• Nenhum resultado encontrado

Diffraction of surface shear electroelastic wave in semi-infinite metal layer in piezoelectric space with infinite metal layer

N/A
N/A
Protected

Academic year: 2017

Share "Diffraction of surface shear electroelastic wave in semi-infinite metal layer in piezoelectric space with infinite metal layer"

Copied!
11
0
0

Texto

(1)

Ա Ա Ա Ի Ի Ո Թ Ո ԻԱ Ա Ի Ա Ա ԻԱ Ի Ղ Ա Ի

65, №1, 2012

539.3

и . ., и . .

ч ы : , ,

, , , , .

Key words: Piezoelectric space, infinite metallic layer, semi-infinite layer, surface wave, asymptotic formulae, farther zone, cylindrical wave

.Խ. , . .

Ա

: Խ Ֆ

: :

,

, ,

:

Grigoryan E.Kh., Sinanyan S.S.

Diffraction of surface shear electroelastic wave in semi-infinite metal layer in piezoelectric space with infinite metal layer

Diffraction of surface shear electroelastic wave in semi-infinite metal layer in piezoelectric space with infinite metal layer is discussed. Solution of the problem can be brought to solution of Riemann problem in analytic functions theory, using real Fourier transformation. Asymptotic formulae of shift amplitude in further zone are found. It is shown that existence of semi-infinite metal layer leads to appearance of surface and cylindrical waves and a wave which propagates in the direction of the beam, with a speed depending from the angle beam spread.

( )

.

.

. ,

,

, .

6mm

o

Oz

.

. ,

, ,

. . a ,

, ,

x y h z

−∞ < < ∞ = − ∞ < < ∞ −∞ < ≤x 0, y= − − ∞ < < ∞h, z .

c

0

( , , )

( , )

i t

w x y t

=

w x y e

− ω

( , , )

x y t

( , )

x y e

− ωi t

(2)

2 2

2 2 15

11

( , )

( , )

(

)

k y h i x

k y h y h

i x

w x y

e

e

x y

e

e

e

− σ − − − σ

− σ − − −σ −

− σ ∞

=

Φ

=

ε

(1)

, , ,

i t

e

− ω .

( , )

w x y

( , )

x y

Φ

[1]:

2

2 15

11

0

0

w k w

e

k w

ε

Δ +

=

ΔΦ +

=

(2)

11

ε

– ,

e

15 – ,

ω −

,

k

= ω −

c

,

c

=

c

44

(1 æ)

+

ρ

,

c

44– ,

ρ

– ,

2

15 44 11

æ

=

e

c

ε

,

2 2

2 2

x

y

Δ =

+

– .

(2)

( ,

0)

( ,

0)

w x

± +

h

=

w x

± −

h

,

( ,

0)

( ,

0),

yz

x

h

yz

x

h

σ

± +

=

σ

± −

Φ

( , )

x h

=

0

( ,

x

h

)

+

( )

x

Φ

− = Φ

,

D x

y

( ,

h

0)

D x

y

( ,

h

0)

ε

11

( )

x

− + −

− − = − Ψ

, (3)

44 15

( , )

yz

w

x y

c

e

y

y

∂Φ

σ

=

+

– ,

15 11

( , )

D x y

y

e

w

y

y

∂Φ

=

− ε

,

Φ

+

( )

x

=

0

x

<

0

,

Ψ

( )

x

=

0

x

>

0

.

ё

( , )

( , )

( , )

u x y

=

w x y

w x y

,

ϕ

( , )

x y

= Φ

( , )

x y

− Φ

( , )

x y

(4)

( , )

u x y

,

ϕ

( , )

x y

(2),

x

2

2 2

2

2 2 15

2

11

( , )

( , )

0

( , )

( , )

( , )

0

d u

y

u

y

dy

e

d

y

y

k

u

y

dy

σ

− γ

σ

=

ϕ σ

− σ ϕ σ

+

σ

=

ε

(5)

(3)

2 2

2 2

15

11

44 15 44 15

0 0 0 0

( ,

0)

( ,

0),

( , )

0,

( ,

)

( ) 2

(

h k h

) (

),

y h y h y h y h

u

h

u

h

h

e

h

e

e

du

d

du

d

c

e

c

e

dy

dy

dy

dy

− σ − − σ

+

=± + =± + =± − =± −

σ ± +

= σ ± −

ϕ σ

=

ϕ σ − = Φ σ − π

δ σ − σ

ε

ϕ

ϕ

+

=

+

(6)

0 0

( )

y h y h

d

d

dy

dy

=− + =− −

ϕ

ϕ

= −Ψ σ

,

γ = σ −

2 2

k

2,

( , )

( , )

, ( , )

1

( , )

2

i x i x

f

y

f x y e dx f x y

f

y e

d

∞ ∞

σ − σ

−∞ −∞

σ

=

=

σ

σ

π

,

( )

δ σ

– .

,

u

( , )

σ

y

,

ϕ σ

( , )

y

ё

.

(5), , :

0

15 0

11

( , )

( )

( , )

( )

y

y

u

y

A

e

e

y

B

e

u

−γ

− σ

σ

=

σ

ϕ σ

=

σ

+

ε

y

>

h

(7)

1 2

15

1 2

11

( , )

( )ch

( )sh

( , )

( )ch

( )sh

u

y

A

y

A

y

e

y

B

y

B

y

u

σ

=

σ

γ +

σ

γ

ϕ σ

=

σ

σ +

σ

σ +

ε

y

<

h

(8)

3

15 3

11

( , )

( )

( , )

( )

y

y

u

y

A

e

e

y

B

e

u

γ

σ

σ

=

σ

ϕ σ

=

σ

+

ε

y

< −

h

(9)

,

σ −

2

k

2

= −

i k

2

− σ

2 ,

2 2

( )

k

0

γ σ = σ −

>

σ >

k

, .

i

α = σ + τ

σ = −

k

,

σ =

k

– [ 2 ].

(6),

[ 5-14]

Φ σ

+

( )

,

Ψ σ

( )

:

2 2

2 2

15

11

( )(

( )

2

e

(

h k h

) (

))

( )

M

σ −Φ σ + π

+

e

− σ −

e

− σ

δ σ − σ

= Ψ σ

ε

, (10)

( )

2(1 æ)

( )

M

σ =

+

σ

K

σ

(11)

0

1 2

0

( )

( )

( )

( )

( )

(1 æ)

æ

K

K

K

K

K

σ

σ =

σ

σ

(4)

2 2 1

2 2

2

( )

(1 æ) (1

)

æ(1

)

( )

(1 æ) (1

)

æ(1

)

h h

h h

K

e

e

K

e

e

− σ − γ

− σ − γ

σ = +

γ +

− σ

+

σ = +

γ −

− σ

(12)

(7), (8), (9) (10) 2 2 2 2 2 2 15 0

44 1 2

2

2 2

2 2

1 2

(1 æ)

(

)

( )

( )

( )

( )

(

)

2 æ(1 æ)

(

)

(

)

(

)

h h h k h h k h

e

e

e

e

A

c

K

K

e

e

k

e

K

K

− σ

γ − γ

+

− σ − − σ

σ −

+ γ

σ =

σ Φ σ

+

σ

σ

+ π

+ σ σ −

δ σ−σ

σ

σ

2 2 2 2 2

2 15

1

44 1 1

2 æ

(

)

( )

( )

(

)

( )

(

)

h k h k h

h

e

e

e

e

A

e

c

K

K

− σ − − σ − − σ

+

−γ

π σ

Φ σ

σ = −

σ

+

δ σ − σ

σ

σ

2 2 2 2 2 2

15 2

44 2 2

2 æ

(

)

( )

( )

(

)

( )

(

)

k h h k h

h

e

e

e

e

A

e

c

K

K

− σ − − σ − − σ

+

−γ

π σ

Φ σ

σ =

σ

δ σ − σ

σ

σ

2 ( ) 4

* 15

3 3

44 1 2

(1 æ) (1

)

æ(1

)

( )

( )

(

)

( )

( )

h h

h

e

e

e

A

e

A

c

K

K

− σ +γ − γ

+ γ

+

γ −

− σ

σ = −

σ Φ σ

+

δ σ − σ

σ

σ

2 2 ( ) 15 0 0 11

( ) 2 2

15 15

3 3

11 11

( )

( )

( )

( )

2

(

)

(

)

h

h h h k h h

e

B

A e

e

e

B

A

e

e

e

e

e

σ −γ

σ −γ + σ − σ − − σ σ

σ = −

ε

σ = −

σ

+ Φ σ

− π

δ σ − σ

ε

ε

2 2 15

1 2 2

15 11

1

11

( ) 2

( ) ch

(

) (

)

( )

2 ch

ch

h k h

e

A

h

e

e

e

B

h

h

+

− σ − − σ

Φ σ −

σ

γ

ε

δ σ − σ

σ =

− π

σ

ε

σ

2 2 15

2 2 2

15 11

2

11

( ) 2

( ) sh

(

) (

)

( )

2 sh

2sh

h k h

e

A

h

e

e

e

B

h

h

+

− σ − − σ

−Φ σ −

σ

γ

ε

δ σ − σ

σ =

+ π

σ

ε

σ

,

2 2 2 2

2 2 2 2

2 2

* 3

2 ( ) 4

2 2

1 2

2 æ(

)

((1 æ)

(1

)

æ(1

))

.

(

)

(

)

h k h h k

h k k h

A

e

e

e

k

e

e

K

K

− σ − − σ σ −

− σ + σ − − σ −

= π

σ

×

+

σ −

− σ

×

σ

σ

(10), ,

K

( )

σ

±σ

,

K

0

(

±σ =

)

0

1

,

2

±σ ±σ

,

K

2

(

±σ

2

)

=

0

kh

>

h

a,

h

a

2 æ

(1 æ)(1

2ha

)

a

(5)

kh

(

σ =

0

u

( , )

σ

y

) [8]. ,

,

−σ

j ,

j

σ

(

j

=

0,1, 2)

[2].

( )

1

K

σ →

ln

K

( )

σ =

O

(

σ

−2

)

σ → ∞

, , , ё [2]

( )

( )

( )

K

σ =

K

+

σ

K

σ

(13)

( )

K

+

α

Im

α >

0

, a

K

( )

α

Im

α <

0

,

(

α = σ + τ

i

)

K

±

( )

α →

1

α → ∞

– ,

( )

exp(

( ))

K

±

σ =

R

±

σ

,

( 0)

0

( )

( )

i i x

R

R x e

dx

+

σ =

σ+

, ( 0)

0

( )

( )

i i x

R

R x e

dx

σ =

σ−

,

1

( )

ln[ ( )]

2

i x

R x

K

e

d

− σ

−∞

=

σ

σ

π

.

ln[ ( )]

K

σ

σ

−2

σ → ∞

,

R x

( )

x

0

. ,

R

+

( )

σ =

O

((

σ +

i

0) )

−1 ,

R

( )

σ =

O

((

σ −

i

0) )

−1

σ → ∞

.

1 1

2

π δ σ − σ = σ − σ −

i

(

)

(

i

0)

− σ − σ +

(

i

0)

− (14)

1 2 1 2

(

i

0) (

i

0)

σ = σ −

σ +

,

(

σ −

i

0)

−1

= σ + π δ σ

−1

i

( )

(15)

( )

M

σ

M

( )

σ =

M

+

( )

σ

M

( )

σ

,

1/ 2

( )

2(1 æ)(

0)

( )

M

+

σ =

+

σ +

i

K

+

σ

,

M

( )

σ =

2(1 æ) (

+

σ −

i

0)

1/ 2

K

( )

σ

(16) И я и у (13), (15),

( )

( )

L

+

σ =

L

σ

,

2 2

2 2

2 2

15

11

2 2

15

11

1

( )

( )

(

)

(

)

0

1

( )

(

)

(

)

( )

0

h k h

h k h

e

L

M

iM

e

e

i

e

L

iM

e

e

M

i

− σ − − σ

+ + + +

− σ − − σ

− +

σ = −Φ

σ +

σ

ε

σ − σ +

Ψ

σ ==

+

σ

σ

ε

σ − σ −

,

( )

( )

L x

+

=

L x

− ,

( )

0

(6)

,

0

( )

( )

( )

k n

k k

k

d

x

L x

L x

a

dx

+ −

=

δ

=

=

[3,4],

n

– .

0

( )

( )

( )

n

k k k

k

L

+

L

a

i

=

σ =

σ =

− σ

,

K

+

( )

σ →

1

Φ σ

+

( )

1

(

i

0)

ο σ +

σ → ∞

,

K

( )

σ →

1

Ψ σ

( )

O

(

σ −

i

0)

−1 2,

( )

0

L

±

σ →

σ → ∞

, . .

a

k

=

0

,

k

=

0, 1, ...

,

:

2 2

2 2

15

1/ 2 11

(

)

(

)

( )

(

0) (

0)

( )

h k h

e

e

K

e

i

i

i

K

− σ − − σ +

+

+

σ

σ

Φ σ =

ε

σ +

σ − σ +

σ

2 2 1/ 2

2 2

15

11

(

0)

( )

( )

2

(1 æ)

(

)

(

)

0

h k h

e

i

K

i

e

e

K

i

− σ − − σ

− +

σ −

σ

Ψ σ = −

+

σ

σ

ε

σ − σ −

(7), (8), (9), .

( , )

w x y

x

<

0

,

y

>

h

. :

2 2

* ( )

1 1/ 2

1 2

(

)

( , )

( )

( )(

0)(

0)

( )

h h

y h i x

e

e

w x y

A

e

e

d

K

K

i

i

K

− σ − γ

−γ − − σ

+ −∞

γ σ

=

σ

σ

σ σ − σ +

σ +

σ

, (17)

2 2

2 2

*

(

)

(

)

æ(1 æ)

2

h k h

e

e

K

A

i

− σ − − σ +

σ

σ

=

+

(7)

(17)

x

<

0

i

α = σ + τ

, .1,

11

( , )

( , )

( , )

( , )

w x y

=

w

x y

+

w

x y

+

w

x y

2 2( ) 111

11 1 2

( )

( , )

( )(

0) (

0)

i x k y h

M

w

x y

e

e

d

K

i

i

σ

− σ − −

+ −∞

σ

=

σ

σ σ +

σ − σ +

2 2( )

111 111

1 2

( )

( )

( , )

( )(

0) (

0)

i x k y h

N

M

w

x y

e

e

d

K

i

i

σ

− σ − −

+ −∞

σ −

σ

=

σ

σ σ +

σ − σ +

2 2 2 2

1 1 ( ) 2 2 ( )

(1) (2)

( , )

i x k y h i x k y h

w

x y

=

w e

σ

e

− σ − −

+

w e

σ

e

− σ − −

2 2 1 1 2 2 2 2 1 1 (1)

1 1 1 1 2 1

(

)

2

(

)(

)

(

)

(

)

i k h h

k

e

e

w

i

K

K

K

− σ −

− σ

+

σ −

σ

= π

σ

σ − σ

σ

σ

2 2 2 2 2 2 2 2 2 2 (2)

2 2 1 2 2 2

2

(

)

,

(

)(

)

(

)

(

)

0,

i k h h

a

a

i

k

e

e

kh

h

w

K

K

K

kh

h

− σ −

− σ

+

⎧ π σ −

σ

>

=

σ

σ − σ

σ

σ

2 2( )

15 15 1/ 2 0

( )

( )

( , )

( )( ) (

)

x i k y h

N

M

w

x y

e

e

d

K

i

i

i

−τ τ + −

+

τ +

τ

= −

τ

τ τ

τ − σ

2 2 2 2

2 2 2 2

( ) ( )

12 15

11 1 2

0 ( ) ( ) 13 14 1 2 0

( )

( )

( , )

( )( ) (

)

( )

( )

( )(

0) (

0)

i k y h i k y h

x

k i k y h i k y h

i x

M

e

M

e

w

x y

e

d

K

i

i

i

M

e

M

e

e

d

K

i

i

∞ − τ + − τ + −

−τ +

− −σ − −σ −

σ +

τ

+

τ

=

τ −

τ τ

τ − σ

σ

+

σ

σ

σ σ +

σ − σ +

,

w

11

( , ),

x y w

( , )

x y

,

x

,

y

.

2 2 2 2

2 2 2 2 2 2 2 2

12 (1) 15 (1)

12 15

(

)

(

)

( )

,

( )

( )

( )

i h i k h i h i k h

i

k

e

e

i

k

e

e

M

M

M

M

− τ − τ + − τ τ +

τ τ +

τ τ +

τ =

τ =

τ

τ

2 2 2 2

2 2 2 2 2 2 2 2

13 (1) 14 (1)

13 14

(

)

(

)

( )

,

( )

,

( )

( )

h i k h h i k h

i

k

e

e

i

k

e

e

M

M

M

M

− σ − −σ − σ −σ

σ

− σ

σ

− σ

σ =

σ =

σ

σ

2 2

2 2 2 2

15 (1)

15

(

)

( )

( )

i h i k h

i

k

e

e

N

N

τ τ +

τ τ +

τ =

τ

,

2 2

2 2

(1) 2 2 2 2

12

2 2 2 2

( )

((1 æ)

(1

) æ (1

))

((1 æ)

(1

) æ (1

))

i h i k h

i h i k h

M

k

e

e

k

e

e

− τ − τ +

− τ − τ +

τ =

+

τ +

+

− τ +

×

× +

τ +

− τ −

2 2

2 2

(1) 2 2 2 2

15

2 2 2 2

( )

((1 æ)

(1

) æ (1

))

((1 æ)

(1

) æ (1

))

i h i k h

i h i k h

M

k

e

e

k

e

e

− τ τ +

− τ τ +

τ =

+

τ +

+

+ τ +

×

(8)

2 2

2 2

(1) 2 2 2 2

13

2 2 2 2

( )

((1 æ)

(1

) æ (1

))

((1 æ)

(1

) æ (1

))

h i k h

h i k h

M

i k

e

e

i k

e

e

− σ − −σ

− σ − −σ

σ =

+

− σ

+

− σ +

×

× +

− σ

− σ −

2 2

2 2

(1) 2 2 2 2

14

2 2 2 2

( )

((1 æ)

(1

) æ (1

))

((1 æ)

(1

) æ (1

))

h i k h

h i k h

M

i k

e

e

i k

e

e

− σ −σ

− σ −σ

σ =

+

− σ

+

+ σ +

×

× +

− σ

+ σ −

2 2

2 2

(1) 2 2 2 2

15

2 2 2 2

( )

((1 æ)

(1

) æ (1

))

((1 æ)

(1

) æ (1

))

i h i k h

i h i k h

N

k

e

e

k

e

e

τ τ +

τ τ +

τ =

+

τ +

+

− τ +

×

× +

τ +

− τ −

2 2 1

1 1

1

2 2

1 1

2

2 2 2 2 1 2

1 1

3

2 2 2 2 2 2 2 2

1 1 1

( )

(

)

(

)

(

)

(1

) æ

2

æ

2 (1 æ)

(

)

h k

h k h

dK

k K

k

e

k

d

e

h

k

h

e

k

− σ −

σ=σ

− σ − − σ

σ

σ −

σ

= σ −

= +

+

σ

+

σ

σ −

+

σ −

2 2 2

2

2 2

2 2

2

2 2 2 2 2 2

2 2 2 2

3

2 2 2 2 2 2 2 2

2 2 2

( )

(

)

(

)

(

)

(1

) æ

2

æ

2 (1 æ)

(

)

h k

h k h

dK

k

K

k

e

k

d

e

h

k

h

e

k

− σ −

σ=σ

− σ − − σ

σ

σ −

σ

= σ −

= −

σ

σ

σ −

+

+

σ −

w x y

( , )

,

( )

ψ σ = σ

α

ψ α = α

( )

Re( )

α >

0

,

ψ α = −α

( )

Re( )

α <

0

.

o

α = σ + τ

i

K

j

( )(

α

j

=

1, 2)

. ,

α = α

j

(

j

=

1, 2)

( )(

1, 2)

j

K

α

j

=

, , , ,

(

1, 2)

j

j

α = α

=

K

j

( )(

α

j

=

1, 2)

(

α −

j2

k

2

= α −

j2

k

2

)

,

,

u x y

( , )

x

→ +∞

, . ,

u

( , )

α

y

.

,

( , )

w x y

ё . у я ,

y

>

h

kr

→ ∞

,

sin ,

cos

y

− =

h

r

θ

x

=

r

θ

2 2

1

( )

cos

k

sin

λ σ = σ

θ −

− σ

θ

,

λ σ = σ

2

( )

cos

θ +

k

2

− σ

2

sin

θ

[5], [11], [13], :

( ) ( )

4 4

* * * * *

1 1/ 2 1 3/ 2

( , )

( cos , sin )

(

)

(

)

i kr i kr

e

e

w r

A w

r

r

A D

A D

kr

kr

π π

− +

(9)

sin

* * * 5 / 2

1 2 2 2

((

)

)

(

) cos

ikr

e

A D D

O kr

kr

θ

+

+

θ

и

kr

→ ∞

(18)

1 2

* 2 4

1

(1

) æ

(4 (1 æ)(1

))

2

1 æ

i ikh

e

D

h

e

ikh

π −

=

+

+

+

2 2 *

2 2 2 2

2 2 2 2 2

( (1

)( 2

(1 æ) (1

)æ) 4

(1 æ))

4(1 æ) ((1

2

(1 æ))

((1

2

(1 æ)) 4

(1

)(1 æ)

ikh ikh

ikh

ikh ikh

k i

e

ikh

e

kh

D

e

ikh

e

ikh

ih k

e

+

+ +

+

=

×

+

+

+

× −

+

+

+

y

<

h

,

kx

→ ∞

,

kh

h

a

1 2

* * (1) * * (1) * * *

1 1 1 4 3/ 2

5/ 2

* * *

1 5 2

( , )

(

)

1

(

)

(

)

ikx

i x i x

e

w x y

A D w e

A D w e

A D A

k x

A D A

O kx

kx

σ σ

=

+

+

+

+

kx

→ ∞

(19)

2 *

4

2

8

(

4 (1 æ)

( ch

sh

)

( ) 2æ(2

æ (1 æ)(1

))(

)

ikh

kh

k h y

h

i

e

k k y

kh h

kh

A

K

k

kh

e

k

+

+

+

+

=

− +

− σ

2 *

5 2 2

2

sin

2

(1 æ)

(

( 1

)æ 2

(1 æ) ( 1

)æ 2

(1 æ)

(1

)æ 2

(1 æ)

(1 æ)

æ sin (

)

)

2 (1 æ)

(1 æ) sin

ikh

ikh ikh

ikh iky ikh

ie

ky

kh

A

e

ikh

e

ikh

e

ikh

khe

e

k

h

y

k

k

ky

+

=

− +

+

− +

+

+

+

+

+

− +

+

+

kh

=

h

a,

1 2

( )

4

* * (1) * * (1) * * *

1 1 1 3

( )

4

5/ 2

* * * * *

1 4 3/ 2 1 5 2

( , )

1

(

)

(

)

(

)

i k x

i x i x

i k x

e

w x y

A D w e

A D w e

A D A

kx

e

A D A

A D A

O kx

k x

kx

π − σ σ π − −

=

+

+

+

+

+

+

kx

→ ∞

(20)

* 3

2 2 2

2

(

2

(1 æ) sh

( )4

æ (

)

kh

k k y

h

i

ke

kh

A

K

k

h k

k

− +

+

+

=

− σ

(1) 1

1 1 1 1 2 1

(

)

(

)(

)

(

)

(

)

f

w

K

+

K

K

σ

= −

σ

σ − σ

σ

σ

2 (2)

2 2 1 2 2 2

(

)

,

(

)(

)

(

)

(

)

0,

a a

f

kh

h

K

K

K

w

kh

h

+

σ

⎧−

>

σ

σ − σ

σ

σ

= ⎨

(10)

2 2

2 2

2 2 ( ) 2 2

2 2 2

( )

2(1 æ)

sh(

)

sh(

(

))

k h

k h

f

k e

h

k y

e

k

y

h

− σ+ σ −

− σ −

σ =

+

σ −

σ − σ −

− σ

σ −

(19),(20) ,

o

σ

1,

σ

2

kh

>

h

a,

kh

h

a

1

σ

,

( (19, 20)),

x

kx

→ ∞

,

(18) ,

kh

>

h

a

o

σ

1,

σ

2,

a

kh

h

а

σ

1,

, ё ы

(18)

θ

sin

c

θ

(

y

c

).

ё

/ 2

−π ≤ θ ≤ −π

2 2

(

)

0

r

=

x

+

y

+

h

D r

( , )

D

0

sin( 2)

1 2

O

(1)

r

θ

θ

θ =

+

,

π

/ 2

≤ θ ≤ π

0

r

0 1 2

sin( 2)

( , )

(1)

D r

iD

O

r

θ

θ

θ = −

+

,

2 2

2 2 4

0 15

(1 æ)

(

)

(

)

/

i

h k h

D

e

e

e

K

e

π −

− σ − − σ +

= −

+

σ

σ

π

1. . ., . . . :

, 1982. 240 .

2. . . - . .: , 1962. 279 .

3. . . , . .: ,

1965. 328 .

4. . .: , 1972. 544 .

5. . .

-.// . . 1979. №3. .29-34 6. . ., . ., . .

. // .

. . 2003. .56. №4. .3-17.

7. . ., . .

. // .

. . 2005. .58. №1. .38-50.

8. . ., . .

(11)

.// . . . 2007. .60. №3. .23 – 37.

10. . ., . .

. // .

. . 2009. .62. №1. .40–51. 11. . ., . .

.

// . . . 2010. .63. №1. .50–69.

12. . .

. // . . . 2010. .63. №1. .70-79.

13. . ., . .

e

. // . . . 2010. .63.

№2. .56-66.

14. . ., . .

.// . 2010. . 110. №3. .261-271.

и х:

и ич,

.- . ,

: , . 1, ,

: (+37410)23-03-89

и ич,

.- . , : (+37410)65-21-06 E-mail: ssinanyan@mail.ru

Referências

Documentos relacionados

Clearly, bound states of positive energies will exist (an infinite number in the one band description of each host layer). Proceeding as in section 1.. ! )# Evolution of ground

CAO Xiaoshan, Jin Feng, WANG ZiKun &amp; Lu TianJian Bleustein-Gulyaev waves in a functionally graded piezoelectric material layered structure//Sci China Ser G- Phys Mech

(3) Uncoated FRS-PTSA moulds, which have sulphur in the binder, promoted graphite degeneration in the surface layer of the test castings, with the thickness of this layer

social assistance. The protection of jobs within some enterprises, cooperatives, forms of economical associations, constitute an efficient social policy, totally different from

On the illustrative task, the propagation of wave signals is considered in a single layer waveguide with a rough surface free of electromechanical surfaces it is shown that the

The layer and the half- space are in a condition of the sliding contact, where shear mechanical stresses are taken to be zero.. Interaction between shear waves in the layer and

Figure 4a shows 30 ms of the parallel electric wave form measured at three locations with respect to the acceleration layer, in the upper part of the layer (indicated as above layer)

The temperature distribution in the liquid metal and in the mold in a semi-infinite metal-mold system, with an unidirectional heat extraction, without thermal resistance at