• Nenhum resultado encontrado

Braz. J. Phys. vol.31 número4

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.31 número4"

Copied!
16
0
0

Texto

(1)

Crystal Chemistry and Struture of the

Orthorhombi (Fe,Mn)(Ta,Nb)

2 O

6

Family of Compounds

C.A. dos Santos

, L.I. Zawislak, E.J.Kinast, V. Antonietti,and J.B.M. daCunha

Institutode Fsia, UniversidadeFederaldoRioGrandedoSul,

CampusdoVale,C.P.15051, 91501-970PortoAlegre,RS,Brazil

Reeivedon19July,2001

Inthispaperwereviewtherystalhemistryandstruturedatafromtheliteratureandourresults

reportedinthelastdeadefornaturalandsynthetisamplesofthetantalite-olumbiteseries.

Order-disordertransitionsandoxidationreationsontheixiolite-olumbite-wodginitesystemarereported

for oneBrazilian sample. It is shownthat reports on thesesubjets are sometimes dubious and

inomplete. Inadditionto thereationatmosphere(air orvauum),order-disorderandoxidation

are strongly dependent on the physial state of the samples (powdered or rystal). Struture

andhemialompositionhavebeeninvestigatedinourlaboratoryusingX-raydiration(XRD),

eletronprobemiroanalysis(EPMA)andMossbauerspetrosopy(MS).

I Introdution

The(Fe,Mn)(Ta,Nb)

2 O

6

family ofompounds

enom-passestwodierentsolidsolutions. One,orthorhombi,

isnamedtantalite-olumbiteandtheotherone,

tetrag-onal,isnamedtapiolite-mossite[1-9℄.Besidestheir

eo-nomialimportane(theyarethemajorsoureof

tanta-lum)thesematerialspresentinterestingphysial

prop-erties whih havemotivated investigations reported in

thelasttwodeades[10-18℄.

For long time and even in some modern reports,

these solid solutions were onsidered ontinua. In

suhsenerybothsolidsolutionswouldhaveFeTa

2 O

6 ,

FeNb

2 O

6

, MnTa

2 O

6

and MnNb

2 O

6

as end-members.

Theseompoundswereproposedwithdierent

denom-inations for eah series.[19℄ The orthorhombi series

would be omprised of ferrotantalite (FeTa

2 O

6 ),

fer-roolumbite(FeNb

2 O

6

),manganotantalite(MnTa

2 O

6 )

and manganoolumbite (MnNb

2 O

6

). On the other

hand the tetragonal series would inlude

ferrotapio-lite (FeTa

2 O

6

), ferromossite (FeNb

2 O

6

),

manganota-piolite (MnTa

2 O

6

) and manganomossite (MnNb

2 O

6 ).

However, it is now well established that eah series

has limited solubility[19-26℄. For example, longtime

agoHuthinson[20℄hasquestionedtheexisteneofthe

mineral mossite (tetragonal(Fe,Mn)Nb

2 O

6

) and sine

then none suh natural sample hasbeen reported.[26℄

In spite of the fat that Aruga et al.[27℄ have

de-sribedasynthetiFeNb

2 O

6

samplewithadisordered

ferromossite struture, today the tetragonal series is

simply named tapiolite, whose Mn and Nb

solubil-ity are limited to less than 50 at.%. Although the

orthorhombi series ontinue to be named

tantalite-olumbite,[26℄ single-phase speies of tantalite

(or-thorhombi FeTa

2 O

6

) have not yet been reported as

naturalourreneorassyntheti one.

Figure1. Skethofthe ompositional eld for theAB

2 O

6

system.

Ashematiompositionaleldfornaturalsamples,

basedonareentpaperbyWiseandCerny,[26℄is

pre-sented in Fig. 1. Clark and Fejer[24℄ suggested that

(2)

the rystallization historyfor both syntheti and

nat-uralsamples. Thisisevidentfromresultsreported for

syntheti samples. Moreauand Tramasure[5℄reported

asolubilitylimitof15at.%Nbforthetapiolitesolid

so-lution, whiledosSantosandOliveira[12℄extendedthis

limitto45at. %Nb.

In addition to this question about the

solubil-ity limit, the orthorhombi series has been the

sub-jet of several investigations (for a review, see[8, 22,

23℄)onorder-disorderphenomenaonneting

tantalite-olumbiteandthemineralswodginite[1℄andixiolite.[2℄

From the strutural point of view it is sure that an

order-disorder transition an transform ixiolite into

tantalite-olumbiteorintowodginite. However,aswill

bedisussed below,it isnot yet knownifthe

alterna-tive transformations are governed by geohemial, or

simplybyrystallohemialfators.

Interest in these materials has reently inreased

motivated by its magneti properties. In tetragonal

FeTa

2 O

6

thesublattie formed bythe iron atoms has

the same symmetry asthe Ni sublattie in the

body-enteredtetragonalK

2 NiF

4

ompound,thewell-known

two-dimensional Heisenberg antiferromagnet. As

ex-peted,themagnetibehaviorofFeTa

2 O

6

isanalogous

tothatoftheK

2 NiF

4

. Forexample,inbothompounds

the suseptibility has a broad maximum and falls o

slowlyin theparamagneti region, aharateristi

as-soiated with planar magnets.[10, 13, 28, 29℄ Another

interesting point is that while FeTa

2 O

6

presents

uni-axial anisotropy on the basal plane, the isomorphous

ompoundCoTa

2 O

6

presentsaveryomplextwo-one

axishelialspinstruture[30℄with omponents onthe

basal planeaswellasonthe-diretion. Suhfeatures

suggestthat Fe

x Co

1 x Ta

2 O

6

ouldpresentompeting

anisotropies.

The systems with ompeting anisotropies lead to

a tetraritial phase transition, [31-33℄ whose

experi-mental onrmationhasbeenreportedforseveral

ma-terials, betweenthem K

2 Co

x Fe

1 x F

4

.[34, 35℄Keeping

in mindthesimilaritiesbetweenK

2 NiF

4

andFeTa

2 O

6

ompounds, it is expeted Fe

x Co

1 x Ta

2 O

6

to present

somekindofompetinganisotropiesbehavior. Indeed,

thesemixedoxideshavebeenreentlyprepared,[14,15℄

but the ompeting anisotropies behavior was not

ob-servedin thepreliminarymagnetimeasurements

per-formed.

In this paper wereview the rystal hemistry and

struture data from the literature and our results

re-ported in the last deade for natural and syntheti

samples of the tantalite-olumbite series. Struture

and hemial omposition have been investigated in

trosopy(MS) measurements.

II Crystal hemistry and

stru-ture

There is no doubt that the ompounds

(Fe,Mn)(Ta,Nb)

2 O

6

,with dierentFe/Mnand Ta/Nb

ratios,arethemorerepresentativeoftheAB

2 O

6 series.

However,thesematerialsanhaveminor substitutions

of Mg, Sn, W and Ti[8, 19, 22℄ and an also be

syn-thesized with A=Ni,[18, 36℄ Co,[14, 15, 37, 38℄ Cu,

[17,39-41℄Zn[41℄ andB=Sb.[30℄

0

10 20 30 40 50 60 70 80

0

10

20

30

40

50

CPRM

samples

7

9

Nb

2

O

5

%Ta

2

O

5

Figure 2. Nb2O5 vs Ta2O5 onentration for Brazilian

tantalite-olumbitesamples.

4

6

8

10 12 14 16 18

0

2

4

6

8

10

12

14

16

Natural

samples

%FeO

%MnO

Figure3. FeOvsMnO onentration for naturalsamples,

takenfrom[11,22,41-44℄.

Fig. 2andFig. 3illustratetheorrelationbetween

NbandTaontentsandbetweenFeandMnfor,

respe-tively, twentypowder samplessupplied by the

(3)

Table1: Meanhemialomposition(wt.%)basedon6oxygens,from EPMAmeasurements.

Sample FeO MnO Ta

2 O

5 Nb

2 O

5 TiO

2 WO

3

TOTAL

Fe

0:1 Mn

0:9 Ta

1:8 Nb

0:2 O

6

1.67 12.87 78.69 5.61 0.21 | 99.05

Fe

0:1 Mn

0:8 Ta

1:7 Nb

0:3 O

6

1.54 12.77 77.62 6.38 0.39 0.29 98.99

Fe

0:6 Mn

0:4 Ta

1:3 Nb

0:7 O

6

8.87 6.85 59.12 21.95 1.59 | 98.38

authors.[11,22,41-44℄The samples labeled 7 and 9 in

Fig. 2,learlyoutofthelineartting,areSn-and

Ti-rihsamples(7: 1.9%SnO

2

/20%TiO

2

;9: 7.9%SnO

2

/ 23.3%TiO

2

). Therefore, these samples present low

Nb+Taonentration('64and42wt.%,respetively)

asompared to themean onentrationof the CPRM

olletion(' 73wt.%).

Yet,thestrongorrelationbetweenFeandMn

on-tents and between Ta and Nb ones an be niely

ap-preiated by sanning rystal samples with EPMA.

Fig. 4 shows the amount of Ta and Nb, in atoms

per formula unit (apfu), measured along a line 2

mmlongintheBrazilianFe

0:1 Mn

0:9 Ta

1:8 Nb

0:2 O

6

sam-ple (see Table 1 for the omplete hemial

ompo-sition). Ta-rih zones orrespond to Nb-poor ones

and vie versa, with Ta+Nb'2.0 apfu. A similar

re-sult for Fe and Mn is illustrated in Fig. 5 for the

BrazilianFe

0:6 Mn

0:4 Ta

1:3 Nb

0:7 O

6

sample. Inthis ase

Fe+Mn'1.0apfu.

0.0

0.5

1.0

1.5

2.0

0.0

0.4

0.8

1.2

1.6

2.0

Fe

0.1

Mn

09

Ta

1.8

Nb

0.2

O

6

Nb

Ta

Number of cations

Scan distance (x10

3

m

m)

Figure 4. Nb and Ta miroprobe sans for the Brazilian

Fe0:12Mn0:83Ti0:01Ta1:78Nb0:24O6sample.

0

100 200 300 400 500 600

0.40

0.45

0.50

0.55

0.60

Fe

Number of cations

Scan distance ( mm)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Fe

0.6

Mn

0.4

Ta

1.3

Nb

0.7

O

6

Mn

Figure 5. Mn and Fe miroprobe sans for the Brazilian

Fe0:57Mn0:38Ti0:10Ta1:26Nb0:68O6sample.

10

20

30

40

50

60

70

Fe(Ta

0.4

Nb

0.6

)

2

O

6

Intensity (arb.

2-Theta (deg.)

Figure 6. Representative part of the room-temperature

X-ray powder diration pattern for the syntheti

Fe(Ta

0:4 Nb

0:6 )

2 O

6

sample. Openirlesrepresentobserved

data. The solidline represents the alulated pattern

ob-tained withthe Rietveldrenement. The lower traeis a

plot of the residual spetrum, observed minus alulated

intensities.

A typial XRD pattern is shown in Fig. 6 for

a syntheti ferroolumbite sample, with omposition

Fe(Ta

0:4 Nb

0:6 )

2 O

6

. It waspreparedby mixing

appro-priate amounts of powdered Fe, Fe

2 O

3 , Ta

2 O

5 and

Nb

2 O

5

. Pellets of the mixture were heated under a

nitrogenowat1320K.After24hitwasooledat15

K/h. New pellets were again submitted to the same

heat treatment for 24 h, followed by the same slow

ooling. Hereafterthis syntheti samplewill bealled

Fe(Nb,Ta)

2 O

6

. Thepatternwasindexed[45,46℄to the

spae groupPbn withrystallographiparametersas

(4)

stru-Table 2: Atomiparameters for Mn 0:88 Fe 0:09 Ta 1:72 Nb 0:28 O 6

and Fe(Ta

0:4 Nb 0:6 ) 2 O 6

. Spae groupPbn. R

B = 100 P jI obs I al j= P I obs .

Sample/Atom x y z R

B (Mn,Fe)(Ta,Nb) 2 O 6 a=14.3196(9)(

A) b=5.7413(4)(

A) =5.0624(3)(

A) 5.76

(Fe,Mn) 0 0.327(2) 0.25

(Nb,Ta) 0.1618(2) 0.1812(4) 0.743(1)

O1 0.099(1) 0.102(3) 0.067(5)

O2 0.419(1) 0.115(3) 0.072(5)

O3 0.769(2) 0.126(3) 0.099(4)

Fe(Nb,Ta) 2 O 6 a=14.2737(2)(

A) b=5.73543(1)(

A) =5.0554(1)(

A) 5.55

Fe 0 0.335(9) 0.25

(Nb,Ta) 0.1618(8) 0.179(2) 0.744(4)

O1 0.096(4) 0.11(0) 0.06(8)

O2 0.418(8) 0.11(8) 0.07(8)

O3 0.765(8) 0.11(6) 0.08(6)

Table3: Cellunitparametersfornaturaltantalite-olumbitesamples.

Sample a( A) b( A) (

A) %order Ref.

(Fe 0:01 Mn 0:97 )(Ta 0:64 Nb 0:36 ) 2 O 6

14.413 5.760 5.084 101 22

(Fe 0:09 Mn 0:88 )(Ta 0:86 Nb 0:14 ) 2 O 6

14.320 5.741 5.062 101 45

(Fe 0:19 Mn 0:79 )(Ta 0:61 Nb 0:39 ) 2 O 6

14.300 5.741 5.124 38 42

(Fe 0:23 Mn 0:72 )(Ta 0:61 Nb 0:39 ) 2 O 6

14.288 5.753 5.167 -5 44

(Fe 0:38 Mn 0:62 )(Ta 0:09 Nb 0:91 ) 2 O 6

14.311 5.742 5.101 62 42

(Fe 0:46 Mn 0:53 )(Ta 0:28 Nb 0:72 ) 2 O 6

14.295 5.729 5.113 47 42

(Fe 0:54 Mn 0:42 )(Ta 0:15 Nb 0:85 ) 2 O 6

14.400 5.775 5.092 90 43

(Fe 0:63 Mn 0:41 )(Ta 0:20 Nb 0:78 ) 2 O 6

14.258 5.731 5.086 65 42

(Fe 0:64 Mn 0:34 )(Ta 0:24 Nb 0:73 ) 2 O 6

14.189 5.727 5.120 18 11

(Fe 0:68 Mn 0:28 )(Ta 0:25 Nb 0:75 ) 2 O 6

14.221 5.727 5.102 42 11

ture along the a and diretions are shown in Figs.

7(a)and7(b),respetively. SuhorthorhombiAB

2 O

6

strutureanbederivedfromahexagonallosed

pak-ing of oxygen ions. Within the b- plane half of the

oxygen otahedra are oupied by metal ions (A or

B) forming zigzag hains of edge-sharing MO

6

ota-hedra running alongthe -axis. Within the a-b plane

the layers are staked up in an order

A-B-B-A-B-B-A. The threeindependent oxygen atomsare all

three-oordinated: O1bridgingoneAand twoBatoms,O2

bridgingtwoAatomsandoneBatomandO3bridging

three Batoms.

Asexpeted forsolid solution,theunit ell

dimen-sions would obey the Vegard's law. This means, the

ationioniradiiontheAand Bsites. Asan

illustra-tionwepresentin Table3theellunit parametersfor

some natural tantalite-olumbite samples with

dier-entFe/Mn andTa/Nbratios. Thebandparameters

displaysattered data asa funtion of both A and B

sites. The a parameter data are verysattered when

plotted against the B site ontent. Only ation

sub-stitution in the A site obeys reasonably the Vegard's

law. There are several fators ontributing for suh a

behavior. Theonlyinvestigatedinsomeextentwillbe

disussedin setionIII andonernsto order-disorder

transition. Other interveningfatorsareminor

substi-tutionsofTi, Snand W,aswellastheunontrollable

(5)

Figure7.Coordinationpolyhedronhainsstakedalong(a)

a-axisand(b)-axisoftheolumbitestruture.

Forsyntheti samplespreparedwiththesame

pro-edure,irrespetiveofthespeialkindofroute,theV

e-gard'slawisfairlyillustratedinTable4andFig. 8for

theFe

x Mn

1 x Nb

2 O

6 andFe

x Mn

1 x Ta

2 O

6

series.[6,47℄

These results suggest that Nb!Ta substitution has

minoreetontheelldimensions,whileFe!Mn

sub-stitutionstronglyaetstheserystallographi

param-eters. As shown in Fig. 9for ANb

2 O

6

syntheti

sam-ples, with A=Mn, [47℄ Fe, [47℄ Co, [38℄ and Ni,[36℄

the ell unit dimensions vary linearly with the ioni

radii(Mn 2+

=0.80,Fe 2+

=0.76,Co 2+

=0.74,Ni 2+

=0.72)

in agreementwith theVegard's law. However, allthe

CuNb

2 O

6

samples reported [17,39-41℄ are learly out

of the Vegard's lawtting. Suh a behaviorould be

explainedbyastrongJahn-Tellereet.

Another way to summarize the rystallographial

data from the olumbite-tantalite series is by

plot-ting the against the a parameter. Indeed, the

a-plot[42, 43, 48, 49℄ has been onsidered the most

ap-propriate proedure beause it enables us to onnet

rystallographialdata to ation ordering features, as

14.3

14.4

14.5

FeMnNb

FeMnTa

Columbite

Synthetic samples

a (Angstron)

5.72

5.76

b (Angstron)

0

20

40

60

80

100

5.04

5.08

5.12

c (Angstron)

Fe concentration (mol %)

Figure8. CellunitparametersasafuntionofFe

onen-tration for synthetiolumbitesamples. Datafrom Table

4.

14.0

14.1

14.2

14.3

14.4

14.5

Columbite

Synthetic samples

a (Angstron)

5.64

5.68

5.72

5.76

b (Angstron)

25

26

27

28

5.00

5.04

5.08

5.12

c (Angstron)

A site atomic number

(6)

Table4: Cellunitparametersforsyntheti tantalite-olumbitesamples.

Sample a(

A) b(

A) (

A) %order Ref.

MnNb

2 O

6

14.433 5.764 5.083 97 47

MnTa

2 O

6

14.454 5.768 5.097 97 6

(Fe

0:1 Mn

0:9 )Ta

2 O

6

14.436 5.763 5.094 96 6

(Fe

0:15 Mn

0:85 )Ta

2 O

6

14.430 5.765 5.093 96 6

(Fe

0:5 Mn

0:5 )Nb

2 O

6

14.356 5.748 5.069 102 47

Fe(Ta

0:4 Nb

0:6 )

2 O

6

14.274 5.735 5.055 97 45

FeNb

2 O

6

14.266 5.732 5.050 100 47

FeNb

2 O

6

14.263 5.732 5.038 111 57

FeNb

2 O

6

14.070 5.616 4.978 125 16

FeNb

2 O

6

14.237 5.732 5.043 101 18

CoNb

2 O

6

14.167 5.714 5.046 82 38

NiNb

2 O

6

14.010 5.661 5.013 79 57

NiNb

2 O

6

14.014 5.682 5.024 70 18

CuNb

2 O

6

14.103 5.609 5.122 -3 39

CuNb

2 O

6

14.104 5.607 5.124 -5 40

CuNb

2 O

6

14.019 5.623 5.107 -7 17

CuNb

2 O

6

14.097 5.613 5.123 -5 41

(Cu

0:36 Zn

0:64 )Nb

2 O

6

14.187 5.730 5.031 101 41

III Cation ordering on the

ixiolite-olumbite-wodginite

system

Ixiolite, with general formula MO

2

(M=Mn, Sn, Fe,

Ta, Nb, Ti), is a olumbite substruture.[2℄ Due to

this relationship, disordered olumbite was formerly

alled pseudo-ixiolite. Todaythe inappropriatenessof

this denomination is well established,[22℄ but

imme-diately after its suggestion a vivid debate was

estab-lished ontheliteraturetodistinguishtrue-ixiolitefrom

pseudo-ixiolite. Nikel et al.[2 ℄ suggested that

ixio-lite reveal olovotantalite XRD pattern upon heating,

while Grieetal.[22 ℄ proposed thattheobtained

om-poundis wodginite. Infat,olovotantaliteisidentied

with orthorhombi wodginite.[2, 5, 50℄ On the other

hand,disorderedolumbiteyieldsanorderedolumbite

pattern[2,8,22℄uponheating.

Wodginite, with the general formula ABC

2 O

8 (A

= Mn, Fe 2+

; B = Sn, Ti, Fe 3+

, Ta; C = Ta, Nb),

rystallizesinthemonolinispaegroupC2/.[23,51℄

Idealized setions of these strutures, projeted along

the a-axis, are outlined in Fig. 10. TheA and B

o-tahedra in Fig. 10 refer to the wodginite struture.

ForolumbitebothotahedraorrespondtotheAsite,

oupied by Fe and Mn ations, while theC sites for

wodginiteorrespondtotheBsitesforolumbite,

ou-piedbyTaandNbations. Inthewodginitestruture,

onelayerofCationsfollowseahlayerofA+Bations.

Intheolumbitestruture, layersof A ationsat x=0

and 1/2, are separated by two layers of B ations at

x=1/6and2/6. Previousstrutureinvestigations[8,23℄

haveshownthat olumbiteand wodginite anbe

on-sideredasdierentsuperstruturesof the-PbO

2 -like

strutureofixiolite.

Order-disorder phenomena onneting

these minerals have been extensively

investi-gated.[8,11,22,23,25,47, 52-54℄ In the ontext of the

presentdisussion, anordered olumbite meansall Fe

andMnoupyingtheA site,whileallTaand Nb

o-upy theBsite. It doesnotmeansorder betweenMn

andFeonAsites,norbetweenTaandNbonBsites;a

similarapproahis appliedtothewodginitestruture.

CationorderinginMO

2

strutureispossibleiftheunit

ell size is inreased.[48℄ To satisfy symmetry

restri-tionsonthisproess,twoalternativesarepossible(see

Fig. 11). IntherstonetheMO

2

ellistripled, given

theAB

2 O

6

struture. Intheother alternativetheell

(7)

Figure 10. Idealized setion of the -PbO2 strutureprojetedalong the a-axis. A, B and C referto the ations onthe

general formula, ABC2O8,for wodginite. Oupiedotaedra inthe upperlevel are shown infull lines; thoseoupied in

thenextleveldownareshowninbrokenlines. Theolumbiteandixioliteells arerepresentedbytheretangle (1), while

retangle (2)represents thewodginite ell. Ixiolite ellis onedoublelayerdeep,wodginite istwodoublelayersdeep,and

olumbiteisthreedoublelayersdeep.

Figure11. Orientationandvolumerelationshipsamong

ix-Therefore, fully disordered AB

2 O

6

and ABC

2 O

8

ompounds an be misidentied as MO

2

ompounds.

Thisfat hasproduedonsiderableexperimental

mis-takes and misoneptions, as reported during the

last three deades. For instane, heating

experi-ments have been used to distinguish these

materi-als,withthegenerallyaeptedassumption that

heat-ing the mineral ixiolite reveals awodginite XRD

pat-tern, whereasheating the disordered olumbite yields

an ordered olumbite pattern haraterized by its

superstruture reetions.[2℄ However, alulation of

a theoretial powder diration pattern of fully

or-dered manganoolumbite, MnNb

2 O

6

, yields only low

intensities for the superstruture reetions, namely

I

200 /I

311

=0.096andI

110 /I

311

=0.030.[11℄Thus,itis

dif-ulttodistinguishbetweenMO

2

andpartiallyordered

AB

2 O

6

by means of their XRD patterns, even when

donebyomplexandtime-onsumingproeduresbased

(8)

Table5: Cellunit parametersforas-olletedixiolitesamples. TakenfromCernyetal.[50 ℄

K-1 MSX NST/A NST/B KVV BRD/C AMB

a(

A) 14.259 14.205 14.352 14.330 14.127 14.238 14.184

b(

A) 5.730 5.728 5.724 5.740 5.712 5.728 5.709

(

A) 5.095 5.120 5.088 5.095 5.107 5.088 5.113

%order 56.527 21.145 83.513 72.098 16. 281 58.513 23.131

Table6: Cellunit parametersforheated(1000 Æ

C,16hoursin air)ixiolitesamples. Takenfrom Cernyetal.[50℄

K-1 MSX NST/A NST/B KVV BRD/C AMB

a(

A) 14.284 14.261 14.378 14.370 14.233 14.269 14.255

b (

A) 5.733 5.731 5.742 5.748 5.720 5.722 5.713

(

A) 5.072 5.072 5.081 5.074 5.056 5.060 5.065

%order 83.67 78.62 95.80 100.64 87.548 91.676 83.898

14.1

14.2

14.3

14.4

5.06

5.07

5.08

5.09

5.10

5.11

5.12

96

83

ordered

disordered

101

88

56

21

16

c (Angstron)

a (Angstron)

Figure 12. -a plot for natural olumbite samples. The

numbernearthesymbolsaretherespetiveEOP.Triangles

representtheorderedones. DatafromTables5and6.

Other riteria havebeen tentatively establishedto

estimate the degree of ation order. In his PhD

the-sis,Erithasderivedthefollowingequationforthe

or-thorhombi(Fe,Mn)(Ta,Nb)

2 O

6

system:[54℄

perentorder=1727 941:6( 0:2329a); (1)

where a and arethe lattieparameters. TheErit's

orderparameter(EOP)hasbeenobtainedfromthe

so-alled a- plot,mainly for samplessubmittedto

heat-ing experiments. Asan illustrationletus examinethe

data summarizedin Tables5and6,takenfromCerny

et al.[50 ℄ The as-olleted samples (Table 5) were

in-dexedtotheixiolitestruturewithaverageellunit

pa-rametera'4.747

A. However,foromparisonpurposes

with the ordered olumbite phase this parameter was

tripled. Fig. 12 displaysthea- plotforTables5and

EOP. As an be seen, the disordered samples

(trian-gles)presenthigherandloweraparameters,andlow

EOP. Nevertheless someixiolite samples display EOP

(e.g. 83%) similar to those alulated for olumbite

(e.g. 96%). Therefore, even some learly disordered

samples(ixiolite)anbemisidentied withanordered

one(olumbite).

Thea- plotshown in Fig. 13summarizes the

ob-tainedresultsforsynthetisamples(seeTable4). The

ferroolumbite and manganoolumbite samples follow

thehighEOPline(EOP'96%-125%),aswasobserved

forhighlyorderednaturalsamples. TheCuNb

2 O

6

sam-ples, prepared at dierent laboratories, [17,39-41℄but

using similar routes, present anomalous EOP values

(between -3% and -7%). Aordingly, in the a- plot

theyfollow thelowEOP line. However, itis

interest-ingtonotethatthesampleCu

0:36 Zn

0:64 Nb

2 O

6

presents

EOP=101%,typialofahighlyorderedolumbite. The

available data do not enable us to eluidate this

ap-parent ontradition. It is not possible to onlude

if CuNb

2 O

6

is a disordered sample, or if it is simply

a quite distorted one, as previously suggested. It is

interesting to point out that the parameters for all

CuNb

2 O

6

samplesarehigherthan5.107

Aandthatfor

Cu

0:36 Zn

0:64 Nb

2 O

6

thisparameterbelongstotherange

oftheorderedsamples,i.e. between4.978and5.097

A.

Theelongationoftheparameterisnotorrelatedwith

theioni radii of theonerned ations(r

Cu

2+ =0:72

A; r

Zn

2+ = 0:82

(9)

14.0 14.1 14.2 14.3 14.4 14.5

4.95

5.00

5.05

5.10

5.15

96

125

Mn

Fe

Co

Ni

Cu

Columbite

Synthetic samples

c (Angstron)

a (Angstron)

Figure 13. -a plot for synthetiolumbite samples. The

numbernearthesymbolsaretherespetiveEOP.Datafrom

Table4.

Anotherwayto evaluateation order in

tantalite-olumbite speies an be done by using MS,

be-ause it permits to easily dierentiate between

ixi-olite and tantalite-olumbite (or wodginite), as long

as hyperne interations are very sensitive to hange

of the near-nearest environment. To the best of

our knowledge Wenger et al.[11 ℄ were the rst to

report MS results onerning ation distribution in

partially ordered olumbite samples. Afterward

we published[45, 52℄ MS studies of ation

order-ing on anatural manganoolumbite with omposition

Mn

0:88 Fe

0:09 (Ta

0:86 Nb

0:14 )

2 O

6

,inthefollowingnamed

simply MnFeTa

2 O

6

. A similar study has been

pub-lished for olumbite-tantalite samples from San Luis

pegmatite(Argentina). Other authors [45,52,55℄ have

proposedthefollowingparametertoquantifytheation

orderperentage

x(%)= 50+1:515A

A

; (2)

where A

A

is the relative Mossbauer spetral area

at-tributedto theAsiteoftheAB

2 O

6

struture.

Fig. 14 displays part of the XRD pattern for

MnFeTa

2 O

6

heated in vauum at 1050 Æ

C. This

pat-tern is quite similar to that for the as-olleted

sam-ple (Table 2), but shows a small inrease in the

rel-ative intensity of the superstruture reetions. That

is,I

200 /I

311

=0.08and I

110 /I

311

=0.03,whileforthe

as-olleted sample, I

200 /I

311

=0.05 and I

110 /I

311 =0.02.

Thus, it appears that it is not appropriate to use

su-perstruture reetions to evaluate ation ordering in

this ase. TheEOP, whose valuesfor theas-olleted

andorderedsampleare,respetively,68%and93%[45℄

10

15

20

25

30

(110)

(200)

Mn

0.88

Fe

0.09

(Ta

0.86

Nb

0.14

)

2

O

6

1050

o

C in vacuum

Intensity (arb.

2-theta (Degree)

Figure14. Representativepartoftheroom-temperature

X-raypowderdirationpatternforthenatural

Mn0:88Fe0:09Ta1:72Nb0:28O6 sample heated-treated in

va-uum. Openirles,solidlineandthelowertraeasdened

inFig. 6.

-1

0

1

2

3

1 %

(a)

Absorption (%)

Velocity (mm/s)

1 %

(b)

Figure 15. Mossbauer spetrataken at300 Kfor: (a)

as-olletednaturalsample;(b)powderednaturalsample

heat-treated invauum. Open irles represent observed data.

Solidlinesrepresentthealulatedspetrabasedona

least-squares proedure. Smashed linesrepresentthe alulated

subspetra.

The MS spetra taken at room temperature for

these samples are shown in Fig. 15. The

spe-trum for the as-olleted sample, displayed in Fig.

15(a), was tted to two doublets (see Table 7)

with 57

Fe hyperne parameters harateristi of Fe 2+

high spin in otahedral oordination. One doublet

should be attributed to Fe 2+

in FeO

6

otahedra,

while the other one should be attributed to Fe 2+

in TaO

6

otahedra. Our results are quite similar

(10)

struture renement these authors suggestedthat the

FeO

6

otahedraaremoredistortedthantheNbO

6 ones,

andattributedtheinnerdoublettoFe 2+

intheformer

otahedra,while theouteronewas attributed to Fe 2+

in NbO

6

otahedra. This same site assignment was

adopted byAugsburgeretal.[55℄forsimilarsamples.

As it is known, is proportional to the eletri

eld gradient (EFG) tensor, whih has ontributions

from theexternal ligandharges (lattie ontribution)

and from the valene eletrons(valene ontribution).

Ontheotherhand,thevaleneontributionanbe

di-videdintotwoontributions: onefromtherystaleld

(CF ontribution) and other from the metal orbitals

(MO ontribution). For Fe 2+

high spin the CF

on-tribution dominatesthe valene ontribution whih is

very temperature dependent. For several materials it

anbedemonstrated[56℄thatastheotahedral

distor-tion inreases,the quadrupole splitting dereases. On

theontrary,forFe 3+

mineralsthevaleneontribution

is almost nulland is fully due to thelattie

ontri-bution. In this ase inreases with the otahedral

distortion andislesstemperaturedependent.

-1

0

1

2

3

1%

Velocity (mm/s)

Absorption (%)

Figure 16. Mossbauer spetrum taken at 80Kfor the

as-olletednaturalsample. Openirlesandsmashedlinesas

denedinFig. 15.

Nevertheless, site assignments following the above

reasoningforFe 2+

highspinis notsostraightforward.

The above assignment is ertainly orret, sine the

spetrum for the heated-in-vauum sample was tted

toonlyonedoubletwithhyperneparameters(seeT

a-ble 7) almost the same as those used to t the inner

quadrupolar doublet. The disappearing of the outer

quadrupolar doubletis alear indiationof ation

or-deringandenablesustoattributetheinner doubletto

Fe 2+

inFeO

6

otahedra. However,toorrelate

otahe-dradistortionandvalues,lowtemperatureMS

mea-surementsshould beperformed. Siteswith low

distor-tionsshow valuesmorestronglydependenton

tem-perature than those ones with high distortions. Figs.

Kthe inner quadrupole splitting inreases 42% (from

1.55mm/sto2.21mm/s),whiletheouteroneinreases

18% (from 2.26 mm/s to 2.66 mm/s). Suh a

ther-mal evolutionindiates that the outer doublet should

beattributedtothemoredistortedotahedra,inlear

ontraditionwiththepreviousndings.[11,55℄

IV Cation orderingversus

oxida-tion of olumbite

Heating experiments are, by far, the main soure of

dataon thestudy oforder-disorderphenomena in the

ixiolite-olumbite-wodginite system. Tointrodue the

present disussion, it is interesting to highlight some

statements found in the literature: `When ixiolite is

heatedinair,severalhangesourinthex-ray

dira-tionpattern.'[2℄`Disorderedmembersofthe

olumbite-tantalite group, (...), develop an ordered struture on

heating at about 1000 Æ

C (...).'[19℄ ` Pseudo-ixiolite,

(...), is a omplex Nb-Ta-oxide similar to ixiolite but

withthedierenethatitsstruturemaybeinvertedby

heating(probablybyorderingoftheations)togivean

XRDpatternsimilartoolumbite.'[49℄`Heatingof

sam-plesinexessof950 Æ

Chasbeenshowntoindueation

order(...).'[54℄Suhdesriptionsofheatingexperiments

arelearlyinomplete. Someofthemdonotspeifythe

atmosphere,andobviouslyheatinginair,inareduing

atmosphere,orinvauumwillertainlyprodue

dier-ent reations. Also, heating a powdered or a rystal

sample in air will produe dierent oxidation eets,

beauseforthelatter onetheareaavailable for

oxida-tionis smaller. Therefore, these kindof experimental

onditionsneedtobeinformed. Reentlyitwasstated

thatheatingoarserystalfragmentsinairat1000 Æ

C

for16h,induesationorderinolumbiteandresultsin

nosigniantoxidationof bulkFe 2+

,asmonitoredby

unit-ellparameters.[54℄ Wehaveinvestigatedthese

is-suesperformingheatingexperimentsonthreedierent

samples:[45, 52, 53℄ (i) rystal fragment of the

natu-ralmanganoolumbite,Mn

0:88 Fe

0:09 (Ta

0:86 Nb

0:14 )

2 O

6 ;

(ii)powderedspeimenofthemanganoolumbite;(iii)

powder syntheti ferroolumbite, Fe(Ta

0:4 Nb

0:6 )

2 O

6 .

Sample(i)washeatedinair(theobtainedsamplewas

labeledNCHair). Part ofthesample(ii)wasusedfor

the heating experiment in air (label PNH air), while

the other part (label PNH va) was pelleted and

en-apsulatedinquartzampoulesundervauum(p'10 5

Pa). Sample(iii)washeatedinair(labelPSHair). All

thesampleswereheatedat1320Kfor48hand

subse-quently slowly ooledat 15 K/h. This oolingrate is

adequateforationordering,e.g.,allFe+Mnin siteA

(11)

Table7: Hyperneparametersforallmeasurementsreportedinthepresentwork. As-oll,PNHva,PNHair,NCH

air,as-prepandPSHairstandfor,respetively: untreatednaturalsample;powderednaturalsampleheat-treatedin

vauum;naturalsampleheat-treatedinair;rystalfragmentofthenaturalsampleheat-treatedinair;as-prepared

synthetisampleandpowderedsynthetisampleheat-treatedinair. isthequadrupolesplittingattheironsites;

Æistheisomershiftrelativeto -Fe; 0:01isthelinewidthathalf-height;Ais thesite oupany,givenbythe

relativespetralarea. Unertaintiesonthelast guresarereportedinbrakets.

Sample Temp Æ A Site

(K) (mm/s) (mm/s) (mm/s) (%) assignment

As-oll 300 1.55(5) 1.13(3) 0.40 71(4) FeO

6

2.26(7) 1.09(3) 0.47 29(1) TaO

6

80 2.21(7) 1.27(4) 0.44 66(3) FeO

6

2.66(8) 1.25(4) 0.35 34(2) TaO

6

PNHva. 300 1.58(5) 1.14(3) 0.32 100 FeO

6

80 2.29(7) 1.27(4) 0.34 100 FeO

6

PNHair 300 0.52(2) 0.40(1) 0.31 78(4) FeO

6

0.34(1) 0.39(1) 0.33 22(1) TaO

6

80 0.59(2) 0.52(2) 0.30 52(3) FeO

6

0.40(1) 0.49(1) 0.28 48(2) TaO

6

NCHair 300 0.55(2) 0.44(1) 0.44 29(1) FeO

6

0.32(1) 0.43(1) 0.41 25(1) TaO

6

1.51(4) 1.13(3) 0.47 41(2) FeO

6

2.26(7) 1.14(3) 0.43 5(2) TaO

6

80 0.61(2) 0.54(2) 0.33 28(1) FeO

6

0.43(1) 0.52(2) 0.30 24(1) TaO

6

2.17(6) 1.26(4) 0.38 26(1) FeO

6

2.59(8) 1.27(4) 0.37 22(1) TaO

6

As-prep 300 1.78(5) 1.15(3) 0.32 100 FeO

6

80 2.51(8) 1.27(4) 0.32 100 FeO

6

PSHair 300 0.37(1) 0.40(1) 0.30 100 FeO

6

80 0.39(1) 0.51(2) 0.30 100 FeO

6

RepresentativepartsoftheXRDpatternsforallthe

samplesareshownin Fig. 17. Asummaryofthe

rys-tallographi parameters is displayed in Table 8. The

PNHva samplewasdisussedabove. TheXRD

pat-ternforthePNHairsamplewasttedtothreephases.

The majorone was indexed to thespae group C2/,

with lattie parameters (see Table 8) similar to those

reportedforwodginitefromRwanda.[4℄Additionallow

intensityreetionsanbeattributedtomonolini

ix-iolite with spae group P2/ and lattie parameters

quite lose to those reported by Roth and Waring,[3℄

and to monolini (Nb,Ta)

2 O

5

with spae group P2

andlattieparameterssimilarto thosereportedinthe

JCPDS le37-1468. Thepattern attributedto

wodgi-nite(MnFeTa

2 O

8

)iswellharaterizedbytheexistene

ofstrongpeaksatd'2:95

A(2'30:45 Æ

)andd'2:98

A(2'29:98 Æ

)orrespondingto(221)and(221)

ree-tions,respetively.

Therefore, heating the present powdered

transformsitintoamonoliniompoundquitesimilar

to MnFeTa

2 O

8

, with minor reetions from a

om-pound similar to ixiolite and the oxide (Ta,Nb)

2 O

5 .

The present result onrms the data of Moreau and

Tramasure.[5℄Theseauthorshavesynthesizeda

wodgi-nite from thereationMn

2 O

3 +Ta

2 O

5

at1040 Æ

C,for

95 h in air, suggesting that Mn plays an important

role onthetantalite! wodginitetransformation. We

havealsoreproduedearlyresultsreportedbyGouder

deBeauregardetal.,[7℄demonstratingthatupon

heat-ing in air,(Mn,Fe)Ta

2 O

6

showsa XRD pattern quite

similar to that of MnFeTa

2 O

8

. Similar results have

also been obtained by Turnok,[6℄ who showed that

whensynthesizedin air,MnFeTa

2 O

8

anbeformedin

asmallompositionrange,justwhilethereissuÆient

MntolltheAsiteoftheABC

2 O

8

struture,butdoes

notformintheabseneofFe 3+

. Thatistosay,partof

the Fe atoms should pertains to the Bsite, while the

(12)

Table8: Crystallographiparametersobtainedin thepresentwork. Thesamplelabelsarethesameasdened in

Table7. Numbersin braketsdesignate1onthelastdeimalgiven. R

B

asdened inTable2.

Sample S.g. a(

A) b (

A) (

A) (

Æ

) R

B

PNHva Pbn 14.3196(9) 5.7413(4) 5.0624(3) 90 5.76

PNHair C2/ 8.779(4) 12.145(2) 5.089(1) 89.37 4.01

P2/ 4.682(9) 5.647(28) 5.030(18) 90.14 2.13

P2 20.429(2) 3.825(1) 19.461(3) 115.49 3.86

NCH air Pbn 14.3487(9) 5.7459(5) 5.0779(3) 90 1.22

C2/ 9.0856(16) 12.0672(9) 5.0470(8) 88.29 2.34

P2/ 4.7238(9) 5.6205(9) 5.0143(20) 90.81 1.24

P2 20.4834(8) 3.8230(2) 19.4597(9) 115.38 1.57

As-prep Pbn 14.2737(2) 5.7354(1) 5.0554(1) 90 5.55

PSHair P2/ 4.6493(8) 5.6221(7) 5.0089(7) 90.20 1.76

P2 20.4022(27) 3.8322(3) 19.4007(16) 115.23 2.57

0.0

0.4

0.8

(200)

Pbcn

(131)

Pbcn

PNH vac

Normalized intensity

0.0

0.4

0.8

(040)

C2c

(221)

C2c

(-221)

C2c

PNH air

0.0

0.4

0.8

NCH air

28

29

30

31

0.0

0.4

0.8

(121)

P2c

(200)

P2

(180)

P2

PSH air

2-Theta (Degr

Figure17. RepresentativepartsoftheX-raypowder

dira-tionpatternsfor allthe heated-treatedsamples: powdered

natural heated in vauum (PNH va), powdered natural

heatedinair(PNHair),fragmentsofnaturalrystalheated

inair(NCHair)andpowderedsynthetiheatedinair(PSH

air). Open irles and solid lines as dened in Figure 6.

Tantalite,wodginite,ixioliteand(Nb,Ta)

2 O

5

reetionsare

indiated,respetively,byPbn,C2,P2andP2.

It is interestingto pointout that although the

re-sults from Gouder de Beauregard et al.[7 ℄ are more

theGraham and Thornber[8℄ eort to re-examine the

(Mn,Fe)Ta

2 O

6

!MnFeTa

2 O

8

transformation. Yet

re-ent papers[11, 19, 25, 48, 51, 54℄ have asually

dis-missed this subjet, although theyhave disussed the

related subjet (Mn,Fe,Ta)O

2

! MnFeTa

2 O

8

transi-tion.

Dierently, for the NCH air the reetions

at-tributedtoMnFeTa

2 O

8

arelearlylessintenseas

om-paredto those observed forPNH air(Fig. 17). Note,

forinstane,thestrongdereaseof(221)reetion. F

ol-lowingtherenementproedureitanbeseenthatthe

eet ofheatingarystal sampleisto produea

mix-ture of four phases; that one in large amount (label

Pbn)is theordered(Mn,Fe)Ta

2 O

6

. Minorreetions

were indexed to MnFeTa

2 O

8

, (Mn,Fe)(Ta,Nb)O

4 and

(Ta,Nb)

2 O

5

. Theformer arrives from ation ordering

inthebulkportionofthesample,whiletheminor

on-tributionresultfrom thenear-surfaeoxidation.

The syntheti Fe(Nb,Ta)

2 O

6

was used as a rst

hekfortheroleplayedbyMn. TheXRD patternfor

PSHairwasindexedto amixtureof twophases. The

majoroneismonoliniixiolite,withspaegroupP2/

andlattieparameterssimilarto thosereportedabove

forthe PNHair sample. The phase withweak

ree-tions (label P2) is the monolini oxide (Nb,Ta)

2 O

5 ,

also reported above for PNH air sample. Therefore,

supposingationonservationduringtheoxidation

pro-essandtakingintoaounttheXRDresults,the

om-pound Fe(Nb

0:6 Ta

0:4 )O

4

,hereafterFe(Nb,Ta)O

4 , with

struturesimilartoixiolite isthemain produt

result-ingfrom the oxidationofthe syntheti ferroolumbite

Fe(Nb,Ta)

2 O

6 .

To improve our interpretation we have performed

MS measurements of the samples analyzed by XRD.

Fig. 18 showsthespetratakenat 300KforPNHair

(13)

ontribution forthePNHairspetrum, whih was

t-ted to two doublets with = 0.52 mm/s and =

0.34mm/s (seeTable7), attributed to highspinFe 3+

in otahedral oordination. As disussedabove, there

aretwodierent sitesfor Fe 3+

in thewodginite

stru-ture: one of them is the B site and the other is the

C site. Bearingin mind the great similarity between

theouter doubletandthat reported( =0.54mm/s,

Æ=0.39mm/s)forasyntheti Fe 3+

-rih wodginite,[51℄

we have attributed the larger quadrupole splitting to

Fe 3+

at FeO

6

otahedra(site B) andthe smallestone

to Fe 3+

at TaO

6

otahedra(site C). As disussed

be-low, the smallest quadrupole is also quite similar to

that attributed to ixiolite-like Fe(Nb,Ta)O

4

, so that

it is reasonableto suppose amixture of ontributions

fromwodginitesiteCandFe(Nb,Ta)O

4

. Thisis

onsis-tent with the XRD result, suggestingthe tantalite !

wodginite transformation, i.e., (Fe 2+

,Mn)(Ta,Nb)

2 O

6

!MnFe 3+

(Ta,Nb)

2 O

8 .

-1

0

1

2

3

1%

NCH air

Velocity (mm/s)

Absorption (%)

1%

PNH air

Figure18. Mossbauer spetratakenat 300Kfor PNHair

andNCHair(labels denedinFig. 17). Openirlesand

smashedlinesasdenedinFig. 15.

TheXRDresultshaveshownthattheeetof

heat-inginairarystalfragmentofthe(Mn,Fe)Ta

2 O

6

sam-ple is to produea mixture of ordered (Mn,Fe)Ta

2 O

6

and MnFeTa

2 O

8

, with minor reetions indexed to

(Fe,Mn)(Ta,Nb)O

4

and (Nb,Ta)

2 O

5

. Consequently

omplexMossbauerspetraareexpetedfor thiskind

trum for the NCH air sample learly ontains

ontri-bution from Fe 2+

and Fe 3+

ions. This spetrum was

ttedtofourdoublets: =0.55mm/s,=0.32mm/s,

=1.51mm/s and =2.26mm/s. The site

assign-mentfollowedthatusedbeforefortheas-olletedand

PNH air samples. Thus, =0.55 mm/s and =1.51

mm/s are attributed, respetively, to Fe 3+

and Fe 2+

at FeO

6

otahedra, while =0.32 mm/s and =2.26

mm/sareattributed,respetively,toFe 3+

andFe 2+

at

TaO

6

otahedra.

-3 -2 -1 0

1

2

3

1%

(a)

Velocity (mm/s)

Absorption (%)

-1

0

1

1%

(b)

Figure 19. Mossbauer spetrataken at300 Kfor: (a)

as-prepared Fe(Ta

0:4 Nb

0:6 )

2 O

6

sample; (b) syntheti sample

heatedinair. Openirlesandsmashedlinesasdenedin

Fig. 15.

Tovalidate someof thehyperneparametersused

to t the natural samples, we have submitted the

syntheti Fe(Nb

0:6 Ta

0:4 )

2 O

6

sample to similar

stud-ies. TheMossbauerspetrumatroomtemperaturefor

the as-prepared sample is shown in Fig. 19(a). The

existene of only one narrow doublet is indiative of

high degree ation ordering. It was tted (see Table

7) to =1.78 mm/s and Æ=1.15mm/s. These

hyper-ne parameters are lose to those early reported for

FeNb

2 O

6

.[16,57℄Wehavealsomeasuredthissampleat

85K.[45,53℄Therelativeinreasingofthequadrupole

splittingfrom300to85Kisremarkablysimilartothat

reported forFeNb

2 O

6

.[16℄ Thespetrummeasured at

300Kforthesynthetisampleheatedin air,displayed

in Fig. 19(b), was tted to a doublet attributed to

Fe 3+

(14)

similar resultsforasynthetiFeNbO

4

sample.[58℄

Now,itisinterestingtoevaluatetheonsisteneof

our Mossbauer measurements. Forthe Mn-rih

natu-ralsample(Mn,Fe)Ta

2 O

6

submittedtoationordering

we have observed just one quadrupole doublet, with

=1.58 mm/s. This quadrupole splitting is smaller

than that reported for FeNb

2 O

6

(=1.70 mm/s).[16℄

These distint values for should be due to distint

Mn/FeandTa/Nbratioonentrations. This

hypothe-sisanbeanalyzedbyonsideringtheresultsfromthe

syntheti Fe(Nb

0:6 Ta

0:4 )

2 O

6

, for whih we have

mea-sured =1.78 mm/s. By omparing these hyperne

parametersit isreasonabletoasribeasmalleet to

the homopolar substitution Ta $ Nb. The situation

is quite dierent when FeNb

2 O

6

and (Mn,Fe)Ta

2 O

6

are ompared. In thisasethe measurementsindiate

that thehomopolarsubstitutionMn$Feismore

ee-tivein hangingthe hyperneparameters(1.70mm/s

versus 1.58 mm/s) than the Ta$Nb one(1.70 mm/s

versus 1.78 mm/s). Considering the interdependene

between quadrupole splitting and distortions of the

metal-oxygen otahedra, and taking into aount the

ioni radii, these results seem to be onsistent, sine

(R

Mn 2+=R

Fe

2+) ' 1.08, while (R

Nb 5+=R

Ta

5+) ' 1.01.

Therefore, onrmingpreviousstruturerenementin

similar samples[11℄the eet ofthehomopolar

substi-tution Mn$Fe onthe distortions ofthe metal-oxygen

oathedra (MO

6

) is strongest than that produed by

theTa$Nbone.

Conerning the PSH air sample a similar senery

an be obtained. For this sample we have obtained

=0.37mm/s,adoubletattributedtothe

orthorhom-bi ompound Fe(Nb,Ta)O

4

. For thetetragonal

om-pound FeTaO

4

, with the rutile struture, it was

re-ported =0.53 mm/s.[59℄ As the homopolar

substi-tution Ta$Nb presents a minor eet on the

hyper-neparametersoftheseompounds(seetheresultsfor

FeNbO

4

[58℄),thereportedresultsstronglysuggestthat

the hyperne parameters are more dependent on the

rystalstruture. Thus,ifforolumbite(orthorhombi

FeNb

2 O

6

) ' 1.70 mm/s, and for tapiolite

(tetrag-onal FeTa

2 O

6

) '3.0 mm/s[10, 28℄, it appears

rea-sonable that forixiolite-likeFe(Nb,Ta)O

4

shouldbe

smaller than for rutile FeTaO

4

. This beomes

onsis-tent ifwe take into aount the interrelation between

rystal strutures. That is to say, the substrutures

(ixiolite andrutile)preservetheinterrelationobserved

The orthorhombi (Fe,Mn)(Ta,Nb)

2 O

6

series presents

ontinuoussolidsolutionsontheFeNb

2 O

6

-MnNb

2 O

6

andontheMnNb

2 O

6

- MnTa

2 O

6

boundaries,buthas

solubilitylimitforFeTa

2 O

6

lessthan50%. Inanyase

theVegard's law isobeyed, mainly for syntheti

sam-ples. Order-disorderphenomenahavebeenextensively

investigatedin thissystem,andanillustrative

system-ati have been obtained in terms of the - and a-ell

parameters. The more disordered samples are those

withthehigher/aratios. Contrary,themoreordered

onesarethosewiththesmallest/aratios.

Heating in air a partially ordered tantalite yields

dierentresultsdepending onthe form ofthe sample.

Forapowdersample,thetantalite!wodginite

trans-formationhasbeenobserved,inadditiontominor

on-tribution from ixiolite-likeFeTaO

4

and Ta

2 O

5

. For a

rystal fragment, the heat treatment in air produed

a mixture of four phases: that one in large amount

isthe orderedtantalite, whileminor ontributions are

attributed towodginite,FeTaO

4

andTa

2 O

5

. The

for-merarrivesfrom ationorderinginthebulkportionof

thesample, while the minor ontributions resultfrom

the near-surfae oxidation. The Mn ontent as well

asthe oxidant atmosphere appears to play an

impor-tantroleonthetantalite!wodginitetransformation.

Thesameheattreatmentappliedtoapowdersyntheti

ferroolumbite indues a dierent reation: the

sam-pleistransformedinto FeNbO

4

withminor amountof

Nb

2 O

5 .

Aknowledgments

Wewould liketo thankDr. M.Adusumilli (UNB,

Brazil)andCompanyforResearhofMineralResoures

(CPRM) for providing us with the natural samples;

to Dr. J.-Y. Henri (DRFMC/CENG, Grenoble) for

providing uswith thesyntheti ferroolumbite; toDr.

M.A.Z.VasonellosfortheEPMA analyses. Valuable

disussions with Prof. F. C. Zawislak are gratefully

aknowledged. This work was supported in part by

theBrazilian ageniesCAPES,CNPq,FAPERGSand

FINEP.

Referenes

[1℄ E.H. Nikel, J.F. Rowland and R.C. MAdam, Can.

Mineral.7,390(1963).

[2℄ E.H.Nikel,J.F.RowlandandR.C.MAdam,Am.

Min-eral.48,961(1963).

(15)

[4℄ P. Bourguignon and J. Mlon,Ann. So.Gol. Belgique

88,291(1965).

[5℄ J.Moreauand G.Tramasure, Ann.So.Gol.Belgique

88,301(1965).

[6℄ A.C.Turnok,Can.Mineral.8,461(1966).

[7℄ C. G.Gouder deBeauregard, J.Dubois and P.

Bour-guignon,Ann.So.Gol.Belgique90,501(1967).

[8℄ J.GrahamandM.R.Thornber,Am.Mineral.29,1026

(1974).

[9℄ M.S. Adusumilli, Contribution to the Mineralogy of

NiobotantalitesfromtheNortheastProvine,PhD

The-sis, Universidade Federal de Minas Gerais, Brazil. (in

Portuguese),1976.

[10℄ S.M.Eiher,J.E.GreedanandK.J.LushingtonJ.Sol.

StateChem.62,220(1986).

[11℄ M.Wenger,T.ArmbrusterandC.A.Geiger,Am.

Min-eral.76,1897(1991).

[12℄ C.A.dosSantosandJ.Oliveira,SolidStateCommun.

82,89(1992).

[13℄ R.K. Kremerand J.E. Greedan, J. Sol. State Chem.

73,579(1988).

[14℄ V.D. Mello, L.I. Zawislak, J.B. Marimon da Cunha,

E.J. Kinast, J.B. Soares, C.A. dos Santos, J. Magn.

Magn.Mater.196-197,846(1999).

[15℄ V. Antonietti, E.J. Kinast, L.I. Zawislak, J.B.M. da

CunhaandC.A.dosSantos, J.Phys.Chem.Solids 62,

1239(2001).

[16℄ M. Eibshtz, U.Ganiel andS.Shtrikman,Phys.Rev.

156,259(1967).

[17℄ M.G.B. Drew, R.J. Hobson and V.T. Padayathy, J.

Mater.Chem.3,889(1993).

[18℄ C. Heid, H. Weitzel, F. Bourdarot, R. Calenzuk,T.

VogtandH. Fuess,J. Phys.:Condens.Matter8, 10609

(1996).

[19℄ P.CernyandT.S.Erit,Bull.Minral.108,499(1985).

[20℄ R.W.Huthison.Am.Mineral.40,432(1955).

[21℄ C.Hutton.Am.Mineral.44,9(1959).

[22℄ J.D. Grie,R.B.Ferguson andF.C. Hawthorne, Can.

Mineral.14,540(1976).

[23℄ R.B.Ferguson,F.C. Hawthorne andJ.D. Grie, Can.

Mineral.14,550(1976).

[24℄ A.M.Clark,E.E.Fejer.Mineral.Mag.42,477(1978).

[25℄ T.S. Erit, F.C. Hawthorne and P. Cerny,Can.

Min-eral.30,597(1992).

[26℄ M.A.WiseandP.Cerny,Can.Mineral.34,631(1996).

[27℄ A.Aruga,E.Tokizakik,I.NakaiandYSugitami,Ata

Crystallogr.C41,663(1985).

[28℄ L.I.Zawislak,J.B.M.daCunha,A.VasquezandC.A.

dosSantos,SolidStateCommun.94,345(1995).

[29℄ L.I.Zawislak,G.L.F.Fraga,J.B. MarimondaCunha,

D. Shmitt, A.S. Carrio, C.A. dos Santos, J. Phys.:

Condens.Matter9,2295(1997).

[30℄ J.N.Reimers, J.E.Greedan,C.V. Stager, R.Kremer,

[31℄ M.E. Fisher, D.R. Nelson, Phys. Rev.Lett. 32, 1350

(1974).

[32℄ A.Aharony,Phys.Rev.Lett.34,590(1975).

[33℄ A. Aharony, S. Fishman, Phys. Rev. Lett. 37, 1587

(1976).

[34℄ H. Kadowaki, H. Yoshizawa, M. Itoh, I. Yamada, J.

Phys.So.Jpn.59,713(1990).

[35℄ W.A.H.M. Vlak, E. Frikkee, A.F.M. Arts, H.W. de

Wijn,J.Phys.C:SolidStatePhys.16,L1015(1983).

[36℄ I.Yaeger,A.H.MorrishandB.M.Wanklyn,Phys.Rev.

B15,1465(1977).

[37℄ H.Weitzel.Z.Kristallogr.144,238(1976).

[38℄ T.Hanawa,M.IshikawaandK.Miyatani.J.Phys.So.

Japan61,4287 (1992).

[39℄ B. Kratzheller and R. Gruehn, J. Alloys and

Com-pounds183,75(1992).

[40℄ M. SatoandY Hama,J.SolidStateChem.118, 193

(1995).

[41℄ J.Norwig,H.Weitzel,H.Paulus,G.Lautenshlger,J.

Rodriguez-CarvajalandH.Fuess, J.SolidStateChem.

115,476(1995).

[42℄ P.Cerny,W.L.Roberts, T.S.Erit andR.Chapman,

Am.Mineral.70,1044(1985).

[43℄ M.N.SpildeandC.K. Shearer,Can. Mineral. 30,719

(1992).

[44℄ T.Mulja,A.E. Williams-Jones,R.F.Martinand S.A.

Wood,Am.Mineral.81,146(1996).

[45℄ C.A.dosSantos,L.I.Zawislak,V.Antonietti,E.J.

Ki-nast andJ.B.M.daCunha,J.Phys.: Condens. Matter

11,7021(1999).

[46℄ E.J. Kinast. Strutural renement with the Rietveld

method: implementation and essays with the program

Fullprof.MSdissertation(inPortuguese).Institutode

Fsia-UFRGS,2000.

[47℄ M.A.Wise,A.C.TurnokandP.Cerny,NeuesJahrb.

Mineral.H8,372(1985).

[48℄ P.Cerny,T.S.EritandM.A.Wise,Can.Mineral.30,

587(1992).

[49℄ P. Cerny and A.C. Turnok, Can. Mineral. 10, 755

(1971).

[50℄ P. Cerny, T.S. Erit, M.A. Wise, R. Chapman and

H.M.Buk,Can.Mineral.36,547(1998).

[51℄ T.S. Erit, P. Cerny, F.C. Hawthorne and C.A.

M-Cammon,Can.Mineral.30,613(1992).

[52℄ L.I. Zawislak, V. Antonietti, J.B.M. da Cunha and

C.A.dosSantosSolidStateCommun.101,767(1997).

[53℄ V. Antonietti, Order-disorder transformations on the

ixiolite-olumbite-wodginitesystem.MSdissertation(in

Portuguese).InstitutodeFsia-UFRGS,2000.

[54℄ T.S. Erit, M.A.R.Wise andP.Cerny. Am.Mineral.

80,613(1995).

(16)

tionforInorganiChemistsandGeohemists,

MGraw-Hill,London(1973).

[57℄ I. Yaeger, A.H. Morrish, C. Boumford, C.P. Wong,

B.M. Wanklyn and B.J. Garrard. Solid State Comm.

28,651(1978).

134,253(1997).

[59℄ D.N. Astrov, N.A. Kryukova, R.B. Zorin, V.A.

Makarov, R.P. Ozerov, F.A. Rozhdestrvenskii, V.P.

Smirnov, A.M. Turhaninov and N.V. Fadeeva. Sov.

Imagem

Figure 1. Sketh of the ompositional eld for the AB
Figure 3. FeO vs MnO onentration for natural samples,
Fig. 4 shows the amount of T a and Nb, in atoms
Table 2: Atomi parameters for Mn 0:88 Fe 0:09 T a 1:72 Nb 0:28 O 6 and F e(Ta 0:4 Nb 0:6 ) 2 O 6
+7

Referências

Documentos relacionados

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

IJKLJMLNOPQRJMSNLJKSTURLSLPVOTSMLWOXLQSYOZL[SLNKOMOPOP J\YL]PLV]VTOPMLLJP]JORNSVRTKRZS^ZONOKOZSMLSK]KRMLP_VS^SV]MSMLPL

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Magneti uids (MF) are stable olloidal solutions of magneti nanopartiles dispersed in a arrier that an.. be either a polar or a

temperature expansion of the grand potential per site of translationally invariant hain models,.. with periodi

the rst epoh of galaxy formation and to reanalyse the high-z time sale risis.. The

We also used spatial ltering tehniques to enhane the visualization of the magneti eld.. due to

measured the quantum orrelation of signal and idler beams in a transient regime, obtaining a noise.. orrelation level 39 % below the shot