σ −

β +

(1.41)

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

1 0

1 2

1 0

cos

0

cos

0

A

M

K

q

F

k

i

q

A

F

M

k

i

K

− − − −

+

+ +

+

σ =

σ

σ −

σ +

=

σ −

β −

σ

=

+

σ +

=

σ

σ −

β +

σ

(1.42)

(

)

(

β

)

(

β

)

µ

β

µ

β

β

µµ

β

cos

cos

sin

cos

sin

sin

2 2 2 2 2

2 2 2 2

0

k

K

e

k

k

h

k

i

k

k

k

h

A

ikh +

+

=

(1.43)

( )

1

( )

( )

2

( )

( )

1 2

0

X

0

X

F

+

σ =

F

+

σ

i V

σ

+

F

+

σ

i V

σ

µ

µ

(1.44)

( )

1

( )

( )

2

( )

( )

1 2

0

X

0

X

F

σ =

F

σ

i V

σ

+

F

σ

i V

σ

µ

µ

(1.45)

, [4].

(1.42)

.

( )

( )

M

+

x

=

M

x

<

x

<

(1.46)

[5, 6]

0

( )

( )

( )

n k k k

M

+

x

M

x

a

x

=

=

=

δ

(1.47)

( )

( )

k

δ

σ

k

-

δ

( )

x

,

δ

( )0

( )

x

= δ

( )

x

. (1.47)

,

0

( )

( )

( )

n

k k

k k

M

+

M

i a

=

σ =

σ =

σ

(1.48)

,

K

±

( )

σ →

1

σ → ∞

.

[4],

q

1( )1−

( )

x

+

q

1( )2+

( )

x

= Ο

(

ln

x

)

x

0

, ,

( )1

( )

(

(

)

1

(

)

)

1

ln

q

σ = Ο σ −

io

σ −

io

;

q

1( )2+

( )

σ = Ο σ +

(

(

io

)

−1

ln

(

σ +

io

)

)

( )

( )

1

F

σ = Ο σ

σ → ∞

,

( )

(

(

)

1

(

)

)

ln

F

+

σ = Ο σ +

io

σ +

io

;

F

( )

σ = Ο σ −

(

(

io

)

−1

ln

(

σ −

io

)

)

σ → ∞

, ,

M

+

( )

σ →

0

,

M

( )

σ →

0

(11)

( )

0

M

+

σ ≡

;

M

( )

σ ≡ −∞ < σ < ∞

0

(1.49) (1.51)

q

1( )1−

( )

σ

,

q

1( )2+

( )

σ

(1) 0

1

( )

( )

( )

( )(

cos

)

A

F

q

K

K

k

io

− −

− −

σ

σ =

σ

σ σ −

β −

(1.50)

( )

(2) 0

1

( )

( )

( )

(

cos

)

A

q

K

F

K

k

io

+

+ + +

σ =

σ

σ −

σ

σ −

β +

(1.51)

( )

,

X V o

(1) 1 1 1 1

(

)

( )

q

k

X

i k V o

h

µ

+

= −

h

k

q

o

V

k

i

X

(

)

(

2

)

) 2 ( 1 2

2

+

=

µ

(1.50), (1.51)

W

1

(

σ

,

y

)

(1.24) (1.17),

(

)

( )

( )

( )

( )

( )

(

)

( )

(

)

(

) (

)

1 2

1 1

1 2 2

sin

,

2

sin

sin

cos

2 cos

sin

cos

y h

ik y h

q

q

W

y

e

k

i

kh

e

k

ky

k

− +

−γ −

β −

σ +

σ

σ

= −

+

µ σ −

+ π

β

δ σ −

β + π

β δ σ −

β

(1.52)

(1.52) ,

( )

x

y

W

1

,

x

<

0

,

x

>

0

.

( )

x

y

W

1

,

y

y

>

0

( )

( )

( )

( )

( )

(

)

(

)

2 2 2 2 2 2

1 1 1 1

1

2 2 2 2

0 0

2 2 2 2 2

1 2 2 1 2 2 1 1 1 2

2 2 2 2 2 2 2 2 2 2

2 0 2 1 1

cos cos

1 ,

( ) ( ) ( ( ) )

1

( ) ( ) ( )

k

x i x

q i k y q k y

W x y e d i e d

k k

h k k V o i X k k

k k h k

+ +

τ − σ

τ τ + σ − σ

⎢ ⎥

= − τ + σ +

µπ ⎢ τ + − σ ⎥

⎡ µ µ − τ − µ − µ − µ − µ τ

+ ×

µ π⎢⎣ + τ µ + τ + µ + τ

(

)

(

)

(

)

(

)

2 2 2 2 2 2 2 2

1 1 1 1

2 2 2 2 2

1 2 2 1 2 2 1 1 1 2

2 2 2 2 2 2 2 2 2 2

0 2 1 1

cos

sin

(

) ( )

(

(

)

)

(

)

(

)

(

)

x

k

k

k

y

h k

k

y e

d

h

k

k V o i

X

k

k

k

k

h k

−τ

× µ

+ τ

+ τ

− µ

+ τ

+ τ

τ −

µ µ

σ −

µ

− µ

+ µ − µ σ

×

− σ

µ

− σ + µ

− σ

(

)

(

)

( ) ( )

(

(

(

)

)

)

2 2 2 2 2 2 2 2

1 1 1 1

2 2 2 2 2 2 2 2 2 2 4

1 1 2 1 2 1 2 1 2 1 2

1

2 2 2 2 2 2 2 2

2 0 1 1

cos sin

( ) ( )

i x

k k y h k k y e d

F i K i k h k k h k k h

k h k

− σ

+ +

× µ − σ − σ − µ − σ − σ σ +

τ τ µ + µ µ + µ + µ µ + τ + µ µ τ

µ ⎢

+ ×

µµ π µ + τ + µ + τ

⎢⎣

( ) ( )

(

(

(

)

)

)

2 2 2 2

1 1

2 2 2 2

2

2 2 2 2 2 2 2 2 2 2 4

2 1 2 1 2 1 2 1 2 1 2

2 2 2 2 2 2 2 2

1 1

0

cos

( ) ( )

x

k

k k y

e d

k k

F K k h k k h k k h

k h k

τ

+ +

+ τ + τ

× τ −

+ τ + τ

σ σ µ + µ µ − µ + µ µ + σ + µ µ σ

− ×

µ − σ + µ − σ

(12)

( ) ( )

(

(

)

)

2 2 2 2

1 1

2 2 2 2

2

2 2 2 2 2 2 2

2 2 1 1 1 2 1

1 1

2 2 2 2 2 2 2 2 2 2

2 0 1 1 2

cos

sin

( ) ( )

i x

x

k k y

e d

k k

F i K i k k k y

h k

e d

k h k k

− σ

+ +

τ

− σ − σ

× σ +⎥

− σ − σ

τ τ µ + µ − µ − µ τ + τ

µ + τ

+ τ −

µ π µ + τ + µ + τ + τ

( ) ( )

(

(

)

)

(

)

(

)

2 2 2 2 2 2 2

2 2 1 1 1 2 1 1

2 2 2 2 2 2 2 2 2 2

1 1 2

0

2 2 2 2 2 2 2

1 1 2 2 1 2 1

1 0

2 2 2 2 2 2 2 2

2 0 1 1

sin

(

)

(

)

sin

(

)

(

)

k

i x

F

K

k

k

k

y k

e

d

k

h k

k

h k

k

k

k

y

A

k

h k

+ +

− σ ∞

σ

σ µ

− µ

+ µ − µ σ

− σ

− σ

σ +

µ

− σ + µ

− σ

− σ

+ τ µ

− µ

+ µ − µ τ

+ τ

µ

+

µµ π

µ

+ τ + µ

+ τ

(

)

(

)

( )

2 2 2 2 2 2 2 2 2 2 2 4 2 2

1 2 1 2 1 2 1 2 1 2 1

2 2 2 2 2 2 2 2

1 1

2 2

1

2 2 2 2

2

cos

(

)

(

)

1

cos

0

x

k

h

k k

h

k

k

h

k

y

k

h k

K

i

k

e d

i

k

i k

k

τ

µ

µ µ

µ

µ µ

τ

µ µ τ

τ

µ

τ

µ

τ

τ

τ

τ

τ

β

τ

τ

+

+

+

+

+

+

×

+

+

+

+

×

+

+

+

(

)

(

)

(

)

(

)

( )

2 2 2 2 2 2 2

1 1 2 2 1 2 1

2 2 2 2 2 2 2 2

1 1

0

2 2 2 2 2 2 2 2 2 2 2 4 2 2

1 2 1 2 1 2 1 2 1 2 1

2 2 2 2 2 2 2 2

1 1

2 2

1

2 2 2 2

2 2

sin

( ) ( )

cos

( ) ( )

1 cos

k

i x

h k k k k y

i

k h k

k h k k h k k h k y

k h k

K k

e d

k io k k

+

− σ

− σ µ − µ − µ − µ σ − σ

− −

µ − σ + µ − σ

µ + µ µ − µ + µ µ + σ + µ µ σ− σ

⎣ ⎦

− ×

µ − σ + µ − σ

σ − σ

× σ −

σ − β + − σ − σ

(

)

(

)

( )

(

)

(

)

1

2 2 1 1 1

sin sin cos cos 0

cos cos

2 3

sin

sin

cos

sin

cos

sin

sin

ikR

k y i x

ikR

A

kh

e

K

k

k

kR

e

i B

B e

e

β θ β θ

σ σ β θ

β

µ

β

β

β

θ

+ −

− − −

+

+

+

+

0

<

x

y

R

1

sin

θ

=

;

R

1

cos

θ

=

x

;

R

12

=

x

2

+

y

2;

y

1

=

y

h

(

)

(

)

( )

(

)

2 2 2 2 2

1 1 2 2 1 2 2 1 1 1 2 1

2 2

2 1

2 2 2 2

2 1 2 1 1 1

2 2 2 2 2 2

1 1 1 1 1 1 1 2 2 1

2 2 2 2

2 1 2 1 1 1

(

(

) ( )

(

)

(

)

2

(

)

(

)(

(

)

(

)

2

i

k

k V o

X

k

k

B

h

k

k

h

k

F

K

k

i

k

h

k

k

h

k

σ µ µ

µ

µ

µ µ σ

µ σ

µ σ

σ

µ

µ σ

σ

σ µ

σ

µ σ

µ

σ

µ σ

σ

µ

µ σ

+ +

+

=

+

(13)

(

)

(

)

( )

2 2 2 2

2 2

1 1 2 2 1 0 1

1 1 1

3 2 2 2 2

2 2 1 1

2

1 1 1

cos

k

h

k

A K

k

B

k

h

k

k

io

µ σ

µ

σ

σ

µ

σ

µ

σ

σ µ

µ σ

σ

β

+

=

+

+

( )

( )

( )

( )

( )

(

)

(

)

1 2 2 1 2 2

1 1 1 1

1 2 2 2 2

0 0

2 2 2 2 2

1 2 1 2 1 1 2 2 2 1

2 2 2 2 2 2 2 2 2 2

2 0 1 2 2

cos cos 1 , ( ) ( ) ( ( ) ) 1 ( ) ( ) ( ) k

x i x

q i k y q k y

W x y e d i e d

k k

h k k V o X k k

k k h k

τ σ

τ τ σ σ

τ σ

µπ τ σ

µ µ τ µ µ µ µ τ

µ π τ µ τ µ τ

+ + ∞ − ∞ ⎡ + ⎤ ⎢ ⎥ = − + + ⎢ + − ⎥ ⎣ ⎦ ⎡ − + − − − ⎢ + × + + + + ⎢⎣

(

)

(

)

(

)

(

)

2 2 2 2 2 2 2 2

1 2 2 1

2 2 2 2 2

1 2 1 2 1 1 2 2 1 2

2 2 2 2 2 2 2 2 2 2

0 1 2 2

cos

sin

(

) ( )

(

(

)

)

(

)

(

)

(

)

x

k

i

k

k

y

i

h k

k

y e

d

h

k

k V o i

X

k

k

i

k

k

h k

τ

µ

τ

τ

µ

τ

τ

τ

µ µ

σ

µ

µ

µ µ σ

σ

µ

σ

µ

σ

×

+

+

+

+

+

×

+

(

)

(

)

( )

(

(

(

)

)

)

2 2 2 2 2 2 2 2

1 2 1 1

2 2 2 2 2 2 2 2 2 2 2 4

1 2 1 2 1 2 1 2 1 2

1

2 2 2 2 2 2 2 2

2 0 2 2

cos sin

( ) ( )

i x

i k k y i h k k y e d

P i k h k k h k k h

k h k

σ

µ

σ

σ

µ

σ

σ

σ

τ µ

µ µ

µ

µ µ

τ

µ µ τ

µ

µµ π

µ

τ

µ

τ

− ∞ ⎤ × − − − − − ⎥⎦ + + + + + ⎢ + × + + + ⎢⎣

( )

(

(

(

)

)

)

2 2 2 2

2 1

2 2 2 2

1

2 2 2 2 2 2 2 2 2 2 2 4

1 2 1 2 1 2 1 2 1 2

2 2 2 2 2 2 2 2

2 2 0

cos

(

)

(

)

x k

k

k

y

e

d

k

k

P

k

h

k k

h

k

k

h

k

h k

τ

τ

τ

τ

τ

τ

σ µ

µ µ

µ

µ µ

σ

µ µ σ

µ

σ

µ

σ

− −

+

+

×

+

+

+

+

+

+

×

+

( )

(

(

)

)

+

+

+

+

+

+

+

+

×

− ∞ −

τ

τ

τ

τ

µ

τ

µ

τ

τ

µ

µ

µ

µ

τ

π

µ

µ

σ

σ

σ

σ

σ

τ σ

d

e

k

k

k

h

k

y

k

k

k

i

P

d

e

k

y

k

k

k

x x i 2 2 1 2 2 2 0 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 1 1 2 2 2 1 2 2 2 2 1 2 2 2

)

(

)

(

sin

cos

( )

(

(

)

)

(

)

(

)

(

)

( )(

)

2 2 2 2 2 2 2

1 1 2 2 2 1 1 2

2 2 2 2 2 2 2 2 2 2

2 2 1

0

2 2 2 2 2 2 2

2 2 1 1 2 1 1

0 2

2 2 2 2 2 2 2 2

1 0 2 2

sin

(

)

(

)

sin

(

)

(

)

cos

0

k

i x

P

k

k

k

y k

i

e

d

k

h k

k

h k

k

k

k

y

A

k

h k

K

i

i

k

i

σ

σ µ

µ

µ

µ σ

σ

σ

σ

µ

σ

µ

σ

σ

τ µ

µ

µ

µ τ

τ

µ

µµ π

µ

τ

µ

τ

τ

τ

β

Referências

Documentos relacionados

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

The iterative methods: Jacobi, Gauss-Seidel and SOR methods were incorporated into the acceleration scheme (Chebyshev extrapolation, Residual smoothing, Accelerated

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Identificou-se 196 marcadores SNPs com alto conteúdo polimórfico para a realização de diversos estudos genéticos na cultura da mandioca, sobretudo para a

Este artigo discute o filme Voar é com os pássaros (1971) do diretor norte-americano Robert Altman fazendo uma reflexão sobre as confluências entre as inovações da geração de

Abstract: As in ancient architecture of Greece and Rome there was an interconnection between picturesque and monumental forms of arts, in antique period in the architecture