• Nenhum resultado encontrado

Braz. J. Phys. vol.31 número4

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.31 número4"

Copied!
10
0
0

Texto

(1)

High-Energy Proton-Proton Forward Sattering

and Derivative Analytiity Relations

R. F.

Avila 1

, E.G. S.Luna 2

, and M. J. Menon 2

1

InstitutodeMatematia, EstatstiaeComputa~aoCienta

UniversidadeEstadual deCampinas,UNICAMP

13083-970Campinas, SP,Brazil

2

Institutode FsiaGlebWataghin

UniversidadeEstadual deCampinas,UNICAMP

13083-970Campinas, SP,Brazil

Reeivedon15May,2001

We present the results of several parametrizations to two dierent ensemble of data onpp total

rosssetions( pp

tot

)atthehighestenter-of-massenergies(inludingosmi-rayinformation). The

resultsarestatistially onsistentwithtwodistintsenariosathighenergies. Fromoneensemble

thepreditionfortheLHC( p

s=14TeV)is pp

tot

=1135mbandfromtheother, pp

tot

=1407mb.

Fromeahparametrization,andmakinguseofderivativeanalytiityrelations(DAR),wedetermine

(s) (ratiobetweenthe forward realand imaginary partsof theelasti satteringamplitude). A

disussion ontheoptimization of theDARinterms ofa freeparameteris also presented. In all

asesgooddesriptions oftheexperimentaldataareobtained.

I Introdution

The totalrosssetion,

tot

, andthe parameter

(ra-tio of the real to imaginarypart of the forward

elas-ti sattering amplitude) are important quantities in

theinvestigationofelastihadron-hadronsatteringat

highenergies[1,2℄. Theyareexpressedintermsofthe

elastisatteringamplitude,F(s;t),bytheformulas,

tot

(s)=4ImF(s;t=0); (1)

(s)=

R eF(s;t=0)

ImF(s;t=0)

; (2)

where p

s isthe enter-of-mass energyand t the

four-momentum transfersquared.

For proton-proton (pp) ollisions, both quantities

havebeenextrated fromaelerator experimentsand

the results extendup to p

s 63 GeV. On the other

hand, pp

tot

mayalsobeinferredfromosmi-ray

exper-imentsatstill higherenergies, p

s10TeV.However,

these osmi-ray results are model-dependent, sine

theyareobtainedfromproton-airrosssetions[3℄and

thishasoriginateddierentresultsfor pp

tot

inthe

inter-val p

s=5 25TeV,whihexhibitareasonabledegree

ofdisrepany.

Severalmodelspresentextrapolationsatthe

osmi-rayregion and the observed disrepanies may be

a-ommodated by dierent models [4, 5, 6, 7, 8℄. As

weshallreall, presently,itisdiÆultto deidewhih

ouldbethe\orret"resultanditseemsthatthe

gen-eraltrendisto expet thenewdatafrom thenext

a-eleratorexperiments,theBNLRelativistiHeavyIon

Collider (RHIC), p

s 500 GeV [9℄ and the CERN

LargeHadronCollider(LHC), p

s14TeV[10℄.

However,atthisstage,weunderstandthatamodel

independent analysis of the experimental information

presentlyavailable,taking detailed aountofthe

dis-repaniesand itsonsequenes,maybring important

insightsonthesubjet. Thisistheentralpointweare

interestedin.

Inthisommuniation,werstinvestigatetwosets

of distint results for pp

tot

, at osmi-ray energies,

in a model independent way that also takes into

a-ount of the experimental data at the aelerator

re-gion( p

s>10GeV). Ineahasewetfour dierent

analytifuntions to eahensemble ofdata, using the

CERN-MINUITroutine[11℄. Nextwemakeuseofthe

one-subtratedderivativeanalytiityrelation(DAR)in

ordertoobtainanalytiparametrizationsforthe

pa-rameterasfuntionoftheenergy,frombothensembles

andfor all theparametrizations. Inthis investigation

westressthatthegeneral expressionoftheDARhasa

freeparameterandwepresentastudyonthepratial

(2)

Inallasesgood desriptionsoftheexperimentaldata

areobtained.

Thepaperisorganizedasfollows. InSe. II we

re-viewthe experimental informationon pp

tot

from

ael-eratorandosmi-rayexperimentsandreallthemain

stepsonnetingintegraland derivativeanalytiity

re-lations. The ts onerning pp

tot

and the results for

(s)arepresentedin Se. III.InSe. IVwedisussin

some detail allthe results obtained and present

om-parisonswithsomemodelpreditions. Theonlusions

andsomenal remarksaretheontentofSe. V.

II Experimental Information

and Analytial Approah

Here we rst review the experimental information

presently available on pp

tot

at the highest energies,

stressingthepuzzlesinvolvedattheosmi-rayregion.

We also reall some essential formulas onneting

in-tegralandderivativeanalytiity relationsandthe

or-responding derivativerelation between pp

tot

and (the

analytialapproah).

II.1 Experimental information on

pp total ross setions

Asmentionedbefore,inordertoanalyzethe

experi-mentalinformationpresentlyavailableon

tot

(s)forpp

interation atenergiesbeyond10GeV(highenergy

region), we must distinguish between aelerator and

osmi-rayinformation. In the later ase we follow a

disussionrstpresentedinRef. [4℄.

Conerning aelerators, data on pp

tot

from three

experiments at the CERN Interseting Storage Ring

(ISR),between23:5GeVand62:3GeV,wereritially

analyzedbyAmaldiandShubertandweshallonsider

herethenalmeanvaluesfrom theiranalysis[12℄. We

alsoinludetheresultsat13:8GeVand19:4GeV,

ob-tainedinFermilab[12℄.

Althoughotheraeleratordataexistinthisregion,

thissetissuitablefortheanalyzesweareinterestedin.

Fromonehand,thesedatarepresenttheorrettrend

ofpp ollisionsin theregion 10 60 GeVandallowa

statistial approah that inludes dierent osmi-ray

information(see whatfollows). Ontheother hand,as

willbedisussedinSe. IV,theyareadequatefor

om-parisonwithamodelthatpreditsafasterrisingof pp

tot

thangenerallyexpeted.

Dierentlyfromaeleratordata,osmi-ray

exper-imentalinformationon pp

tot

omesfromproton-airross

setions. Wereall that antiprotons are not expeted

to have any signiant role in these interations and

thereforethebulkofosmirayinformationon

hadron-nuleusrosssetionsdoesnotonernantiprotons.

Now, sine what is extrated in these experiments

istheproton-airrosssetion,thedeterminationofthe

pprosssetiondependsonnulearmodelassumptions

[3,4℄andthishasoriginatedsomepuzzles,asreviewed

in whatfollows.

The rst information on pp

tot

from osmi ray

ex-periments, at p

s = 30 TeV, was reported by

Baltru-saitisetal. in1984[13℄. Extensiveairshowersreorded

byFly'sEyedetetorallowedthedeterminationofthe

proton-air inelasti ross setion. Based on Glauber

theory,assumingaGaussianproleforthenuleusand

theproportionalitybetweentotalrosssetionandthe

slope parameter(geometrial saling), the authors

in-ferred[13℄

tot

=12015mb at p

s=30TeV: (3)

In1987,basedalso ondata fromFly's Eye

experi-ment, Gaisser,Sukhatmeand Yodh(GSY) introdued

thelimit pp

tot

130mb at p

s30TeVand,taking

aount of various proess in the Glauber theory and

additionalassumptions,estimated[14℄

pp

tot =175

+40

27

mb at p

s=40 TeV : (4)

Afterwards, extensive air shower data olleted in

the Akeno observatory allowed new estimates in the

range5 25TeV,reportedbyHondaetal. [15℄, whih

isinagreementwiththeresultreportedbyBaltrusaitis

et al. and in disagreement with the GSY result. In

partiular, extrapolations by Honda et al. indiated

[15℄

pp

tot

=13310mb at p

s=40TeV; (5)

whihisin agreementwith theresultreportedby

Bal-trusaitis et al. and in disagreement withthe GSY

re-sult. Inthesameyear,NikolaevlaimedthattheAkeno

resultshavebeenunderestimatedbyabout30mb[16℄

and, if we take this orretion into aount, the data

in the interval 5 25 TeV show agreement with the

early GSYresult. An importantpointis thefat that

theanalysisbyNikolaevseemsorret,hasneverbeen

ritiized and the sameis true for theGSY limitand

result.

Alltheseosmi-rayinformationsareshownin

Fig-ure 1, together with theaelerator data at lower

en-ergies. We stress that these experimental

informa-tion onern only pp and not pp interations. From

this Figure we learly see the disrepanies between

Honda/BaltrusaitisandGSY/Nikolaev.

Forthese reasons, in this paperweinvestigate the

behaviorofthetotalrosssetiontakingaountofthe

disrepaniesthatharaterizetheosmiray

informa-tion. Inordertodothat, weonsidertwo ensemblesof

data andexperimental information,with thefollowing

(3)

Ensemble A: aelerator data + Honda et al. +

Baltrusaitisetal.

EnsembleB:aeleratordata+Nikolaev+GSY

For ensemble A the referenesare [12, 13, 15℄ and

for ensemble B,[12, 14, 16℄. In Se. III we make use

of dierent parametrizationsto t thedata from eah

ensemble.

10

1

10

2

10

3

10

4

10

5

s (GeV)

30

60

90

120

150

180

210

σ

tot

(mb)

accelerator

Nikolaev

GSY

Honda et al.

Baltrusaitis et al.

Figure 1. Experimentalinformation onpptotal ross

se-tions: aeleratordataintheinterval13:8< p

s<62:5GeV

and osmi-rayresults inthe interval6:3 TeV< p

s <40

TeV.

II.2 Derivative analytiity

rela-tions and the parameter

Both

tot

(s)and(s) playaentral role in the

in-vestigation of high-energy hadron sattering. Due to

the onnetions between forward real and imaginary

partsofthesatteringamplitude,Eqs. (1)and(2),the

analytiity(dispersion) relationsonstitute asuitable,

modelindependent,approahforasimultaneousstudy

ofthese quantities.

Although integral dispersion relations have been

widelyusedinthestudyofhadronisattering,in

gen-eral, the analytial and/or numerial integrations are

notaneasytask. However,atsuÆientlyhighenergies,

thesmoothinrease of pp

tot

(Fig. 1) allowsto onnet

theintegralformwithaderivativeone,whihiseasier

tohandle. Thesoalledderivativeanalytiityrelations

(DAR) were introduedin theseventies[17℄ andsine

thenhavebeenritiallyinvestigated[18,19℄. Reently,

areursive approah wasdeveloped, aswellas

gener-alizationsto an arbitrary number of subtrations, for

bothrosseven andoddamplitudes,near theforward

diretion[20℄. Asintheintegralase,theonvergenes

maybeontrolledbysubtrationsandspeiformulas

areassoiatedwithrossevenandoddfuntions

(sat-tering amplitudes in the ase of partile-partile and

antipartile-partileinterations)[2℄.

Atthispointwestressone morethatweareonly

interestedinppsattering(wheredisrepanieshappen

in

tot

(s)) andnotpp. Besides, ourinvestigation

on-ernsthehighestenergies,haraterizedbythesmooth

inreaseof pp

tot

, nearly as a poweron lns. For these

reasonsin ouranalyzes wewill onsider only an even

amplitude, as the leading ontribution, and only one

subtration.

A detailed dedution onhowto obtainDAR from

integral relations may be found in referenes [17, 18,

19, 20℄. Here we onlyreview the main steps

onern-ingouraseofinterest,namely,onesubtrationandan

even amplitude. Webegin with thewellknown

one-subtratedintegraldispersionrelation(evenamplitude)

intheforwarddiretion(t=0)[2,21℄

R ef

+

(s)=K+ 2s

2

I; (6)

whereKR ef

+

(0)isthesubtrationonstantand

I =P Z +1 s0 ds 0 1 s 0 (s 02 s 2 ) Imf + (s 0 ): (7)

FollowingBronzan, Kane and Sukhatme [17℄, and

also[20℄, weonsider arealparameter sothat after

multiplyand dividebys

andintegratingbyparts we

obtain I = 1 2ss 0 ln s 0 s s 0 +s Imf + (s 0 )j 1 s 0 =s0 1 2s Z 1 s0 ds 0 s 0 1 ln s 0 s s 0 +s 1 s 0 + d ds 0 Imf + (s 0 )=s 0 : (8)

Taking aount of the high-energy region (s s

0

m

2

1 GeV 2

) and performing a hange of variable s 0

=

e

0

; s=e

;thelastequationmaybeputin theform

(4)

ExpandingImf + (s 0 )=s 0

in powersof 0

, after some manipulation and taking aount of thehigh energy

limit(s

0

!0,thatis, lns

0

! 1)weobtain

R ef

+

(s)=K+s 1 X n=0 d (n)

dlns (n) (Imf + (s)=s ) I n n! ; (10) whereI n

representstheintegralin thevariable 0 , I n = 1 Z +1 1 d 0 e ( 1)( 0 ) lnoth 1 2 j 0 j 1+ d d 0 ( 0 ) n : (11)

Wehaveassumedthattheseriesmaybeintegratedtermbyterm. Denoting 0

yandintegratingbyparts,

thisequationmaybeputin theform

I n = 1 lnoth 1 2 jyj e ( 1)y y n j +1 1 + 1 Z +1 1 dy e ( 1)y sinhy y n : (12)

A entralpointhereis thatthersttermontherighthandsideonvergestozeroonly for

0<<2: (13)

Inthisaseweonlyhavetheseondterm,whihanbeexpressedasareursiverelationintermsoftheparameter

[20℄: I n = d (n) I 0 d (n) ; (14)

andintegrationin theomplexplanegives

I 0 =tan 2 ( 1) : (15)

With this, weobtain anexpression onneting thereal part of anevenamplitude with thederivatives of the

imaginarypartatthesameenergy,namelytheDAR:

R ef + (s) s = K s +tan 2 1+ d

dlns Imf + (s) s : (16)

Theleadingtermin thetangentseriesreads

tan 2 ( 1) Imf + (s) s + 2 se 2 2 ( 1) d

dlns Imf + (s) s ; (17)

andmakinguseofthenormalization(k 2 s), f + (s) s

F(s;t=0); (18)

weobtainthegeneralresultforaforwardamplitude:

R eF(s;0)= K s +tan 2 ( 1)

ImF(s;0)+

+s 1 2 se 2 2 ( 1) d

dlns

ImF(s;0)

s 1

: (19)

Atlast,fromequation(1),weobtainthegeneralrelationonnetingand

tot : (s)= 4K s tot (s) +tan 2 ( 1) + 2 s 1 tot (s) se 2 2 ( 1) d

(5)

Thestandardformreferredto intheliteratureand

applied to hadronisatteringorrespondsto the

par-tiular hoie=1(butusually withoutthe

subtra-tiononstant)[1,2,22,23℄,whihweshallreferasthe

onventionalformoftheDAR:

(s)= 4K

s

tot (s)

+ 1

tot (s)

2 d

dlns (

tot

(s)): (21)

Inthenextsetionweuseboththeonventionaland

the general relations, in order to determine (s) from

dierentparametrizationsfor pp

tot

(s)and ensemblesof

data.

III Fits and results

Inthissetionwerstpresentthetstothetotalross

setionsforbothensemblesdenedinSe. II andthen

thepreditionsfor(s)obtainedbymeansofDAR.The

disussion onall theobtainedresultsis theontentof

Se. IV.

III.1 Fits to total ross setion

ForeahensembledenedinSe. II,wetthedata

with some standardand suitable parametrizations for

thetotalrosssetions:

fit1:

tot

=A+Blns+C(lns) 2

(22)

fit2:

tot

=A+Blns+C(lns) D

(23)

fit3:

tot

=A+Blns+C(lns) 2

+R s 1=2

(24)

fit4:

tot

=A+Blns+C(lns) D

+R s 1=2

(25)

where A; B; C ; D and Rarefreeparameters.

Thehoiefortheseparametrizationswasbasedon

thefollowingonsiderations. Firstly,sineFigure1isa

linear-log plot,weseethat at the highestenergiesthe

datasuggestaninreaseof pp

tot

asapolynomialonlns.

TheFroissart-Martinboundstatesthatthefastestrate

permissibleasymptotiallyfortherisingof pp

tot isln

2

s

[24℄. However,ithasbeenshownbytheUA4/2

Collab-orationthattstoppandppaeleratordataindiate

the power2:25 +0:35

0:31

,aresult referredto as a

\qualita-tivesaturationoftheFroissart-Martinbound"[25℄. For

these reasons,weonsiderpolynomialfuntionsonlns

with two possibilities for the power fator: the value

2, aordingto the asymptotial bound and asa free

parameter to be determined by the ts. Finally, the

powerfuntionons,Eqs. (24)and(25),representsthe

usualwaytotakeaountofdataatlowervaluesofthe

energy(520GeV)andanbeassoiatedwithRegge

phenomenology.

The ts were performed by using the

CERN-MINUITroutine [11℄ and the results for ensemblesA

and B are shown in Figs. 2 and 3, respetively. The

orrespondingvaluesofthefreeparametersandthe 2

perdegreeoffreedomaredisplayedinTable1and2for

ensembles A andB, respetively. Wedisuss all these

resultsin Se. IV.

10

1

10

2

10

3

10

4

s (GeV)

30

50

70

90

110

130

150

170

190

210

σ

tot

(mb)

accelerator

Honda et al.

Baltrusaitis et al.

Ensemble A

Figure2. Fitstopptotalrosssetiondatafromensemble

AthroughEqs. (22)-(25): t1(solid),t2(dotted),t3

(dot-dashed)andt4(dashed).

10

1

10

2

10

3

10

4

s (GeV)

30

50

70

90

110

130

150

170

190

210

σ

tot

(mb)

accelerator

GSY

Nikolaev

Ensemble B

Figure3. Fitstoppross setion fromEnsembleB.Same

(6)

Table1. ValuesoftheparametersinEquations(22)

(25) and the 2

per degree of freedom in eah t to

EnsembleA.

t: 1 2 3 4

A 45.78 42.64 38.74 33.67

B -3.315 -1.875 -1.868 -0.3201

C 0.3654 0.1220 0.2894 0.09465

D 2(xed) 2.312 2(xed) 2.288

R - - 21.52 31.40

2

11.7 15.4 9.8 9.9

d:o:f: 11 10 10 9

2

=d:o:f: 1.06 1.54 0.98 1.10

Table2. ValuesoftheparametersinEquations(22)

(25) and the 2

per degree of freedom in eah t to

EnsembleB.

t: 1 2 3 4

A 49.27 43.54 62.48 38.34

B -4.435 -1.846 -7.221 -0.8162

C 0.4534 0.05958 0.6050 0.03461

D 2(xed) 2.624 2(xed) 2.755

R - - -38.40 14.80

2

15.0 10.7 10.4 11.4

d:o:f: 11 10 10 9

2

=d:o:f: 1.36 1.07 1.04 1.27

III.2 Preditions for the

param-eter

Inthissetionwedeterminethe(s)behavior,

mak-ing use of the DAR and all the parametrizations for

pp

tot

obtainedinthelastsetion. Asommentedbefore

weare interestedin thepratialappliabilityof both

forms of the DAR, the general and the onventional

ones,Eq. (20)andEq. (21),respetively.

In priniple, the general expression (20) has two

\freeparameters", namelythesubtrationonstantK

and the parameter . Firstly, as a simpleexerise to

seetheeetoftheDAR,letusonsideroneofthets

to pp

tot

,forexamplet4,forbothensemblesAandB,

andalulate(s)throughtheonventionalexpression

andwithoutsubtrationonstant,whihmeanstaking

= 1and K =0 in Eq. (20), orK =0in Eq. (21)

(this orrespondsto theformula usuallyreferredto in

theliterature[1,2℄). TheresultsaredisplayedinFig. 4

together withtheexperimental data[26℄. Wesee that

althoughthepreditionsfrombothensemblesare

sim-ilar at the ISR energy region, both disagree with the

data.

Inwhat followsweinvestigate theinuene of the

above twofree parameters in the desription of these

data. In order to do that, we rst treat the

onven-tional formulawiththe subtrationonstantandthen

thegeneral formula,withoutsubtration onstantand

thefatorasfreeparameter.

Conventionalderivativedispersionrelation

With the parametrizations (22-25)for pp

tot

we

ob-tain analytial expressions for (s) by using the

on-ventional form of the DAR, Eq. (21). For eah

in-put parametrization the subtration onstant K is a

freeparameter,determinedbyt,throughthe

CERN-MINUITroutine,totheexperimental data[26℄.

Theresultsfromeahparametrizationandforboth

ensemblesare shown in Figures5and 6togetherwith

the experimental data. The valuesof the subtration

onstantand statistial information aboutthe tsare

displayedin Table3.

10

1

10

2

10

3

10

4

10

5

s (GeV)

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

ρ

Figure4. Resultsfor(s), usingt4frombothensembles

A(dashed) andB(solid)and DARwith=1andK=0

inEq. (20)andexperimentaldata[26 ℄.

Table3. Valuesof thesubtration onstantfrom tsto(s)data andthe 2

for6degreeof freedom. Calulation

performedthorough Eq. (21)usingthefourtsto pp

tot

from ensemblesAandB.

t-pp

tot

-EnsembleA: 1 2 3 4

K -134.1 -135.6 -130.3 -129.6

2

=d:o:f: 0.82 0.63 0.97 0.63

t-pp

tot

-EnsembleB: 1 2 3 4

K -130.0 -134.4 -137.1 -132.0

2

(7)

10

1

10

2

10

3

10

4

10

5

s (GeV)

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

ρ

Figure5. Resultsfor (s),throughtheonventional DAR,

Eq. (21), from tsto pp

tot

fromensembleAtogether with

theexperimentaldata. SamelegendasFig. 2.

10

1

10

2

10

3

10

4

10

5

s (GeV)

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

ρ

Figure6. Resultsfor (s),throughtheonventional DAR,

Eq. (16), ts to pp

tot

from ensembleB, together withthe

experimentaldata. SamelegendasFig. 2.

Generalderivativeanalytiityrelation

As shown in some detail in Se. II.B, the general

result for the DAR depends on the free parameter .

It omes from theintegration by parts ofEq. (7)and

itisneessaryinordertoallowanitederivativeform

assoiatedwiththeintegralform. Inthissenseitseems

to playtheroleofaregularizationfator. Althoughin

nearlyallpratialusesoftheDARthevalue=1is

assumed, we have shown that its value is onstrained

to theinterval0<<2(seealsoreferenes[18, 19℄).

In partiular, in the ontext of a multiple diration

model, it was reently shown that the desription of

the experimental dataon ppelasti satteringmaybe

improved by taking as a free parameter [27℄. This

earlyresultinspiredustomakeuseofthegeneral

rela-tion(20)andtoinvestigatethepossibleeetofasa

freeparameter(some preliminary resultswere already

presented in Ref. [28℄). Tothis end we will nottake

aountofthesubtration onstantin thegeneral

for-mulafortheDAR,namelyK =0inEq. (20),sothat

weexpliitlyhave:

(s) = tan

2 ( 1)

+

+

2 se

2

2 ( 1)

1

tot (s)

d

tot (s)

dlns

+1

:

(26)

Withaxedparametrizationfor pp

tot

weantthe

experimental data on by letting to be a free

pa-rameterintheaboveequation,onemorebyusingthe

CERN-MINUIT.Theresultsfromallthe

parametriza-tionsfor pp

tot

with bothensemblesA andBareshown

inFigures7an8,respetively. Theorresponding

val-uesforandstatistialinformation aboutthets are

displayedinTable4.

Table 4. Values of the parameter from ts to (s)

data and the 2

for 6 degreeof freedom. Calulation

performed thorough Eq. (20) with K = 0 and using

thefourtsto pp

tot

fromensemblesAandB.

t-pp

tot

-EnsembleA: 1 2 3 4

1.229 1.223 1.231 1.230

2

=d:o:f: 2.61 3.17 2.17 2.20

t-pp

tot

-EnsembleB: 1 2 3 4

1.244 1.240 1.244 1.239

2

=d:o:f: 1.48 1.94 2.00 1.80

10

1

10

2

10

3

10

4

10

5

s (GeV)

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

ρ

Figure7. Results for (s), throughthegeneral expression

oftheDAR,Eq.(20),withasfreeparameter,K=0and

tsto pp

(8)

10

1

10

2

10

3

10

4

10

5

s (GeV)

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

ρ

Figure8. Resultsfor (s), throughthe generalexpression

oftheDAR,Eq. (20),withasfreeparameter,K=0and

tsto pp

tot

fromensembleB.

IV Disussion

The parametrizations for pp

tot

are theusual ones, but

the dierent ensembles, suggested by osmi-ray

re-sults, introdue novel behaviorsin the asymptoti

re-gion, as learly shown in Figs. 2 and 3. For

exam-ple, byalulatingthe averagevalueand thestandard

deviation from the four parametrizations we an

esti-mate pp

tot

(14 TeV ) =1135mb forensemble A and

pp

tot

(14 TeV ) =1407 mb for ensemble B.At lower

valuesoftheenergy,namely p

sintheregion10 100

GeV,thereisnosigniantdistintionbetweenthefour

parametrizations. In general, model preditions are

in agreement with the above result from ensemble A

[5,6,7℄,inluding thetby theUA4/2Collaboration

[25℄. To our knowledge, the only exeption (model)

that presents agreement with the result from

ensem-ble B is that of Ref. [4℄. This multiple diration

model is based on analyzes of pp elasti sattering in

theinterval13:8GeV p

s62:5GeV, thesameset

we used hereat the aeleratorregion. Extrapolation

to higher energies predited

tot

(16 TeV ) = 147 mb,

withoutestimatederrors. ReentlyPerez-Perazaet al.

improvedthismodelpreditionsdeterminingondent

error bands through a foreasting regression analysis

[29℄. Reading from Fig. 2of this referenewean

in-fer

tot

(16 TeV ) 14737 mb. Despite of the large

errorband (25%), evenin this aseitis learfrom

the quoted gure that the results favors ensemble B.

Froma\statistialpointofview"wemaysaythatthe

publishedresultsfrom modelsandtsshowagreement

with ensemble A. However, it should be stressed that

theosmi-rayestimationsintheensembleAwere

ob-tainedunder thehypothesisof thegeometrialsaling

[3℄,whihisviolatedevenat p

s500GeV.Moreover,

we should remember results from osmi-ray

experi-ments whih indiate the possibility of new

phenom-ena in pp ollisions at enter-of-mass energiesbeyond

500 GeV[30℄. As a diret onsequeneweshould

ex-petnewopenhannelsandthereforeafaster risingof

thepptotalrosssetionthanexpetedin the

extrap-olations from aelerator data. This seemsto be well

aommodatedbytheparametrizationswithensemble

B.

Conerningthedeterminationof(s)throughDAR,

werst showed thattheonventional expression

with-outsubtration onstant(=1andK =0)doesnot

reprodue the experimental data (Fig. 4). We

re-all that this expression has been referred to in the

literature [1, 2℄ and also used in the ontext of

phe-nomenologialmodels [22, 23℄. Taking aount of the

subtrationonstantK,thedataarewelldesribed,as

showninFigs. 5and6. FromTable3,

jKj130 137; (27)

depending on the t and ensemble for pp

tot

. As

ex-peted dierent ensembles orrespond to distint

be-haviorsatthe highestand asymptoti energies. As in

the aseof pp

tot

weanestimate an average valueand

standarddeviationfromthefourresultsinFigs. 5and

6: (14TeV )=0:1420:010with pp

tot

from ensemble

A and(14TeV )=0:1730:013fromensembleB.In

this asewean saythat theresultswith ensemble A

presentthebestagreementwiththeexperimentaldata

(Table3andFigs. 5and6). Wealsotestedthegeneral

expressionfortheDARbytaking K=0and letting

asafree tparameter. Theresultspresentedin Figs.

7 and 8show that the data are also satisfatorily

de-sribed, speially in the ase of pp

tot

from ensemble B

(omparewith Fig. 4, theaseof xed=1). From

Table4,

1:22 1:24; (28)

dependingalsoonthet andensemblefor pp

tot

. Inall

theseasestheondition(13)isveried.

V Conlusions and nal remarks

In this ommuniation we investigated two ensembles

of experimental information on pptotal ross setions

andusedfourdierentparametrizationstotthedata,

asfuntionoftheenergy. Ineahaseweobtained

pre-ditions for (s) making use of both the onventional

andthegeneral expressionsforthederivative

analyti-ityrelations.

Ourrstmainonlusionisthatexperimental

infor-mationpresentlyavailableonpptotalrosssetions

in-diatestwopossibledierentsenariosforthehadroni

interations at the highest energies. The fast rise of

pp

tot

from the analysis of ensemble B is orroborated

(9)

indiation of new phenomena from emulsion hamber

experiments[30℄. Althoughinthis workweonlypoint

out for this possibility, new information oming from

RHIC and LHC shall ertaintly larify this subjet.

In this sense, our results may be viewed as a kind

of warningagainstsomepossiblepreipitated

assump-tions,namely,thatextrapolationsfromaeleratordata

whihshowagreementwiththeosmi-rayestimations

inensembleAouldbethenalanswertothequestion.

Aseond novelresultfrom thismodelindependent

analysiswastoshowthepratialappliabilityofboth

the onventional and the general expressions for the

derivative analytiity relations at suÆiently high

en-ergies. In the onventional ase, = 1, letting the

onstant K as free parameter, the desription of the

experimental dataisquitegood. Ontheotherhand,

taking K =0and letting as free t parameter, the

results may be onsidered satisfatory. In both ases

the preditions at the highest energies are pratially

thesame(ompareFigs. 5and7andalsoFigs. 6and

and 8) and the dierenesat this energyregion ome

obviouslyfromthedierentensemblesfor pp

tot

. Our

ap-proahwastoonsider thetwopossibilitiesseparately

(K 6=0or 6=1), sothat weouldinfer theintervals

of possiblevariations, Eqs. (27)and (28).

Simultane-ous analysis with both possibilities shall improve the

desriptionof(s)andthis isourseond main

onlu-sion.

In this ommuniation we treatedonly pp

intera-tions, sine the osmi-ray informations onern only

this ase. We arepresently investigating theinlusion

ofantiproton-protondataintheanalysisthrough

ade-quateonsiderationsonrossingsymmetry.

WearegratefultoFapespfornanialsupportand

J.Montanhaforreadingthemanusript. M.J.M.isalso

thankfultoN.N.Nikolaevfordisussions,V.Ezhelafor

orrespondeneandCNPqfornanialsupport.

Referenes

[1℄ G.Matthiae,Rep.Prog.Phys.57,743(1994).

[2℄ M.M.BlokandR.N.Cahn,Rev.Mod.Phys.57,563

(1985).

[3℄ R.Engel,T.K.Gaisser,P.Lipari,andT.Stanev,Phys.

Rev.D58,014019(1998).

[4℄ A.F.MartiniandM.J.Menon,Phys.Rev.D56,4338

(1997).

[5℄ A. Donnahie and P. V. Landsho, Z. Phys. C 2, 55

(1979);Phys.Lett.B387,637(1996).

[6℄ P.Desgrolard,M. GionandE.Predazzi,Z. Phys.63,

241(1994).

[7℄ C.Bourrely,J.SoerandT.T.Wu,Nul.Phys.B247,

15(1984);Z.Phys.C37,369(1988).

[8℄ M.M.Blok,F.Halzen,T.Stanev,Phys.Rev.Lett.83,

4926(1999).

[9℄ The PP2PP (R2) Collaboration, BNL,

www.rhi.bnl.gov.

[10℄ The TOTEM Collaboration, Tehnial proposal,

CERN/LHCC99-7,(1999).

[11℄ F.James, MINUIT- Funtion Minimizationand

Er-rorAnalysis-RefereneManual,Version94.1,CERN

-D506(1994).

[12℄ Aelerator data on pp

tot

(the numbers between the

squaredbraketsindiate the enter-of-mass energyin

GeV):A.S. Carrol et al., Phys. Lett. B61, 303(1976)

[13.8℄; A.S. Carrol et al., Phys.Lett. B80, 423(1979)

[19.4℄;U.AmaldiandK.R.Shubert,Nul.Phys.B166,

301(1980)[23.5,30.7,44.7,52.8,62.5℄.

[13℄ R. M. Baltrusaitis et al., Phys Rev. Lett. 52, 1380

(1984).

[14℄ T.K. Gaisser, U.P. Sukhatme, and G.B. Yodh, Phys.

Rev.D36,1350(1987).

[15℄ H. Honda et al. (Akeno Collaboration), Phys. Rev.

Lett.70,525(1993).

[16℄ N.N.Nikolaev,Phys.Rev.D48,R1904(1993).

[17℄ N.V. Gribov and A.A. Migdal, Sov J.Nul. Phys.8,

583(1969);J.B.Bronzan, ArgonneSymposiumon the

Pomeron, ANL/HEP 7327 (1973) 33; J. D. Jakson,

1973 Sottish Summer Shool, LBL-2079 (1973) 39; J.

B.Brozan,G.L.Kane,andU.P.Sukhatme,Phys.Lett.

B49,272(1974);K.KangandB.Niolesu,Phys.Rev.

D11,2461(1975).

[18℄ G.K. Eihmannand J. Dronkers, Phys. Lett. B 52,

428(1974);J.HeidrihandE.Kazes,LetterealNuovo

Cimento12,365(1975);A.BujakandO.Dumbrajs,J.

Phys.G:Nul.Phys.12,L129(1976).

[19℄ J.Fisherand P. Kolar, Phys.Lett. B64,45 (1976);

Phys. Rev.D 17, 2168 (1978); Czeh. J. Phys.B 37,

297(1987);P.KolarandJ.Fisher,J.Math.Phys.25,

2538(1984).

[20℄ M.J.Menon,A.E.Motter,andB.M.Pimentel,Phys.

Lett.B451,207(1999);in1997-XVIIIBrazilian

Na-tionalMeeting onPartiles andFields,editedbyO.J.

P.

Ebolietal.(SBF,S~aoPaulo,1998)pp.548-552.

[21℄ F.W.Byron,R.W.Fuller,MathematisofClassialand

QuantumPhysis,(Dover,1992),Chap.6.

[22℄ U.Sukhatmeetal.,Phys.Rev.D12,3431(1975); V.

Barger, J.Luthie andR. J.N. Phillips, Nul.Phys.B

88,237(1975).

[23℄ M.Kawasaki, T.Maehara, M. Yonezawa, Phys.Lett.

B348,623(1995).

[24℄ M.Froissart,Phys.Rev.123,1053(1961);A.Martin,

andF.Cheung,Analyti Properties andBounds of the

Sattering Amplitude, (Gordon and Beah, New York,

1970).

[25℄ C.Augieretal.(UA4/2Collaboration),Phys.Lett.B

315,503(1993).

[26℄ Experimentaldataon(s) (thenumbersbetween the

squaredbraketsindiatethemenergyinGeV):L. A.

Fajardoetal.Phys.Rev.D24,46(1981)[13.8and19.4℄;

U.AmaldiandK.R.Shubert,Nul.Phys.B166, 301

(10)

[27℄ A.F. Martini, M.J. Menon, J.T.S. Paes e M.J. Silva

Neto,Phys.Rev.D59,116006(1999).

[28℄ R.F.

Avila,E.G.S.Luna,andM.J.Menon,inPro.

XXIBrazilianNationalMeetingonPartilesandFields,

S~aoLoureno,Brazil, 23-27Otober,2000(inpress).

[29℄ J.Perez-Perazaetal.,hep-ph/0011167(2000).

[30℄ Chaaltaya and Pamir Collaboration, Nul. Phys. B

370,365(1992);S.L. C.Barroso etal.,Nul.Phys.B

Imagem

Figure 1. Experimental information on pp total ross se-
Figure 2. Fits to pp total ross setion data from ensemble
Table 3. Values of the subtration onstant from ts to (s) data and the  2
Figure 7. Results for (s), through the general expression
+2

Referências

Documentos relacionados

The ourrene of squeezing eets in oupled osillators, and the transferene between them, has.. been studied in various situations using Hamiltonians involving either nonlinear terms

Magneti uids (MF) are stable olloidal solutions of magneti nanopartiles dispersed in a arrier that an.. be either a polar or a

temperature expansion of the grand potential per site of translationally invariant hain models,.. with periodi

The water-based magneti uid has been found to ontain large number of.. inherent lusters even in zero applied

the rst epoh of galaxy formation and to reanalyse the high-z time sale risis.. The

area of large partile volume frations, a glassy solid. phase, prepared by osmoti ompression, is

We also used spatial ltering tehniques to enhane the visualization of the magneti eld.. due to

Magneti liposomes are spherial vesiles ontaining magneti partiles.. Their