• Nenhum resultado encontrado

Braz. J. Phys. vol.31 número4

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.31 número4"

Copied!
19
0
0

Texto

(1)

Classial and Quantum Properties of

Optial Parametri Osillators

M. Martinelli

,C. L. GarridoAlzar

,P. H. SoutoRibeirox, and P.Nussenzveig

Institutode Fsia, UniversidadedeS~aoPaulo

CaixaPostal66318,S~aoPaulo,SP05315-970, Brasil

xInstituto deFsia,UniversidadeFederaldoRio deJaneiro

CaixaPostal68528,Riode Janeiro, RJ21945-970, Brasil

Reeivedon16May,2001.

WepresentareviewoftheOptial ParametriOsillator (OPO),desribingitsoperationandthe

quantumorrelationbetweenthelightbeamsgeneratedbythisosillator. Weshowtheonstrution

ofanOPOusingaPotassiumTitanylPhosphaterystal (KTP),pumpedbyafrequenydoubled

Nd:YAG laser, and disuss the stability of the system and related thermal eets . We have

measuredthequantumorrelationofsignalandidlerbeamsinatransientregime,obtaininganoise

orrelationlevel39%belowtheshotnoiselevel.

I Introdution

Theadventof thelaserasahigh poweroherentlight

soure markedthe beginof a wide study of nonlinear

interationsbetweenlightandmatter. Althoughmany

nonlinear optial phenomena were already known

be-forethelaser,itwasonlyafter theavailabilityofthese

intense light beams that the eets of up and down

onversionof lightould bestudied. We an mention

SeondHarmoniGeneration(SHG)astherststudy

in this subjet,involvingtheuponversionofapump

beam. In the rst experiment performed by Franken

et. al. in 1961[1℄ abulkquartz rystal, pumped by a

rubylaserat 694nm,generatedaseond beamathalf

thewavelength.

Thiseet anbedesribedbyanonlinear

susep-tibility(E),dependingontheeletrield. This

non-linear suseptibility will originatea quadrati termof

the polarization on the eletri eld. This nonlinear

term is responsible for parametri onversionof light,

likethesumand diereneoffrequenies,SHG,

spon-taneous down onversion, whih an beseen in many

textbooks[2℄.

ParametriDownConversionanbeseenasthe

in-verseproessofSHG.Pumpedbyafundamentalbeam

ofangularfrequeny!

0

,anonlinearrystalan

sponta-neously emit photons. These photons, produed from

the annihilation of a photon in the pump beam, are

produedin pairs, havingstrongorrelation of energy

resene,and thisspontaneousemissionanbe

under-stoodastheemissionoflightstimulatedbythevauum

utuationsoftheeld.

Thislightemissionanbeenhanedusinga

oher-entbeamoffrequeny !

1

, whihwill atas aseedfor

thelightgeneration. We obtainastimulated emission

oflight[3℄produing nowanintense beam. Similar to

the eet of apumped laser medium, this stimulated

emissionwillamplifytheinputbeam,alledsignal. As

aonsequeneofthestrongorrelationbetweenthe

sig-naland idler photons, an intense idler beamwill also

appear. Energyonservationimpliesthattheenergyof

thephotonemitted in theidler beamisthe dierene

of energy between the pump and the signal photons,

thereforewehavefortheidlerfrequeny!

2 =!

0 !

1 .

Everystimulatedphotonemittedinthesignalwillhave

atwin partner in the idlerbeam. Thiseet isalled

parametriampliation[4℄,andwaswellknownin

ele-troniiruitsandmirowavesystems[5℄.

Like the laser ampliation, this nonlinear rystal

pumped by an intense beam is a gain medium. The

gaindependsonthepumpintensity. Whenitisputinto

aavity, forappropriateonditionsof detuning, losses

and pump intensity, osillation will our, and an

in-tenseoutputbeamwithlaserharateristisanbe

ob-tained. ThisdevieisalledanOptialParametri

Os-illator(OPO).Fromearlywork[6℄,itwaspresentedas

alaser soureofwidetunability withpromising

(2)

areommeriallyavailable OPO'sfordownonversion

ofpulsedlaserbeams,usedaslightsoureintherange

between 330 and 2000 nm. Many reent eorts are

madetousethemasCWtunablelightsoures[8℄,with

thesearh ofnewmaterialsand theappliationof

mi-romanufaturing in the prodution of high eÆieny

nonlinearmedia[9℄, dierentavityongurations,use

ofdiodelasersaspumpsoures,et. Thesedeviesare

usedasoherentlightsouresin regionsofthespetra

where no eetive laser medium is available,

onvert-inglightofNd:YAGlasersintothemidinfraredregion.

Theyarealsostudied inthemetrologydomain,as

ele-mentsin lokinghainsforgeneration ofhighly stable

frequeny/time bases. An overview oftheeld anbe

seenin ref. [10℄.

On the other hand, quantum properties of light

emitted from these soures beame soon an intensely

studied subjet. Nonlassialstatesof theeldanbe

produedeitherbynonlinearproesses[11℄or

stabiliza-tion of light emission, as in diode lasers[12℄. Owing

to the quantum nature of light, there is an intrinsi

noise in its detetion that annot be avoided even in

the ase of the generation of the eld by a "lassial

urrent"[13℄. Thislimitisoftenalledshotnoise,sine

it an be understood as the noise reatedby the

de-tetionofindividualphotons,generatingawhitenoise

spetrum for the measured intensity of the beam like

theoneproduedbyarandomuxofpartileshitting

asurfae.

IntheaseoftheOPO,thereationofpairsof

pho-tonsinsteadoftheemissionofsinglephotonsbyalaser

attrated theattentionof manyresearhers, and soon

it beame an important soure of non-lassial states

of light. Earlywork hasshownthat squeezed vauum

utuations are obtained from its output when

work-ingbelowthethreshold[14℄. Lateron,thesqueezingof

the twin beams generated wasobserved[15℄, and they

represent the up-to-date reord of noise ompression

in nonlinear optial eets (-8.6 dB)[16℄. They work

also as "noise eaters". The ompression in the noise

of the pump beam reeted by a avity was reently

observed[17℄.

Itisourpurpose topresentin this paperageneral

overviewoftheOPOoperation,andsomeofthe

quan-tum features observed in the twin beams. We begin

byageneralpresentationoftriplyresonantOPO's,for

type I and type II phase mathing. Next, we make a

review of the quantum aspets of orrelationbetween

signalandidler beams. Weused atypeII triply

reso-nantOPO,builtwith aKTP(KTiOPO4) rystaland

pumpedat 532nm, todemonstrate itsoperation,

dis-ussingalsothe thermalbistability that ours in this

orrelation between the signal and idler beams, and

omparethe measuredompressionofnoiseto the

ex-petedvaluesobtainedintheOPOharaterization.

II OPO: Classial desription

There is a great variety of OPO ongurations[18℄.

Thesimplest oneistheuseof asingleresonantavity

(SROPO),where the avity is resonant for the signal

beam, and there is a single pass of the pump beam

through the rystal. The generated idler beam will

exit the rystalwithout anyfeedbak. The osillation

threshold anbe reduedbytheuse ofadoubly

reso-nantavity(DROPO),wherebothsignalandidlerare

kept resonant with the avity. Whilethe SROPO

al-lowsabroadontinuousvariationofthesignalandidler

wavelengthinthephasemathingrange,thethreshold

powerismuh higherwhenomparedto theDROPO.

Thisonehasthedrawbakofthewavelengthlimitation

to the ne tuning of the modes of the avity[19℄.

In-deed, the double resonantondition of theavityand

theenergyonservationonditionwilllimittheoutput

modes toadisrete setof values,as wewill see in the

presentdesription.

Inbothases,thethresholdpoweranbereduedif

insteadofusingasinglepassofthepumpbeamweusea

avity,whihwillinreasetheinidentintensityonthe

rystal. This isalled the Pump-enhanedOPO

(PE-OPO),also known astriply resonant OPO(TROPO)

when usedto redue thethresholdofaDROPO.This

ongurationallowedthresholdpoweraslowas1mW

for CW operation in KTP[17℄. The useof new

mate-rials redued this power to 300 W (CW) with quasi

phasemathed(QPM)rystals[20℄.

We present now an overview of the TROPO,

fol-lowingthetreatmentpresentedinref.[19℄foratypeII

phase mathing rystal, and extend the disussion to

thetypeIphasemathing,givingastraightforward

in-terpretation of thedetailed treatment given in ref.[7℄.

Consideranonlinearrystaloflength`plaedinsidea

ringavity, pumped byalaserbeamwithangular

fre-queny!

0

. ThefreeavitylengthisL,soL

av

=L+`

isthetotalavitylength(Fig. 1).

Wewanttoalulatethemeanamplitudeoftheeld

insidetheavityforasteady-stateoperation. Therefore

wewilladd upallthelosses, phaseshiftsand

ampli-ationsin around trip ofthe beamsinside the avity,

beginningwith the ouplingmirror. Thelosses of the

othertwomirrorsanbenegleted,andaddedlaterto

(3)

ree-R=1

R=1

r

0

r

1

r

2

α

0

in

α

0

out

α

1

out

α

2

out

Crystal

Figure1. BasiOPOonguration.

If the transmission through the oupling mirroris

small, weanexpress theoeÆientsof reetionand

transmissionas r j =e ( j ) '1 j ; t j =(2 j ) 1=2 ;

j =f0;1;2g!pump, signal,idler: (1)

where wehaveused

j

1. Thus, thetotal

transmit-taneforagivenmodeisT

j =2

j .

Insidethenonlinearrystal,thethreeeldsinvolved

in theOPOoperation(pump, signaland idler)willbe

oupled by the seond order nonlinear suseptibility.

Fromthis ouplingterm, we obtainaparametrigain

for thesignaland idlerelds, depending onthepump

eldamplitude. Onewealulatealltheontributions

inaroundtrip,weanseethatwhenthisgain

ompen-satesalltheround-triplosses,weobtaintheosilation

of theavityforthesignalandidlerbeams.

Itismoreonvenienttoexpresstheeldamplitude

asanormalizedvariable

j

, wheretheux ofphotons

per seond integrated in the beam transverse area is

j

j j

2

. Using this normalization, we an express the

amplitude variation of the elds at a point z inside

thenonlinearrystal,onsideringthatwehaveollinear

propagation,and that theslowlyvarying envelope

ap-proximationisvalid[2℄

d

0

=dz= 2 eff 2 (z) 1 (z)e ik z d 1

=dz=2

eff 0 (z) 2 (z)e ik z d 2

=dz=2

eff 0 (z) 1 (z)e ik z (2)

where k =k

0 k

1 k

2

is thephasemismath, and

theamplitudeofthewavevetorisjk

j j=!

j n j =. The oupling term eff

depends on the nonlinear

susep-tibility of the rystal, and on the shape of the three

beams involved. Sine we are working in avities, it

is reasonableto expet that the osillation modes are

gaussian. Inthisasethe eetiveouplingoeÆient

isgivenby[21℄

eff = (2) w 0 w 1 w w 2 0 w 2 1 +w 2 0 w 2 2 +w 2 1 w 2 2 ~! 0 ! 1 ! 2 0 3 n 0 n 1 n 2 (3) where w j

is thespot size inside the rystal(beam

ra-dius), and (2)

is the eetive seond order

susepti-bility,takinginto aountthepolarizationoftheelds

andtherystalorientation[2,38℄.

Tointegrateeq. 2,weanonsiderthat thegainis

small, so in arst order approximationtheamplitude

hangeinasinglepassbytherystalisgivenby

0 (`)= 0 (0) 2 1 (0) 2 (0) 1 (`)= 1

(0)+2

0 (0) 2 (0) 2 (`)= 2

(0)+2

0 (0) 1 (0) (4) with = eff ` sin(k`=2) k`=2 e ik `=2 : (5)

Ineq.4 weansee that thegainforthe signaland

idler modes inreases with the pump amplitude. So

doesthedepletionofthepumpforaninreasingvalue

ofthesignalandidler. Theamplitudeof theoupling

oeÆientvarieswithasinfuntionof(k`=2),

giv-inganeetivebandwidthforthegainonthevalueof

k.

Toalulatetheaumulatedphaseinaroundtrip,

we onsider the propagation in free spae and inside

therystal. Thelastonewilldepend ontherefrative

indexforeahbeam,giventhebeampolarization(due

to the rystal birefringene) and the wavelength

dis-persion. Thus the aumulated phasein around trip

is ' j = ! j (n j

`+L)=2p

j +Æ'

j ;p

j

=integer (6)

whereÆ'

j

isthedetuningoftheeldjfromtheavity

resonane. Thephaseshiftinthereetionofthe

mir-rorsanbeonsidered later, and will be negletedfor

themoment.

The losses of the beam in a round trip must

in-lude the reetion through the oupling mirror, and

alsootherspurious lossesinotheravitymirrors,

rys-talabsorption, et. Consideringthose lossesasan

ele-mentwithtransmissiont=e

,wehaveanadditional

energylossof2

j

in eah roundtrip. Thetotallossis

thereforegivenby 0 j = j + j .

Consideringthat we are near thetriple resonane,

whih is a onditionfor low osillationthreshold, the

detuning is very small (jÆ'

j

j 2). Therefore, the

totalamplitudein aroundtrip forasteady-state

on-ditionanbenally expressedas

0 0 0 (1 i 0

)= 2 1 2 + p 2 0 in 0 (7) 1 0 1 (1 i 1

)=2

0 2 2 0 (1 i 2

)=2

0

(4)

whereweusedthenormalizeddetuning j =' j = 0 j : (8)

Weseein thersttermofeq. 7theexternalpump

eld of theOPO as in

0

oupled by theinput mirror.

Thelasttwoequationsgiveustheoperationondition

foravitydetuningofsignalandidlerandthethreshold

valueoftheTROPO.

Thesolutionofeq.7fortheamplitudes oftheelds

gives us dierent operation regimes for a triply

reso-nantOPO[22℄, andthe stabilityof eah solutionmust

be studied. One simple solution is the trivial, with

1 =

2

= 0. This solution remainsstable for pump

values lower thana given limit. Abovethis threshold

the trivial solution beomes unstable and the system

willosillate.

An immediateonditionfor theOPOosillationis

obtainedmultiplyingtheseondequationineq.7bythe

omplexonjugateofthethird. Toassuretheresulting

equality 0 1 0 2 (1 i 1

)(1+i

2

)=4jj 2 j 0 j 2 (9)

wehavefromtheimaginaryparttherstonditionto

thesteady-stateoperation

1 =

2

=: (10)

II.1 Osillation threshold

Fromtherealpartofeq.9weanalulatethe

intra-avity pump powerthresholdfor theOPOosillation,

obtaining j 0 j 2 = 0 1 0 2 (1+ 2 ) 4jj 2 : (11)

Therefore,onetheOPOosillates,thepumppower

willbelimitedtothethresholdvalueintheaseofthe

assumed approximations (small gain, small detuning,

smalllosses),lampingtheintraavityamplitudetothe

valuegivenbyeq.11,dependingonthedetuningofthe

signalandidlerand ontheirlosses. Thethreshold

de-pendeneforthephasemathingk isinludedinthe

valueofjj 2

.

Inthease ofthe TROPO, weanuse the rstof

eqs.7to obtainthethresholdvalueoftheinput power

fortheOPOosillation. Thuswehave,for

1 = 2 =0 andj 0 j 2

givenbyeq. 11,thethresholdinputpower

j in 0 j 2 th = 0 2 0 0 1 0 2 (1+ 2 )(1+ 2 0 ) 8jj 2 0 : (12)

The threshold will be learly minimum in the

ex-at resonaneforall three modes. It will alsodepend

on the ratio of the intraavity losses to the oupling

denenowthepumpratioasthepumppower

normal-ized to the minimum threshold at zero-detuning and

zero-phasemismath = j in 0 j 2 j in 0 j 2 res = P in P th (13)

whih will be used laterin theoutput powerand

eÆ-ienyalulations.

II.2 Signal and idler frequenies

Theosillationondition(eq.10)willdeterminethe

possible wavelengths for osillation in the OPO,

on-sideringalsotheavitylenghtandthephasemathing

ondition. Itwillbelearerwhenexpressingthe

refra-tiveindexesinadierentform,astheaverageandthe

diereneofsignalandidler refrativeindex

n=(n1+n2)=2; Æn=(n1 n2)=2 (14)

and the beat note frequeny betweensignal and idler

as!=!

1 !

2

. Wewill rstassumethat thereis a

smalldierenebetweenthelossesineahmode,whih

anbeausedby dierentreetionoeÆientsof the

mirrorsatsignalandidlerwavelengths,orrystal

bire-fringeneontheabsorptionoeÆient. Expressingthe

lossesinthis symmetrialformwehave

0 =( 0 1 + 0 2 )=2; Æ 0 =( 0 1 0 2 )=2: (15)

It iseasier to work with thesum and the

subtra-tion of the phases of the elds in a round trip in the

avity. Fromeq. 6,weansee that

'

2 '

1

=2m+(Æ'

2 Æ' 1 ) ' 2 +' 1

=2q+(Æ'

2 +Æ'

1

) (16)

where m = p

2 p

1

and q = p

2 +p

1

are integers,

and neessarily have the same parity. It is

straight-forwardto alulatethebeatnotefrequenyusing the

denitions above andeqs.6, 8and 10. Assuming that

n!

0

Æn!,wehave

!=

Æn`!

0

+2m

L+n` + Æ 0 0 ! 0 2q

L+n`

(17)

where isthespeedoflightin vauum.

If the signal and idler losses are equal (

1 = 2 ), then Æ' 2 =Æ' 1

. We obtainthe equationexpressed in

ref. [19℄

!=

Æn`!

0

+2m

L+n`

= 2D Æn ` 0 +m (18)

withD==(L+n`). Soweansaythat:

a)Thebeatnotefrequenyhasadisretesetof

val-ues,determinedbyqandm(whihhavethesame

(5)

neigh-freespetralrangeatthesubhamonifrequenyofthe

pump !

0 =2.

b)This frequenyanbenelytuned byadjusting

Æn.

)Consideringdierentlossesforeahmodedoesn't

hangethebehaviorpreditedin[19℄loseto

degener-ay, sine the seond term in the right side of eq.17

is redued lose to the perfet phasemathing in the

quasi degeneratease, as wewill see later. Forhigher

valuesof!,itbeomesimportant,espeiallybeause

thenarrowspetralrangeoftheoatingforhigh

ree-tivityavitymirrorswill leadto unbalaned losses for

signalandidlermodes.

II.3 Resonane of signal and idler

AnotheronditionfortheOPOoperationisasmall

detuning for signal and idler. We will alulate now

the avitylength L where the OPOwill osillate,

be-ginningbytheexatresonantonditionÆ'

1 =Æ'

2 =0.

Clearlythisonditionisnotabsolutelyneessaryanda

smalldetuninganbeallowed,butitwilltelluswhih

longitudinalmode(m,q)islosesttoosillationdueto

itslowerthreshold.

Fromthephase'

2 +'

1

=2q(qinteger,positive),

weanalulate theavitylengthforexatsignaland

idlerresonane

L+n`=q

0

Æn`!=!

0

: (19)

Thisequationbeomesquiteumbersomewhen we

rememberthat ! also depends on L (eq.18). But a

simpleassumptionanbemade. Toperformtheavity

length sanning,searhingthe resonaneposition, the

displaementofLisin therangeofthewavelength,so

thehangeinthevalueofD willbenegligible,and we

anworkwithanaveragevalueofLinthedenominator

of eqs.17and18.

Asweanseefromtheseequations,wehaveadense

ombofresonanepositionsforsignalandidler. Fora

avity length given by q, we havea full range of

val-ues m that will dene around this point the possible

lengths for osillations, separated by adistane muh

smallerthan

0

. Thisdistane betweenadjaent

osil-lation points, remembering the parity of q and m, is

givenby

L=Æn` 4D

!

0 =Æn

2`

L+n`

0

: (20)

The existene of this dense series of points omes

fromtheadditionaldegreeoffreedomgivenbythebeat

frequeny that isn't found,for instane, in theaseof

SHG. As wewill see, the possible values for the beat

frequenyarelimitedbythephasemathingondition.

II.4 Phase mathing

Thephasemismathanbeviewedasaredutionin

in threshold power. From the phase mathing

ondi-tion we have k = [(n

0 n)!

0

Æn!℄=, so exat

phasemathingisobtainedfor!=!

0 (n

0

n)=Æn. A

valuedierentfromthisonewillinreasethethreshold

power. Tounderstandtheeetofmismathingonthe

seletionof thevalues! for osillation, wewill

on-siderthat theavityhasazerodetuning forthe three

elds.

Thethresholdvalueis thereforegivenbyeqs.5 and

12,anditanbeexpressedas

j in

0 j

2

pm =

0

0 2

0

1

0

2

8 2

eff `

2

0 sin

2

k`

2

: (21)

Thenewnormalizedpump poweran be expressedas

pm =j

0 j

2

=j in

0 j

2

pm .

Sine the osillation ondition for a given input

poweris that

pm

1,weansayfrom thisondition

andthe pump powerdened in eq.13that the

osilla-tionwill ourif

sin 2

k`

2

1

: (22)

Fromthis onditionwe obtainthe range of values

!thatareallowedtoosillateforagivenpumppower.

Observethatthisbandwidthishigherforhigherpump

power. Forinstane, onsiderthat =2. Inthisase,

wehavejk`j2:8asalimitondition. Therangeof

valuesof thebeat notefrequenyis 5:8=(Æn`)around

thevalueof!forexatphasemathing. Thenumber

ofpossibleosillatingmodesalulatedfromeq. 18will

be

N =2:8 L+n`

Æn`

(23)

so we expet to have typially more than ten modes

seletedby agiven phasemathing bandwidth, owing

tothesmallvalueofÆn.

II.5 Pump resonane

ATROPOisexpetedtoosillatelosetothepump

resonane,onditionwhihwillinreasetheintraavity

pumppower. Theavitylengthforexatresonanefor

thepump eldisgivenby

L+n

0 `=

0

s;s=integer: (24)

Combining the pump resonant ondition with

sig-nal and idler resonane ondition given by eq.19, we

analulatethebeatnotefrequeny!forthetriple

resonaneondition

!=2

Æn`

(q s)+!

0 n

0 n

Æn

: (25)

When we have exat phase mathing we an see

(6)

the value of q, and inside this group we have many

modesm ofosillation.

The same proedure used above for the phase

mathingonditionanbeappliedtoobtainthewidth

oftheregionwheretheOPOanosillatearroundthe

exatpump resoane. Inthis ase,foraperfet phase

mathing and signal resonane, the osillation

ondi-tion is given by 1+ 2

0

. For aentral valueof

avitylengthLgivenbyeq. 24,wehaveawidth

L

p =

0

0

0 p

1 (26)

ofpositionswheretheosillationispossible. Itislearly

neessarythatL

p

>Ldenedineq.20fortheOPO

osillation. Otherwise, beside the positioning of the

avitylength atthe pump resonane,weneedto tune

thevalueofÆnforexatresonaneofthethreemodes,

whih is inonvenient for a ontinuous operation and

stabilizationoftheOPO.

II.6 Type I phase mathing

The disussion presented above an be applied to

typeIIphasemathing,wherethevalueofÆndepends

muhmoreon therystalorientation thanonthe

sig-nal and idler wavelengths, sine the dierene of the

refrativeindexdue to therystalbirefringeneis one

orderofmagnitudehigherthanthevariationdueto

dis-persion. This assumptionis no longervalid for type I

phasemathing. Inthis ase,signalandidlerhavethe

same polarization, and the refrative index dierene

isaused onlybydispersion. Thealulatedequations

remain avalid approximationonly forwavelength

op-eration far from degeneray. Close to degeneray we

anexpressthedependene ofÆnonthebeatnote

fre-quenyinarstorderapproximation

Æn= n

! ?

?

?

?

!

0 =2

!

2 =n

0

(!) !

2

: (27)

Thederivativen 0

(!)oftherefrativeindexwith

re-spettofrequenywillplayamajorrolein the

osilla-tiononditionsfortheOPO.Applyingthis relationto

theequationsalulatedbeforewehave:

II.6.1 Beat note modes

Fromeq. 18wehave

!=

2m

L+ n+n 0

(!) !

0

2

`

=

2Dm (28)

asagoodapproximation,sinenn 0

(!)!

0

=2.

There-forethebeatnotefrequenyseparationisstillgivenby

theavitylength. But here,degenerateoperation an

be ahieved, sineÆn beomes zero in the degenerate

ase. IntypeIIphasemathing, thedegenerate

ondi-II.6.2 Signal and idler resonane

Theavitylengthforsignalandidlerresonanehas

nowaquadratidependeneon!. Fromeqs. 19and

27weansee that

L+n`=q

0 n

0

(!)`

2!

0 !

2

(29)

andthedistanebetweentworesonanepositionsis

L=

`

L+n`

0 n

0

(!)!: (30)

Asaonsequene,thedierenebetweenmirror

sep-arationforwhihthereisosillationislinearlyredued

withthebeatnotefrequeny. Theosillatingmodesan

easily overlaploseto degeneray. This leadsto mode

jumpsandaninreasingdiÆultytostabilizetheavity

at oneoperationmode!forquasi-degeneratetypeI

phasemathing.

II.6.3 Phase mathing

Exat phase mathing is assured if ! 2

=

2!

0 ( n

0

n)=n 0

. Near degeneray, this takes us bak

tothestraightforwardonditionn

0

=n. Wean

alu-latefromeq. 22therangeofvaluesof!forthetype

I phasemathing. Forthesameonditionof =2we

obtainabandwidthof p

5:8=n 0

`, biggerthantheone

obtainedinthetypeII rystal.

II.6.4 Pump resonane

Close to degeneray, n

0

= n, therefore s = q will

limit us to a group q of osillating modes. This will

givean interestingondition,oming fromeq.29. The

avitylengthforosillationhasaquadratidependene

on !. Sanning the avity in the pump resonane,

wewill haveadensegroupofosillationpointsforthe

OPO,butbelowagivenavitylength,theseosillations

will be interrupted. In typeII quasidegenerate

oper-ation this wouldn't our,sinenegativevaluesof !

wouldstillsatisfytheosillationondition,thatannot

befullled in typeI quasidegenerateoperation[23℄.

II.7 Frequeny tuning

As we an see, the osillation of the OPOwill be

determined by the onditions of avity resonaneand

phasemathing. Sotheseletionofthewavelengthwill

inludetheseletionofthemode,givenbytheintegers

m andq,andane tuningusingthevariationofÆn.

InFig. 2weseetheseletionoftheosillatingmode

in atypeII phasemathing. Thediagonallines

repre-sent thevalues of ! for exatresonane for agiven

avitylengthL

av

asdesribedin eq.19. Eahline

or-respondstoamodeq,andisinfatomposedofalose

set ofpoints,representingthedierentvaluesofmfor

(7)

and the avity length seletionby the pump resonant

ondition. In fat, if theavityhas a high nesse for

thepump, thewidthoftheavitylengthseletionan

besosmallthatonlyasinglevalueofmisallowedfora

givenvalueofq,but dierentvaluesofqanosillate,

depending on the phase mathing region. Therefore,

if wesan theavity lengthL

av

wewillsee the

osil-lation at dierent pointsof thepump resonanepeak.

If theirosillation lengthare loselyspaed, theOPO

aneasilyjumpfromonemodetoanother,andthiswill

representanadditionaldiÆultyinitsuseasatunable

lasersoure.

q+0

q+1

q+2

q+3

-0.004

-0.002

0.000

0.002

0.004

Pump Resonance

Phase Matching Region

L

cav

/

λ

0

∆ω/

ω

0

Figure2. SeletionofmodesfortypeIIphasemathing.

q+0

q+1

q+2

q+3

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

Pump Resonance

Phase Matching Region

L

cav

/

λ

0

∆ω/

ω

0

Figure3. SeletionofmodesfortypeIphasemathing.

In Fig. 3, wehave the same analysis for atype I

phase mathing. As wehave seen,therangeof values

of ! that an osillate satisfying the phase

math-ing ondition is muh wider than in the ase of type

II phasemathing. Onthe otherhand, fromeq.29 we

observethattheseparationofthebeat notefrequeny

! for dierent valuesof q at the sameposition L is

inreased. Therefore,itisunlikelytohavemodejumps

An interesting limit ours when the pump

reso-nane oinides with the resonane of the degenerate

ase. Inthissituation,theosillationaroundthepump

resonanepeak is limitedto a singleside ofthe peak.

Forinreasingvaluesof L,wewillhaveosillation

lim-itedtotheondition!=0,verydierentofthetype

II phasemathing. Thissituation maybeomfortable

toobtaindegenerateoperationinthisOPO,lokingthe

avityto theside oftheresonanepeakat degenerate

ondition.

II.8 Output power

CalulatingtheoutputpowerofanOPOusingeq.7,

weanobtainanexpressionrelatingtheintraavity

sig-naleldandthepumpamplitudeexpressedbyeq. 13.

Thereforewehavefromeqs.7and12that

=

1

0 +

4jj 2

j

1 j

2

0

2

0

0

2

+(+

0 )

2

: (31)

From this equation, weobserve that for

0

1

and (1+ 2

)(1+ 2

0

),there isanonzerosolution

fortheavityelds. Forthetriplyresonantaseitwill

begivenby

j

j j

2

=

0

k

0

0

4jj 2

p

1

; (32)

withj;k=1;2ej6=k.

The output beams, oming out from the avity

throughtheouplingmirror,arethen

j out

j j

2

=

j

0

k

0

0

2jj 2

p

1

: (33)

This is the stable solution above threshold, when

the trivial solution (

j

= 0) beomes unstable. For

high values of detuning and pump intensities,

unsta-ble operationwill begin, with self-pulsing and haoti

operationoftheOPO[22℄.

For

0

>1,therearetwosolutionsforeq.31,

be-ingone stable and the other unstable. Together with

thetrivialsolution,wehavearangeof bistable

opera-tionin theOPO,asseenin theoretial[24℄and

exper-imentalworks[25℄.

It is interesting to ompare the eld intensities

(I

j =j

out

j j

2

) of signaland idler outputs. From their

meanvalueswehave

I

1

I

2 =

1

0

2

2

0

1

: (34)

Therefore,forequallosses,theaveragephotonux

will be equalforeah beam. Although this is notthe

noiseompressionmentionedintheintrodution,sine

wearedealingonlywithaveragevaluesoftheeldand

(8)

Thetotaloutputpoweranbealulated,in order

toobtaintheeÆienyoftheproess. Thetotaloutput

powerisgivenbythesumofthesignalandidleroutput

powers. For!

1 =! 2 , 1 = 2 , 1 = 2

,thispowerwill

begivenby

P out =~! 0 0 0 0 2jj 2 p 1 =4 max p

PP

th P th : (35)

SotheeÆieny willdependonthefator, being

maximum for =4 in the TROPO.Here we dened

themaximumeÆieny as

max = 0 0 0 0 = 0 (36) where j = j = 0 j

is the ratio of the avity losses

throughtheoupling mirrortransmitaneto the total

lossofthe avity. Aswewillsee, this isan important

parameterforthenoiseorrelationbetweensignaland

idlerbeams.

III Quantum properties in an

OPO

TheOPOplaysamajorrolein Quantum Optis,

pro-duingmanynon-lassialstatesoflight. Itbeganwith

thegenerationofsqueezedvauum[14℄,followedbythe

prodution of marosopi quantum orrelated beams

[15℄ and quantum noise ompression of the reeted

pump beamfrom aTROPOavity[17℄. Reently,the

generatedsqueezedvauumwasappliedinexperiments

for Quantum Teleportation[26℄, and the useof

quan-tumtomographyallowedthereonstrutionofthe

out-putsqueezedstateanOPO[27℄.

Onthe otherhand, the produtionof marosopi

beamswithorrelatedintensitieswasusedinhigh

sen-sitivityspetrosopy[28℄,andthisintensityorrelation

anbe usedto ontrolthe intensityin thesignalfrom

theintensity utuationsin theidlerbyafeedbakor

afeedforwardsystem[29℄, obtainingnoiseompression

belowthevauumlevel.

Wewill present ageneral desriptionof the

quan-tumpropertiesOPO,beginningwiththeMaster

Equa-tionofthedensitymatrixofthethreeelds insidethe

OPO avity. After that, we will present the

equiva-lent Fokker-Plank equation for the Wigner

distribu-tion, and then the Stohasti Dierential equations.

Fromtheseequations,alltheompressionrelationsfor

thesignal,idlerand pumpanbeobtained. Wenish

the presentation obtaining, from these equations, the

intensity orrelation for the signaland idler beams in

theoutputoftheOPO.

III.1 Master equation

Toobtain theMasterEquation, wewill followthe

forthedensityoperatorofthethreemodeeldinside

theavityisgivenby

d dt = i ~ [H f +H i +H ext ;℄+( 0 + 1 + 2 ): (37)

Thersttermin theommutator(H

f

)omesfrom

thefreemodesoftheeldinsidetheavity. Sowehave

H f = ~ 0 0 0 a y 0 a 0 ~ 1 0 1 a y 1 a 1 ~ 2 0 2 a y 2 a 2 (38) wherea + i ,a i

arethereationandanihilationoperators

oftheeletrield [13℄, istheroundtriptimein the

avity(assumedequalforallthethreemodes),and

j

isthedetuning,asdenedin eq. 8.

Theseondtermintheommutatoristheeetive

interation between the elds, given by the nonlinear

mediuminside theavity. Sowehave

H i =i~ 2 a y 1 a y 2 a 0 a 1 a 2 a 0 y (39)

where the oupling onstant is the same dened in

eq. 5. Thelasttermoftheommutatororrespondsto

thepumpdrivingeld (")injetedin theavity

H ext =i~ 0 " a y 0 a 0 : (40)

The last term of the Master Equation gives the

lossesoftheavityineahmode

j = 0 j 2a j a y j a y j a j a y j a j : (41)

It is shown in many referenes how to transform

from the density matrix formalism into the

quasi-probability distributions, e.g. ref. [31℄. We will use

this proedure to obtain a Fokker-Plank equation of

theeldsinside theavity.

III.2 Wigner representation and

Fokker-Plank equation

Thedensity matrixanbetreated in amuh

sim-pler way as a quasi-probability distribution in phase

spae. WeanusetheWignerdistribution oftheeld

in thephase spae,where wehave theappropriate

re-plaementoftheoperators(a +

i ;a

i

)oftheeldsby

om-plex amplitudes (

i ;

i

). The density matrix is also

replaed by a quasi-probability distribution in phase

spae, leadingto aFokker-Plankequation. This

pro-edureisompletelydesribedin ref. [31℄,andherewe

will present theoutline of this method applied to the

OPOavity.

Oneinterestingharateristi ofthe Wigner

repre-sentationisthattheoperatorsarereplaedbylassial

variables that anbe interpreted asan average value

plus autuation term. This leads to asimple

(9)

va-to those of a oherent state, and from the resulting

varianes of theoutput elds wean demonstrate the

quantum noise ompression, or the orrelation of the

elds amplitudes.

Making the substitution of the Master Equation

operators by the operators in the Wigner

representa-tion, we have the equivalent dierential equation for

theWignerdistribution

t W(f j g)= 3 X j=1 0 j " i j j j j j ! + j j + j j !# W(f j g) + 2 1 2 0 + 1 2 0 W(f j g) 2 0 1 2 + 0 1 2 W(f j g) 2 0 2 1 + 0 2 1 W(f j g) 0 " 0 + 0 W(f j g) + 3 X j=1 0 j 2 j j W(f j g) 2 3 0 1 2 W(f j g) (42)

where thevetorf

j

ghassix termsforthe eldsand

their omplex onjugates (

0 ; 0 ; 1 ; 1 ; 2 ; 2 ).

In-deed, in this eq. we an reognize a Fokker-Plank

equation, exept by the last triple derivative. For a

regular,wellbehaveddistribution(e. g. gaussian),this

termanbenegleted. Soeq.42anbeexpressedas

t W( f

j g)= X j j A j W(f j g) + 1 2 X j;k j k BB T jk W(f j g) (43)

where the vetorA is alled the drift vetor, and the

matrixprodutBB T

isthediusion matrix.

III.3 Stohasti dierential

equa-tions

TheFokker-Plankequationisequivalenttoasetof

StohastiDierentialEquations(SDE),alsoknownas

Langevinequations d dt j =A j +[B(t)℄ j (44)

where(t)isavetorofutuatingvariables

j

(t)with

azeromeanvalue,andthepropertythat

h i (t) j (t 0

)i=Æ

ij Æ(t t

0

): (45)

A rst onsequeneof this formulationan be

ob-servedin theanalysis ofthemean valuesoftheelds,

alulatedfrom the Langevinequations. Onean

im-mediatelyseethat theset ofequations

d dt j =hA j i (46)

is idential, in the steady state regime (d=dt = 0)

toeq. 7, presentedbefore, obtainedfrom thelassial

valuesof theelds. Therefore eq.46gives theaverage

valuesoftheeldandthestabilityofthese solutions.

Theset ofthe Langevinequations(eq.44) presents

manyquadratitermsthatavoidasimpleand

straight-forward treatment for the eld utuations. In this

ase,itismoreonvenienttouse alinearized

approxi-mationoftheeld utuations. Replaing theeld by

itsmeanvalueandasmall utuation

j (t)=

j

(t)+Æ

j

(t) (47)

andnegletingallsmallquadratitermsonthe

utu-ation,wehaveaset ofSDEdesribingalinearproess

with a onstant diusion, that an be treated to

ob-tainthespetraof the utuations of theelds. This

isthe proedure used in ref.[30℄, using thedesription

ofref.[31℄.

Althoughthis desriptionoftheeld angiveusa

diret expression for the noisespetraof the elds in

anOPO,allowingtheobservationofnoiseompression

andorrelationofeld amplitudes,theresulting

treat-mentof the66matrix is umbersome, and for our

purposes a simple substitution of variables will

sepa-ratetheset ofsix dierential equationsin twogroups

ofunoupledSDE's. Thenoisespetraofthereeted

pump utuations and of the signal and idler beams,

arealulatedandpresentedinref. [34,35℄. Up tothe

moment, only the reeted pump eld squeezing has

beenexperimentallyobserved[17℄.

Ifwereplaetheelds

1 ,

2

bythelinear

ombi-nation + = 1 + 2 p 2 = 1 2 p 2 (48)

in eq.44, we an obtain a new set of SDE equations

fortheelds utuations. Linearizingthe eldsabove

aroundtheirmeanvaluesweobtainthefollowing

equa-tionsfortheutuatingtermsÆ ,Æ

(10)

0

(1+i)Æ + + p 2 0 2 (t) d dt Æ = 2 0 Æ 0

(1 i)Æ +

p 2 0 3 (t) d dt Æ = 2 0 Æ 0

(1+i)Æ + p 2 0 4 (t): (49)

WeadoptheretheoperatingonditionsoftheOPO,

1 =

2

=,andassumethatthelossesarethesame

forbothsignalandidlermodes(

1 =

2

=). Thetwo

last equations below form a separate systemof

equa-tions. So theproblem of the utuationsof the elds

forthepumpbeamisreduedtotheevaluationofthe

44matrixoftheeldvarianes.

Theeldrelationalulatedfortheintraavityeld

doesn't giveimmediately the utuationsof the elds

omingoutfromtheavity. Wemustonsiderthe

out-putouplerasabeamsplitter,wherewehavethe

ini-deneof the intraavity eld andof the vauum led.

Thistreatmenthasbeenextensivelyusedbymany

au-thors[32,33℄. Thevauumutuationsanbe

onsid-eredintwoseparateterms. Oneomes intotheavity

from the oupling mirror, and the seond oneis

ou-pledbyotherspuriouslossesoftheavity. Deningthe

vetorfÆ (t)g =

Æ (t);Æ

(t)

, the eld

utu-ations an be alulated from the following equation

[32℄

d

dt

fÆ g= MfÆ (t)g

+ p 2 f a (t)g+ p 2 f b (t)g (50) wheref a

(t)gandf

b

(t)g arerespetivelythevauum

inputsfromtheouplingmirrorandthespuriouslosses,

and M= " 0 (1 i) 2 0 2 0 0

(1+i) #

: (51)

Using the Fourrier transform of the eld,

fÆ ()g = R fÆ (t)ge it dt = Æ();Æ ( ) , weobtain

fÆ ()g=

(M+iI) 1 p 2 f a ()g+ p 2 f b ()g (52)

withI beingthe22identitymatrix.

Theoutput utuationsare thengivenby thesum

oftheintraavityeld transmittedbytheoutput

mir-ror andthe reetedvauum utuationsonthis

mir-ror. Makingtheapproximationofthereetivityofthe

ouplingmirrorto1,wehave

out

()g=f

a ()g

p

2fÆ ()g (53)

for thediereneof thesignaland idler elds

utua-tionintheoutputoftheavity.

III.4 Intensity orrelation

The amplitude orrelation of the signal and idler

beams anbe measured by the dierene of the

pho-tourrentsproduedbyeahbeam. Theresulting

out-put(onsideringthedetetionquantumeÆienytobe

100%)is I (t)=I

1 (t) I

2

(t). Theeld I

i

(t) analso

be expressedas amean valueand autuating term,

orrespondingtothenoiseofthebeam. Foraeld

am-plitude j (t) = j +Æ j

(t), the eld utuationswill

be

ÆI

j (t)=I

j (t) I j = j Æ j (t)+ j Æ j (t) : (54)

Itismoreonvenient,andequivalentinform,to

ro-tate thephaseof the beam, obtainingareal valuefor

themeaneld. Inotherwords,multiplyingtheeld

j

bye i

j

,wehave

ÆI

j

(t)=j

j j

Æ

j

(t)+Æ j (t) =j j jÆp j (t) (55) whereÆp j

(t)istheamplitudeutuationoftheeld.

Oneweareworkingwithabalanedavity,where

the losses of signal and idler elds are the same, the

meanamplitudeoftheeldswillbeequal(j

1 j=j

2 j).

Theutuationsoftheintensitydierenewillbegiven

by

ÆI (t)=jj [Æp

1

(t) Æp

2

(t)℄=j

j j

Æ (t)+Æ

(t)

:

(56)

When we measure the eld utuations, using a

SpetrumAnalyzer,weobtainthenoisespetraof the

photourrentutuationsin time[36℄. Fromthe

Four-riertransformof thephotourrentdierene ÆI(t),we

havethenoisespetra

S()=jj 2

hÆp ( )Æp ()i: (57)

Wehaveto alulate theamplitudedierene

u-tuationsÆp (t)fromeq.53. Thematrixpresentedineq.

51dependsonthepumpamplitude,whoseintensityis

givenbyeq.11. Makingthehoieofthephaseinorder

to simplify thealulationoftheeld utuations,we

have 0 = 0 2

(1 i): (58)

This will give us the amplitude utuation in the

frequenydomain

Æp ()= 1 2 2 0 i Æp a () 2 p 2 0 i Æp b () (59) whereÆp a (t),Æp b

(t)aretherealpartutuationsofthe

(11)

Onean immediately alulate, from the equation

above,thenoisespetrumS(),rememberingthe

nor-malization of the amplitude utuations to the shot

noise

hÆp

i

( )Æp

j

()i=Æ

ij

: (60)

Thenoiseutuationsarethengivenby[37℄

S()=jj 2

"

1

1+(=

0 )

2 #

(61)

where the avity bandwidth for the signal and idler

modeis

0 =2

0

=,and isthesamevalueusedineq.

36. Thisgivesusadiretphysialinterpretationofthe

noisespetrum. Forashotnoisemeasurement,likethe

division ofa singlemonomode beam in a50/50beam

splitter,andthesubtrationofbothphotourrents,we

havethenormalizednoiseS()=I =1. Butinthease

oftwinbeams,thetwooutputshaveanoiseorrelation

below the shotnoise. This gives us a noiseredution

oftheutuationswithalorentziandependeneonthe

analysis frequeny . The weighting fator of the

noiseompressiongivesthemaximumorrelation,that

isobtainedatfrequeny=0.

Sine the photons are reated in pairs inside the

avity from the annihilation of a pump photon, the

beamintensitiesare expetedto haveahigh degreeof

orrelation. Forthespontaneousemission ofa

nonlin-earrystal(parametriuoresene),wehaveapreise

time orrelation betweenthetwoemitted photons. In

theOPO,sinethegeneratedphotonwillhaveadeay

time to ome outfromthe avity,this orrelationwill

onlybeobservedifwewait atimelongenoughforthe

photontoomeoutfromtheavity. Thatisthereason

whywehavealorentzianurveforthedierenenoise,

withthefrequenynormalizedbytheavitybandwidth.

Thefator givestheratioofphotonsthat,oming

outfromtheavity,reahthedetetor. Ifthereareno

other losses than the oupling mirror, this fator will

reahunityand thebeamswill beperfetly orrelated

in intensity. Every time that there is the loss of one

photon from oneof thebeams,the orrelationwill be

degraded. Anotherimportantpointinthis exampleof

sub-shot noisemeasurement omes from the

indepen-deneon pumputuations. Ifthesystemis well

bal-aned,forbothoptiallosses andeletroni detetion,

the"lassial"amplitudeutuationswillanelatthe

subtration. Thisisnolongertrueforunbalaned

av-itylosses,asanbeseenin[35℄,butthesub-shotnoise

levelanstillbeattained,orevenreoveredforan

ex-ternal balaneofthebeamintensity.

IV Experimental results

We havebuilt an OPOfor thestudy of noise

orrela-tion,usinga10mmlong,typeIIphasemathedKTP

Æ Æ

Aording to the manufaturer (Cristal Laser S. A.),

itsabsorptionis2%at 532nmand0.05%at1064nm.

Thefaes oftherystalwereARoated,withresidual

reetionof0.5%at532nmand0.1%at1064 nm. In

thisbiaxialrystal,therefrativeindexforthez

orien-tationis1.83at1064nmand1.89at532nm. Forthe

xandyorientation,thedierenein therefrative

in-dexissmall,andforourpurpose,weanonsidertheir

valuesas1.74at1064nmand1.78at532nm[38℄.

Theavityis madeby two spherialmirrorsof

ra-dius13 mm. The avity length is 18 mm, assuringa

FSR=6GHzandavalueofz

0

=7mm. Wehavehere

aonfoal avity, what will simplify thealignmentof

themirrorsand theinjetionof thepump beam. The

Rayleigh length value isn't optimized to the relation

givenbyBoydandKleinman[21℄foroptimal

paramet-ri interation between gaussian beams (` = 5:6z

0 ).

The avity length is ontrolled by individual

transla-tionstagesforeahmirrorandnetuningismadewith

piezo-eletritransduers.

The rstalignmentand implementationwasmade

with two mirrors with high reetivity for 1064 nm

(99.8%)andalowerreetivityfor532nm(81%). The

measured avity nesse for the pump beam was F =

12and the estimated nesse forthe subharmoni was

around200.

A seond avitywasemployed replaingthe initial

outputouplerbyamirrorofR=97%at1064nmand

R=99.8%at532nm,assuringameasurednesseF=

24at 532 nmand an estimatednesse of 100at 1064

nm.

L2

M2

DM

OPO

VIS

SA

W3

PBS1

+/-PBS2

IR

IR

W2

M1

F R

LASER

W1

L1

Figure4. SetupoftheOPO.

Thesetup isshownin Fig. 4. Thelaser is adiode

pumped frequeny doubled Nd:YAG (Lightwave142),

with 200 mW output power. The power ontrol over

thesetupismade bythehalf waveplate(532 nm) W1

and the input polarizer of the optial isolator. This

(12)

se-instabilityinlaseroperationausedbytheOPOavity

reetion. Theseond523nmwaveplate(W2)rotates

thebeampolarization totheextraordinaryaxisofthe

KTPrystal(xyplane). LensesL1 andL2enablethe

modemathingofthelaserbeamwiththeavity. The

rystal is mounted in an oven, with temperature

on-trolledupto0.1 Æ

Candwitharangefrom20to160 Æ

C.

The polarization oftheoutput isontrolled bythe

1064 nm half waveplate W3. The polarizing ubes

PBS1 and PBS2 (Newport 10BC16PC.9) provide an

extintionratiobetterthan1:1000intransmission,

giv-ing agood separationof signal and idlerbeams. The

infrared beams are foused by a pair of lenses into

thephotodetetorsETX300(Epitaxx),withhomemade

ampliedeletronisforthehighfrequeny(HF)

om-ponents of the photourrent. The DC omponent is

alsomeasuredusingadigitalosillosope. TheHF

out-putsaresubtratedinanativeiruit,andthe

result-ingnoisepowerismeasuredintheSpetrumAnalyzer

(HP 8560). The remaining green light is transmitted

throughthedihroimirror,beingdetetedinavisible

photodetetorPDA55(Thorlabs).

IV.1 Threshold and eÆieny

Sanningthe avity lengthusing the PZT, we an

put it on resonane with the pump wavelength and

observe the osillation either by the light generation

around1064nm orbythedepletion oftheintraavity

power at thefundamental wavelength, whih is

moni-toredbythephotodetetorVIS.

Thebest value obtainedfor the osillation

thresh-oldwas8mWofpumppower,hangingwiththe

align-ment of the mirror in the avity. A typial value

ob-tained,aftersomerunningtimeandslowrystal

degra-dation(possibly due tograytraking [39℄),is 30mW.

InFig. 5weanseein thenormalizedpump intensity

that the depletion of the beam is inreased with the

pumppower,andthevaluefortheosillationondition

is lipped to amaximumvalue when we have

osilla-tion,asdesribedineq.11. Theintraavitypump eld

presentsaparabolishape,andfrom thettingofthis

equationtheavitylosses

1 ;

2

anbeevaluated,

giv-ingthevalueofthenesseforthesignalandidlerelds.

Weanalsoseethatasweinreasethepumppower,

many peaks appear. These peaks represent dierent

modes(m,q)ofosillation,andtheirrelavitepositions

intheavitylenghtsanningaregivenbyeq.19.

Measuringthepeakintensityofthegeneratedbeam

for dierent pump powers, we ould measure the

eÆ-ieny of ourOPO.The tof the outputpowervalue

given by eq.35 to the measuredvalues is presented in

Fig. 6. From the measuredvalue of

0

= (433)%

and the tted value of

m

ax = 0.8 % we have =

(2:00:2)%. Thevalueof

0

isobtainedfromthe

mea-surement of the transmittane of the input mirror at

532nm(pump)andthemeasurednesseoftheavity

Weansee learlyfromeq.61thatthenoisesqueezing

will be verysmall, and this system isn't adequate as

atwin beamgenerator,remaininganinterestingsetup

forthedesriptionoftheOPOoperation.

-1,5

-1,0

-0,5

0,0

0,5

80 mW

48 mW

Output (Signal + Idler)

16 mW

Time (ms)

Pump

Figure5. Normalizedoutputfortherstavity.

0

20

40

60

80

100

120

140

160

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P

th

=(34.6 ± 0.6) mW

η

max

= (0.841 ± 0.005)%

O

u

tp

u

t P

o

w

e

r (m

W

)

Pump Power (mW)

0

20

40

60

80

100

120

140

160

0.000

0.002

0.004

0.006

0.008

0.010

E

ffic

ie

n

c

y

(

P

out

/P

in

)

Pump Power (mW)

(13)

This small value of omes from the high

ree-tivity of the oupling mirrors. In this situation, the

rystallossesareimportant,andthesurfaequalityof

the optial omponents involved also limits the

ee-tive losses. Mirrors and rystal surfaes have surfae

qualitybetterthan=10. Previousmeasurementswith

lowersurfaequalitymirrorspreventedtheosillation,

dueto aninreaseinthethresholdvalueduetohigher

losses.

After the initial study, we haveused another

av-ity onguration with an output oupler for the 1064

nm astheavitymirror. Thisonguration inreased

the overall losses at the subharmoni mode, giving a

higher threshold,but theratio is muh improvedby

inreasingtransmissivityoftheouplingmirror.

Asanbeseenin Fig. 7,for apump powerabout

twiethethreshold,weouldobserveonlyasinglepeak

for the OPOosillation. Whenwedon't have

osilla-tion atexatpump resonane(zerodetuning), wean

observeapairofpeaks,likethoseexpetedfordierent

modesm of osillationin the onditionobservedfrom

eq.20, L

av

> L. It is also lear that the

deple-tionofthepumpbeamhasaparabolibehavioronthe

signaldetuning,as givenbyeq.11.

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

Signal + Idler

Pump

In

tensi

ty (arb.

un.

)

Time (ms)

Figure7. Resonanefortheseondavity. Pumppower=

110mW.

Repeating the measurement of the peak power in

the OPOoutput sanningtheavity, we obtainedthe

maximumeÆieny from thettingof eq.35(Fig. 8).

From the measured value of

0

= (76 3)%, and

the adjusted value

max

= (372)%, we expet that

=(513)%.

Therefore,hehopeto observeanoiseorrelation3

dB belowtheshotnoiselevelin thisOPO.Theavity

bandwidthlimitstherangeofthespetrumwhere

om-pression anbe observed. Inour ase,the bandwidth

is 200 MHz. Sine the eletroni iruit is frequeny

limitedto50MHz,thehosenfrequenyfornoise

mea-surementis10MHz. Inthisase,weanapproximate

In spiteof many advantages regardingthe

squeez-ing,thehigherpump powerinvolvedisalimitationin

thisset-up,duetothermalbistabilityandrystal

degra-dation. We will disuss briey these aspets, before

proeedingtothenoisemeasurement.

60

80

100

120

140

160

0

10

20

30

40

50

60

P

th

= (59.3 ± 2.1) mW

η

max

= (37.5 ± 1.7) %

O

u

tp

u

t P

o

w

e

r (m

W

)

Pump Power (mW)

60

80

100

120

140

160

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

E

ffic

ie

n

c

y

(

P

out

/P

in

)

Pump Power (mW)

Figure8. OutputpowerandeÆienyfortheseondavity.

IV.2 Thermal bistability

KTPrystalsareommonlyusedinOPOandSHG

owingto their small absorption at 1064 nm. In spite

oftheir higher absorptionat 532 nm, theydon't pose

problemsinpulsedSHG,whenitisoftenusedina

sin-glepassondition. Owingto thetypeII phase

math-ing, itis hardly usedin adouble resonant avity

on-guration. Inthis ase, LiNbO

3

rystalsarepreferred

for SHG from CW Nd:YAG lasers using avity

on-guration to enhane the onversion eÆieny. In a

triply resonant OPO the KTP absorption will ause

someproblemsduetothethermalbistability.

In a KTP rystal, the value of n=T is about

310 5

K 1

[38℄. Therefore, the heating of the

sam-ple aused by absorption will produe an inrease in

therefrativeindexandin theeetiveoptialpathof

the beam. If the avity length is redued, using the

PZTsanning,aswegetneartheresonanethe

(14)

tempera-willinreasetheeetiveoptialpathinsidetherystal,

providing anegativefeedbakto themehanial

san-ningofthePZT.Thepulsewidth inaavitysanwill

inrease. On the other hand, if we inrease the

av-ity length, when we approah the resonane peak the

heating of therystal will inrease again theeetive

path of the beam, resulting in apositive feedbak to

thisdisplaement. Thiswill reduethepeakwidth.

These eets an be seen in Figs. 9 and 10. For

fastersanningspeeds,thereisthe broadeningor

nar-rowingofthepeakdependingonthesanningdiretion.

Ifthesanspeedisslowenoughto providea

stabiliza-tionofthetemperatureinsidethesampletherewillbe

abistable behaviorforonvenientvaluesof the pump

power. Foragiven avitylength, there aretwo

possi-bleavityintensities, dependingonwhethertheavity

lengthwasinreasedorredued.

-75

-50

-25

0

25

50

75

0,0

0,4

0,8

1,2

1,6

2,0

2,4

2,8

Signal

Pump

92

µ

m/s

9.2

µ

m/s

0.92

µ

m/s

In

te

n

s

ity

(

a

. u

.)

L (nm)

Figure9. Bistabilityfor L=t<0for dierent sanning

speed.

-100

-75

-50

-25

0

25

50

0,0

0,4

0,8

1,2

1,6

2,0

2,4

2,8

Signal

Pump

92

µ

m/s

9.2

µ

m/s

0.92

µ

m/s

In

te

n

s

ity

(

a

. u

.)

L (nm)

Figure10. BistabilityforL=t>0for dierentsanning

speed.

This fatoris a majorproblem in avity

stabiliza-tion. Oneproblem is thatif weloktheavity in one

signalandidlerpeak,theheatingoftherystalwill

pro-pump resonane. This displaement will inrease the

pump detuning, and with this variation the threshold

valueanbeomehigherthanthepumppower,andthe

osillationwilldisappear. Thiswilllimitthenessefor

the pump for apratial operation of theOPO. This

problemisoftennegletedinaDROPO[15℄wherethe

displaement of the signal and idler resonane due to

therystalheatingwon'taetthethresholdondition.

Aseondproblemthatisfaedistherystal

degra-dation. When loked at high pump power, the

intra-avity intensity anreah valuesof 150 kW/m

2

. An

inreaseoftherystalabsorptionat532nmisobserved

at thisvalue,and aonsequentinreasein thermal

ef-fets. This inreasing rystal absorption redues the

pumpnesse,andafteratimelongenoughthe

osilla-tionispreventedasaresultofthehighthresholdvalue.

Onepossiblereason for this eet is graytraking

[39℄. This kind of defet has been observed in KTP

rystals,andomesfromtheformationofolorenters

by the reation of displaed Ti

+3

ions in the rystal.

It wasobservedthat these defets are notalways

per-manent, and our in the pulsed regime. One they

appear, the annealing of the rystal at 200

Æ

C an, in

someases,restoretherystaltotheinitialabsorption

value [40℄. Reent studies have shown also the gray

trakingin theCWregimeforintensitiesrangingfrom

25 to 125 kW/m

2

, the limiting value depending on

rystal manufaturingquality[41℄. Although the

pre-viousindiationoftemperatureontrollingofthegray

traking,wehavenotobservedanyredutionofthe

de-fetformationintherystalwhenworkingintherange

from 20 to 170

Æ

C. Therefore, for the available pump

power of 200 mW a longterm operation of the OPO

was impossible in view of the inreasing value of the

threshold.

IV.3 Noise orrelation

Theombinationof thermalbistabilityand rystal

degradationavoidedastableoperationoftheOPO

av-ity, and it wasn't possible to keepit stable fora long

time(>1s). Butatransientoperationlastinghundreds

ofms ouldbemaintained. Inthis situation,weould

performthemeasurementof theeld orrelation.

Usinganeletronidisriminator,weouldgenerate

aTTLdigitalpulse whentheOPOstartedosillating.

Thispulsewasusedtotriggeradigitalosillosopeand

thespetrumanalyzersimultaneously. Sowehada

syn-hronousmeasurementintimeofthephotourrentand

thenoiseutuationsmeasuredbythephotodetetors.

An exampleof this measurement is shown in Fig.

11. As weansee, themeasurednoiseisreduedwith

the beam intensity,nearing the eletroni noiseof the

aquisitionsystemasthephotourrentreaheszero. As

wehave seen in eq.61, the noise level of the intensity

(15)

proportionalto the normalizednoiseof theamplitude

orrelationofthebeamsS().

To obtain this normalization, we subtrated from

themeasurednoisepowertheeletroni noiselevel(of

-85 dBmfor thegiven SA parameters). Thenthe

or-reted noisepoweris normalizedbythe photourrent.

Ifthisnormalizationisvalid,theresultingaveragevalue

shouldn't hange with time, and the value utuates

around thisaverage,due to thestohasti behaviorof

thenoisemeasurement. InFig. 12wesee the

normal-ized noise. There isn't anyobservablevariationin the

meanvalueofthenoisein time,andweobserveonlya

smallhangeinthedispersion,duetotheinreasing

in-ueneoftheeletroninoiseintheorrelationnoiseas

theintensitydereases. Wehaveagoodtofthisdata

intoagaussianurve,assuringusthatthismethodan

beusedtoobtaintheorrelationnoiseandompareit

to thevauum (shotnoiselevel).

0

5

1 0

1 5

2 0

2 5

3 0

-8 8

-8 4

-8 0

-7 6

-7 2

-6 8

T im e (m s)

No

is

e

(

d

B

m

)

0

4

8

1 2

1 6

2 0

O

u

tp

u

t P

o

w

e

r (m

W

)

Figure11. Synhronousaquisitionof noiseand

photour-rent at10MHz,RBW =300kHz,VBW =30kHz.

Ele-troninoiselevelat-85dBm.

0

5

10

15

20

25

30

-90

-88

-86

-84

-82

-80

-78

-76

-74

-72

No

is

e

(

d

B)

Time (ms)

-90

-85

-80

-75

-70

-65

0

20

40

60

80

100

Noise (dB)

Figure12. Distributionofthenormalizednoise.

Onewayto hek the noisesqueezing is observing

the normalizednoisevariation asthe inidentbeamis

attenuated. Asiswellknown[13℄,squeezingisdegraded

by absorption. So if we use neutral density lters in

our beam, inreasing the vauum input, wewill have

aninreaseinthenoise. Thisdependene inthe

trans-mission anbeexpressed as

S =1 (1 S

0

)T (62)

where S is the normalized noise, orresponding to 1

for the shot-noise level, S

0

is the normalized noise of

the measurement, and T is the transmittane of the

beam throughthe attenuator. ForT =0, weget the

shotnoiselevel. Iftheinputbeamisshotnoiselimited

(16)

oftheattenuator.

Weperformedasmallsequeneofmeasurementsof

thesqueezingdegradationfordierent neutraldensity

ltersintheOPOoutput. AsobservedinFig.13,fora

dereasingattenuation, wehaveaninreasing

normal-izednoise. Weanonludethatthereisnoise

ompres-sionin theintensityorrelation, 33%belowshot-noise

(41%orretingforlosses).

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

S = 0.666 ± 0.028

N

o

rm

a

liz

e

d

N

o

is

e

Transmittance

Figure 13. Squeezing degradation for inreasing

attenua-tion. TheOPOoutputpolarization isrotated100 Æ

bythe

halfwaveplate.

Makingthediereneofthehighfrequeny

ompo-nentin eahphotodetetorintheeletroni iruit,we

ouldobtaintheintensitynoiseorrelationinthesignal

andidlerbeams. Whenseparatedbytheorret

orien-tationofthehalfwaveplate,wehaveinoneportofthe

iruitthenoiseofthesignalandintheotherthenoise

oftheidlerintensity. Ifweturnthiswaveplate,mixing

thewavesin thepolarizingbeamsplitter, wewill have

adivisionofhalftheintensityofeahmodeineah

de-tetor. Asommonlyused,thephotourrentdierene

of asinglemode dividedin a50/50beam splitterwill

giveusthevauumutuationlevel,ortheutuation

expeted for aoherent state of the same average

in-tensity. With twomodes,whosebeatfrequenyiswell

abovethedetetorsbandwidth,theresultingnoisewill

orrespondtotheoherentstateutuations.

Therefore, when rotating the beam polarization,

hangingfromaompleteseparationofbothmodesin

the detetors to their mixture in a 50/50

beamsplit-teronguration,weexpetthat thenoisewill hange

fromtheorrelationnoisetotheshotnoise. Ifthereis

ompression inthe orrelationnoise,itwill beseenas

anoiselevelredutioninomparisontotheshotnoise,

whihis measuredfora45 Æ

rotationofthesignaland

idleratthepolarizingube(seeAppendix).

Werepeatedthenoisemeasurementfordierent

an-glesofthehalf waveplate,hangingthemixtureofthe

beamsinthepolarizingbeamsplitter. Theresults,

pre-sentedin Fig. 14, show that a maximum of squeeing

idler separation is 60.9%. Foran overalldetetion

ef-ieny of 81.1% (photodetetor eÆienies, losses in

lenses,beam-splitters,et.),weonludedthatwehave

a noise ompression down to 52%, or -2.8 dB of the

shot noise level. This agrees with the expeted value

obtained from the measurement of

max and

0 , that

gaveusaexpetedvalueofS=1 =(0:490:03).

0.0

22.5

45.0

67.5

90.0

112.5

135.0

157.5

180.0

0.6

0.7

0.8

0.9

1.0

1.1

S = 0.609 ± 0.016

N

or

m

al

iz

ed noi

se

Rotation Angle (degrees)

Figure14. Correlationnoisefordierentanglesof

polariza-tionrotation.

V Conlusions

We presentedin this paperageneral overview for the

CW operation of an OPO. We inluded in our

treat-mentthedesriptionoftheOPOtuningpropertieswith

type I and type II rystals and the alulationof the

onversioneÆieny of the pump into the signal and

idler beams. Wepresentedalso areview of the

quan-tum properties of theOPO,and studied theintensity

utuationsofthetwinbeamsinatypeIIOPO,

show-ing quantum orrelation in twin beams. The

tehni-al problemsofheating andrystaldegradationwhere

also treatedin thepresentwork,and the synhronous

measurementof noiseandintensityis presented asan

eÆientwaytoirumventtheseproblemsduring

mea-surements.

TheOPOremains, after more thanthree deades,

afasinating subjetof studyin quantum and

nonlin-ear optis. The renewed interest in the OPO omes

from new materials manufaturing, and the

ommer-ialappliationofthiswidebandtunablelaser-likelight

soure. Ontheother hand, sinethebeginningof

ex-perimental quantum optis, it provides a reliableand

simplesoure of intense beams withquantum

orrela-tions. Amongothersouresofsqueezedlightin

nonlin-earrystals,theOPOprovidesthebest resultin noise

ompression. For that reason, there is now a raising

Imagem

Figure 1. Basi OPO onguration.
Figure 3. Seletion of modes for type I phase mathing.
Figure 4. Setup of the OPO.
Fig. 6. F rom the measured value of
+6

Referências

Documentos relacionados

In the present paper we report on the thickness dependence of electrical and optical properties of ITO films, prepared by activated reactive evaporation.. ∗

6 and 7 show the calculated pressure dependence of the pinch voltage and pinch current, for different anode lengths. It can be seen the pinch current presents a max- imum,

Samples were produced by different routes and characterized by scanning electron microscopy, differential thermal analysis, thermogravimetric analysis and X-ray diffraction, whereas

While a detailed study of decay rates in finite size metastable potentials has been presented in Ref.[19], this paper reconsiders the infinite size instantonic theory for a bistable φ

A second study of the parastring theory is proposed [28, 29], where the paraquantization is done by requiring that both the center of mass variables and the excitation modes of

The CW5082 interaction is construct from the Kuo- Herling interaction so-called KH5082 [5], by replacing the tow body matrix elements (TBME) of protons in the sub- shell N = 4 using

de Andrade, P.R. dos Santos, and W.T.B. de Sousa Departamento de F´ısica, Universidade Estadual de Ponta Grossa, Av. Samples were prepared by a standard solid- state reaction

for a sample of the order of penetration depth, the superconducting properties such as the critical fields, the critical current, the vortex lattice and the vortex itself, can