• Nenhum resultado encontrado

Neonatal handling alters the structure of maternal behavior and affects mother-pup bonding

N/A
N/A
Protected

Academic year: 2021

Share "Neonatal handling alters the structure of maternal behavior and affects mother-pup bonding"

Copied!
13
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Behavioural

Brain

Research

j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / b b r

Research

report

Neonatal

handling

alters

the

structure

of

maternal

behavior

and

affects

mother–pup

bonding

A.R.

Reis

a,∗

,

M.S.

de

Azevedo

a

,

M.A.

de

Souza

a

,

M.L.

Lutz

a

,

M.B.

Alves

a

,

I.

Izquierdo

b

,

M.

Cammarota

c

,

P.P.

Silveira

d

,

A.B.

Lucion

a

aDepartamentodeFisiologia,InstitutodeCiênciasBásicasdaSaúde,ProgramadePós-graduac¸ãoemNeurociências,UniversidadeFederaldoRioGrandedo

Sul(UFRGS),SarmentoLeite,500,PortoAlegre,RS,CEP90050-170,Brazil

bCentrodeMemória,InstitutodoCérebro,PontifíciaUniversidadeCatólicadoRioGrandedoSul(PUCRS),PortoAlegre,RS,CEP90610-000,Brazil cInstitutodoCérebro,UniversidadeFederaldoRioGrandedoNorte(UFRN),AvenidaNascimentodeCastro,2155,Natal,RN,CEP59056-450,Brazil dFaculdadedeMedicina,UniversidadeFederaldoRioGrandedoSul(UFRGS),RamiroBarcelos,2350,PortoAlegre,RS,CEP90035-003,Brazil

h

i

g

h

l

i

g

h

t

s

•Neonatalhandlingaffectsmaternalcareandaltersmother–pupsrelationship.

•Handlingdesynchronizesmother–pupinteractionsbychangingmaternalbehaviorsequence. •Neonatalhandlinginducessex-dependentchangesinthenestodorpreference.

•HandlingaffectsCREBandBDNFlevelsinpup’solfactorybulb,inasex-specificmanner. •Resultssuggestadifferentialolfactorylearningandpreferencefornestodorinpups.

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received2October2013

Receivedinrevisedform17February2014 Accepted21February2014

Availableonline2March2014 Keywords: Neonatalintervention Neurotrophicsignaling CREB Attachment Olfactorylearning

a

b

s

t

r

a

c

t

Duringearlylife,amotherandherpupsestablishaverycloserelationship,andtheolfactorylearning ofthenestodorisveryimportantforthebondformation.Theolfactorybulb(OB)isastructurethat playsafundamentalroleintheolfactorylearning(OL)mechanismthatalsoinvolvesmaternalbehavior (lickingandcontact).Wehypothesizedthathandlingthepupswouldalterthestructureofthematernal behavior,affectOL,andaltermother–puprelationships.Moreover,changesinthecyclicAMP-response elementbindingproteinphosphorylation(CREB)andneurotrophicfactorscouldbeapartofthe mecha-nismofthesechanges.Thisstudyaimedtoanalyzetheeffectsofneonatalhandling,1minperdayfrom postpartumday1to10(PPD1toPPD10),onthematernalbehaviorandpups’preferenceforthenest odorinaYmaze(PPD11).WealsotestedCREB’sphosphorylationandBDNFsignalingintheOBofthe pups(PPD7)byWesternblotanalysis.Theresultsshowedthathandlingaltersmother–pupsinteraction bydecreasingmother–pupscontactandchangingthetemporalpatternofallcomponentsofthe mater-nalbehaviorespeciallythedailylickingandnest-building.Wefoundsex-dependentchangesinthenest odorpreference,CREBandBDNFlevelsinpupsOB.Malepupsweremoreaffectedbyalterationsinthe lickingpattern,andfemalepupsweremoreaffectedbychangesinthemother–pupcontact(thetime spentoutsidethenestandnursing).

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Inmammals,theimpactofleaving thesafeuterine environ-mentandfacingmanyunfamiliarenvironmentalstimuliandrisks requirestheprotectionofacaregiver.Duringtheneonatalperiod,

∗ Correspondingauthor.Tel.:+5505133083578;fax:+5505133083092. E-mailaddress:bioadolfo@gmail.com(A.R.Reis).

themotherisaninterfacebetweenthenewlybornmammaland theenvironmentandcanpowerfullyshapeinfantdevelopment[1]. Earlylifeisacriticalphaseforthenervoussystem,whenthebrain undergoesfunctionalorganization,neuronalproliferation, migra-tionanddifferentiation,gliogenesisandmyelination[2].Morethan 50 yearsof studyhave exploredthe implicationsofchanges in maternalbehavior onneonatal programmingand its persistent consequencesonbehavioralandneurochemicaloutcomeslaterin life[3–12].

http://dx.doi.org/10.1016/j.bbr.2014.02.036 0166-4328/©2014ElsevierB.V.Allrightsreserved.

(2)

A.R.Reisetal./BehaviouralBrainResearch265(2014)216–228 217 During early life, mother and infant establish a very close

relationship.Auditoryandvisualsensorysystemsareheavily impli-cated in this process but during theneonatal period, olfactory learningisa keyfactorfor theattachmentestablishment, espe-ciallyinsmall-brainmammalssuchasrodents[13–19].Inrats,the pupslearnhowtoidentifythemotherthroughaprocesssimilar totheclassicparadigmofconditioning,involvingtactile stimula-tionfromthedam(unconditionedstimulus)andthedam’sodor (conditionedstimulus)[16,17,19–21].Theolfactorybulb(OB)and thelocuscoeruleus(LC)areimportantstructuresintheolfactory learningmechanism[14,22–24],enablingtheratpup,borndeaf andblind,todirectitsbehavior towardthemother[23].Tactile stimulationcanactivatepups’LC,whichincreasesNoradrenaline (NA)intheolfactorybulbmitralcells[22].Thisassociationactivates achainofeventsinthemitralneuronsofthepup’sOB increas-ingthephosphorylation ofCREB(cyclicAMP-response element bindingprotein),whichisresponsibleforthetranscriptionofa vari-etyoffactors(includingbrainderivedneurotrophicfactor[BDNF]) thatleadtobiochemicaland morphologicalchanges inmemory formation[14,25–29].BDNFappearstobeakeyfactor in olfac-toryassociationlearning[30].BDNFgeneexpressionincreasesin responsetoseveralstimuli,includingneurotransmitterssignaling andCREBphosphorylation[31];forareview,see[32]andiscritical intheOBmorphologicdevelopment[33–38].

Neonatalhandlingisanexperimentalprocedurethatinvolves briefmaternalseparationandtactilestimulation,whichis exten-sivelyusedtoinvestigatetheeffectsofearlylifeinterventionson behavioralandendocrinealterations.Thisrepeateddisruptionin themother–pup relationship reducesfear [39], altersHPA axis (Hypothalamic-Pituitary-Adrenal)responsetoavarietyof stress-ors[40–44]andmayalsoaffectsocialbehaviorsandfertilityinboth maleandfemalerats[45–48].Inadditiontothebehavioraland neu-roendocrineaspectsofthesechanges,neonatalhandlingaltersthe brainplasticityandneurotrophicsignaling,thusproducing long-lastingstructuralchanges[49–51].

Previousstudiesfromourlaboratoryhaveshownthatthe han-dlingprocedurereducesthepup’spreferenceforthenestodorina sexdependway[45,48].Thislackofpreferencemaybeduetoan alterationintheolfactorylearningmechanisms;changesintheNA activityandCREB’sphosphorylationintheOBof7-day-oldratpups suggestthatthishypothesiscouldberight[48].BDNFistheperfect candidatetotestthishypothesissinceitisimplicatedinplasticity, dendriticbranching,neuronalsurvival,migrationand differentia-tionandaxonalcompetitioninthisareaduringtheneonatalperiod [33–38].

Otherstudiesusingearlyhandlingshowthatneurotrophic fac-torslikeBDNFplayakeyroleintheestablishmentofthesechanges andalsopointoutsexdependentchanges[52–54].However,isstill notclearifthehandlingprocedurecouldaffecttheneurotrophic signalingintheolfactorybulbofratpupsandifthesechangescould alsopresentasexdependentpatternlikeinotherbrainareas.

Therefore,ourhypothesisisthatneonatalhandlingaltersthe dailypatternofmaternalbehaviorcomponentsbeyondthe lick-ingcomponent,andthatthesechangesarepartofthemechanism thataltersBDNFgeneexpressionthroughsex-dependent modifica-tionsinCREBphosphorylationandproductioninthepup’sOB.For that,weanalyzedtheeffectsofhandlingonCREBphosphorylation andBDNFlevelsintheolfactorybulbof7-day-oldratpupsto ver-ifywhetherthealterationsinCREBphosphorylationaretransient oraretranslatedintoproteinalterations(changesinBDNFlevels), whichwouldindicateamoreprolongedeffect.Finally,expecting toassociatethechangesinmaternalbehaviorwiththepups’social behavior,wealsoanalyzedthepups’socialbehaviorwiththenest odorpreferencetestonPPD11toconfirmwhetherthe biochem-icalalterationsintheolfactorybulbwouldaffectsocialbehavior alreadyinearlylife.

2. Experimentalprocedures

2.1. Animals

PregnantfemaleWistarratswerebroughtfromthecolonyof theFederalUniversityofRioGrandedoSul(PortoAlegre,Brazil) totheanimalroominourlaboratory.Approximately7daysbefore delivery,thefemaleswerehousedindividually,andthepresenceof thepupswascheckedtwicedaily.Birthwasconsideredtobeday0, andonpostpartumday1(PPD1),thenumberofpupswasculledto 8perdambyrandomlyremovingafewpupswhileensuring min-imalcontactwiththeremainingrats,thesexofthepupswerenot consideredinthisprocedure.Alloftheanimalsweremaintained ona12-hlight/darkcyclewiththelightsonat6a.m.Theroom tem-peraturewas22±1◦C,andwaterandfood(Rodentchow,Nutrilab, Colombo,Brazil)wereavailableatalltimes.Cagebeddingwasnot changedfromPPD0to10.Theexperimentswereperformedin accordancewiththeNationalInstitutesofHealth(NIH)and Colé-gioBrasileirodeExperimentac¸ãoAnimal(COBEA)guidelines.These guidelinesweredesignedtominimizethediscomfortofanimals andwereapprovedbytheEthicsinResearchCommitteeofFederal UniversityofRioGrandedoSul(ProcessCEP/UFRGSnos.2007937 and19759)andfollowedBrazilianlegislation.

2.2. Neonatalhandling

Pupswerehandledfor1minperdayfromPPD1toPPD10for behaviouralstudieswhileforWesternblotanalysisthisprocedure lasteduntilPPD7.First,thehomecagecontainingthemotherand thelitterwasmovedtoaquietroomnexttotheanimalfacilityand weregiventhesamelightperiodandtemperatureasdescribed above.Then,themotherwasremovedfromthehomecageand placedintoanothercage.Theexperimentergentlyhandledallof thepupsatthesametimeusingbothhands,coveredwithfinelatex gloves,for60s.Noapparentharmwasinflictedtothepups;they weresimplytouched.Afterhandling,allofthepupsweretakento thenestatthesametime,andthemotherwasplacedbackinside thehomecage.Thehomecagewasthenreturnedtotheanimal facilityroomandleftundisturbeduntilthesametimethenextday. Thepupswerehandledduringthelightperiodofthedaily photope-riod cycle(10:00–12:00)at adistanceofapproximately100cm fromthemother.Thetotaltimeofthemother–infantseparation wasapproximately90s[39,45–48,50].

2.3. Experimentsandgroups

Inthefirstexperiment,weanalyzedtheeffectofneonatal han-dling onmaternal behavior. Litters weredivided into2 groups basedonthehandlingprocedure:thenon-handledgroupor con-trolgroup(NH,n=9),inwhichthepupswereleftundisturbedwith theirmotherduringthefirst10postnatal days,andthe repeat-edlyhandledgroup(H,n=9),inwhichthepupswerehandledas describedabovefromPPD1to10.

Inthesecondexperiment,thelittersthatoriginatedfromthe experimentone(NH,n=9;H,n=9)wereusedfortheodorofthe nestpreferencetesttoanalyzethesocialbehaviorofthepupson thePPD11.

Inthethirdexperiment,themolecularmechanism intheOB related to maternal behavior wasanalyzed onPPD 7. Previous studiesshowedchanges inthemonoaminergic systemafterthe handlingprocedureonthatday[48].Atotalof48pups(24males and24females)fromthetwoexperimentalgroupsdescribedabove (NH;n=12fromeachsexandH;n=12fromeachsex)weredivided into4subgroupsbasedonthetimeoftissuecollectionforWestern blotanalysis(n=6ofeachsexinallgroups).Twosamplesoftissue

(3)

wereobtainedinbothgroups,30and120minafterthehandling procedure.

2.4. Experiment1:maternalbehavior

Fromthe1sttothe10thPPD,thematernalbehaviorwasscored dailyusingaprocedureadapted frompreviousstudies[55–59]. Four72-minrecordingsessionswereconducted.Therecording ses-sionsoccurredatregulartimeswith3periodsduringthelightphase (9:00,12:00and15:00)and1periodduringthedarkphase(18:00) ofthelight-darkcycle.Withineachobservationsession,the behav-iorofthemotheratthatspecificmomentwasscoredevery1min and30s.Thus,wehad50observationspersessionin4periodsper day,renderingatotalof200observationspermotherperday. Usu-ally,onlyonebehaviorwasrecordedineachobservationsample; however,2simultaneousbehaviors(forexample,nursingand lick-ing)werealsorecorded.Thedatawereexpressedasthenumberof observationsinwhichthepupsreceivedthetargetmaternal behav-iorduringthe10postpartumdays(thetotalnumberofeventswas 2000).

Thetargetmaternalbehaviorswereasfollows:(1)lickingany pup(thebodysurfaceand/oranogenitalregion),(2)nestbuilding, (3)goingoutsideofthenest,(4)carryingpups(retrievingthepups andplacingtheminthenest),and(5)nursingpups(ineithera higharched-backpostureoralowarched-backposture,inwhich themotherlaysoverthepups,orapassiveposture,inwhichthe motherislyingeitheronherbackorsidewhilethepupssuckle).A detaileddescriptionofthebehaviorsisprovidedinMyers,Brunelli [60]andChampagne,Francis[56].

2.5. Experiment2:nestodorpreferencetest

Thesocialbehaviorofthepupswastestedinthe11thPPDwith aprotocoladaptedfrom[45,48].Briefly,thematernalodor pref-erencetestwasa two-odorchoicebetweenareaswiththenest orfreshbedding.AY-maze(neutralarm15cm×10cm,testarms 20cm×10cm)wasusedtoperformthistest.Ineacharea,300mL offreshornestbeddingwereplacedinadjacentarms.AtPPD11, apupwasremovedfromthenestandplacedintheneutralarmof theY-maze.Allofthesessionswerevideotapedandfurther ana-lyzedbyaresearcherwhowasblindtotheexperimentalgroups. Duringthe1-mintrial,theamountoftimethatthepup(whole body)spentover each of thetwo armswas recorded.We also recordedthetimethatwasspentinreachingthenestarea. Ani-malsweretestedfor5trials,withaninter-trialintervalof2min, duringwhichthemazewascleanedwith70%ethanoltoremove traceodors.Weusedonemaleandonefemalepupfromeach lit-ter,andtheorderofthetestwascounterbalancedacrosslittersto preventanyeffectfromthetestingorder.Ineachtrial,thenestor freshbeddingwasswitchedbetweenthedifferentarmsofthe Y-maze.ThevideorecordingswerelateranalyzedusingtheNoldus Observersoftware(NoldusInformationTechnology,Wageningen, Netherlands).Weanalyzedthetimeineachareaineachtrial,the percentageoftotaltimeovertheareasandthelatencytoreachthe nestarea.Thetotaltimeineachareawasobtainedbycalculating thesumofthefivetrials,andthedatawereexpressedasthe per-centageoftimethattheanimalspentoverthebeddingareas(fresh orthenest).Thelatencytoreachthenestareawasobtainedby calculatingthemeanofthefivetrials,andthedatawereexpressed inseconds.

2.6. Experiment3:Westernblotanalysis

ThelevelsofBDNF,CREBandpCREBwereanalyzedonPND7 (postnatalday7),which istheoptimaldayfor expressingodor preferencelearningforthematernalodor[25,26,61]byWestern

blotanalysis,asdescribedbyRaineki,DeSouza[48].Briefly,pups wererapidlydecapitatedimmediatelyaftertakingthemfromthe homecage.TheOBswereremovedandimmediatelyfrozenina containerwithisopentaneindryiceandstoredat−70◦C.They

werehomogenizedusing500␮Lofhomogenizationbuffer(20mM Tris–HCl, pH 7.4 containing 1mM sodium orthovandate, 1mM EDTA,1mMEGTA,50mMNaFand1mMPMSF).Proteincontent wasdetermined using the Bradford (1976) method.Equivalent amountsofprotein(20␮gforeachsample)wereloadedintoeach lane.Proteinswereseparatedonthebasisofgelmobilityusing SDS-PAGE; theywere thenelectrotransferred topolyvinylidene difluoridemembrane(PVDFmembrane;Immobilon-P,Millipore, Billerica,USA).ThemembraneswereimmersedinPonceauS solu-tiontodeterminewhetherequalamountsofproteinwereloaded; theywerethenwashedwithwater.Themembraneswere incu-bated in Tween–Tris buffersaline(TTBS; 100mM Tris–HCl,pH 7.5, containing 0.9% NaCl and 0.1% Tween 20) that contained 5% albumin for 2h at room temperature to block nonspecific binding.Afterward, the membraneswere rinsed fourtimes for 15min in TTBS, followed by incubation overnight ona shaker at 4◦C in the presence of primary antibodies that recognize the following antigens: BDNF (1:5000, Santa Cruz Biotechnol-ogy,SantaCruz,USA),CREB(1:5000,NewEnglandBioLabs,USA) andpCREB(1:4000,Sigma–Aldrich,USA).Theblotswererinsed four times for 15min in TTBS, and they were then incubated for2hwiththesecondaryantibody,goatanti-rabbitIgG conju-gatedwithhorseradishperoxidase(SantaCruzBiotechnology),at a1:80,000(BDNF)or1:50,000(CREBandpCREB)dilutioninTTBS. Themembraneswerethenrinsedfourtimesfor15mininTTBS. Immunoreactivity was detected using the West-Pico enhanced chemiluminescencekit (Pierce, IL,USA). Densitometric analysis wasconductedusinganImageQuantRT-ECLsystem(GE, Piscat-away,NJ,USA).

2.7. Statisticalanalysis

Weusedtimeseriesdecompositiontoaccesstrendsand sea-sonal patterns in thecomponents of the maternal behavior of the two groups (NH and H) in all observation sessions in the first10PPDs.Toaccesstrendinthecomponentsofthematernal behaviorweusedDickey–FullerTestandwereconsidered signif-icantwhen p>0.05. ToaccessseasonalpatternsweusedFisher GTestandwereconsideredsignificantwhenp<0.05 (Fig.1A–D ).

Thenumberofeventsofeachcomponentofthematernal behav-iorwasexpressedasthemean(±SEM).Weanalyzedthematernal behavioracrossthe4daily observationsessions(sumofthe10 days in each daily observation sessions,with 500observations persession)foreachcomponentofthematernalbehaviorinthe first10postpartumdays.WeusedaGeneralizedEstimating Equa-tionsanalysis(GEE)tocomparethematernalbehaviorinthetwo groups (NH and H) acrossthe 4 daily observationsessions. To assessdifferencesbetweenthegroupsforeachobservationpoint, weusedBonferronimultiplecomparisonstestwhenappropriate. Inallcases,differenceswereconsideredsignificantwhenp<0.05 (Fig.2A–D).

Weanalyzedthecomponentsofthenursingbehavior(Active Nursing–HighandLowArched-backNursingandPassive Nurs-ing)acrossthe4dailyobservationsessionsusinga Generalized EstimatingEquationsanalysis (GEE)comparing thetwo groups (NH and H) across the 4 daily observation sessions. To assess differences betweenthegroups for each observationpoint, we usedBonferronimultiplecomparisonstestwhenappropriate.In all cases, differences wereconsidered significant when p<0.05 (Fig.3A–C).

(4)

A.R.Reisetal./BehaviouralBrainResearch265(2014)216–228 219

Fig.1.Timeseriesdecompositionanalysisofthenursingbehaviorofnon-handled(A)andhandleddams(C)andLicking(BodyandAnogenital)ofnon-handled(B)and handleddams(D)inthefirst10PPDs.Datawereanalyzedusingdecompositionofadditivetimeseries,verifyingtrendandseasonalpatternsinthefirst10dayspostpartum acrossthe4dailyobservationsessions(before,after,3hafterand5hafterhandling).*Representspresenceoftrendorseasonalpattern,n=9inallgroups.

Toanalyzetheperformanceinthenestodorpreferencetest, wecompared thepercentage oftime spentin thenest bedding areaandinthefreshbeddingareausingananalysisofvariance (ANOVA)forhandlingprocedure,sexandbeddingarea(Freshor Nest). Toassessdifferences betweenthegroupsfor each point, weusedBonferronimultiplecomparisonstestwhenappropriate (Fig.4).

Toanalyzetheperformanceineachtrialofthenestodor pref-erencetest,wecomparedthetime(seconds)spentinthebedding areas(FreshandNest)usingusedaGeneralizedEstimating Equa-tionsanalysis(GEE)fortime(timeineach ofthe5trialsofthe nestodorpreferencetest),handlingprocedure,sexandbedding area(FreshorNest).Toassessdifferencesbetweenthegroupsfor eachpoint,weusedBonferronimultiplecomparisonstestwhen appropriate(Fig.5A–D).

To analyze the latency to reach the nest bedding area and thetotalofmovementduringtheodorpreferencetest,weused an analysis of variance (ANOVA) for handling procedure and sex.Toaccessdifferencesbetweenthegroups,weused Bonfer-roni multiple comparisons test when appropriate. In allof the cases,differenceswereconsideredtobesignificantwhenp<0.05 (Fig.6).

ThelevelsofCREBandpCREBintheOBwereanalyzedusing Studentt-test,andtheBDNFlevelswereanalyzedusinga two-wayanalysisofvariance(ANOVA)followedbyBonferronimultiple comparisonstest(factorstreatment×timeoftissuecollection).In allcases,differenceswereconsideredtobesignificantwhenp<0.05 (Figs.7A–Cand8A–C).

3. Results

3.1. Timeseriesanalysisofmaternalbehavioracrossthefrist10 postpartumdays

3.1.1. Nursingbehavior

Weobservedatrendinthenursingbehaviorinthenon-handled group(Dickey–Fuller=−1.56,Lagorder=3,p=0.74)andalsointhe handledgroup(Dickey–Fuller=−2.51,Lagorder=3,p=0.36).Dams showedanaturalreductioninthepatternofthenursingbehavior acrossthefirst10PPDs,butthisreductionwasmorepronounced in thedamsfromthehandledgroup(Fig.1C)compared tothe non-handledgroup(Fig.1A).Therewasalsoa seasonalpattern acrossthe4dailyobservationsessionsin bothgroups(FisherG test,NH=p<0.01andH=p<0.01)butthehandledgroup(Fig.1C) exhibitsadifferentdailypatterncomparedtonon-handledgroup (Fig.1A).

3.1.2. Motheroffthenest

Weobservedatrendinthetimethatthemotherspentoutside the nest in the non-handled group (Dickey–Fuller=−2.07, Lag order=3, p=0.54) and also in the handled group (Dickey–Fuller=−1.92, Lag order=3, p=0.60). Dams showed anaturalincreaseinthetimespentoutsidethenestacrossthefirst 10PPDs,butthisincreasewasmorepronouncedinthedamsfrom thehandledgroup(datanotshow)comparedtothenon-handled group(datanotshow).Therewasalsoaseasonalpatternacross the 4 daily observation sessions in both groups (Fisher G test,

(5)

Fig.2.Componentsofthematernalbehaviorinthe4dailyobservationsessions:nursingbehavior(A),motheroffthenest(B),licking(BodyandAnogenital)(C)andmother buildingnest(D).Datawereexpressedmean(±SEM)andanalyzedusingGEEforhandlingprocedureand4dailyobservationsessions(before,after,3hafterand5hafter handling)foreachcomponentofmaternalbehavior(nursing,offthenest,lickingandbuildingnest)followedbyBonferroni’smultiplecomparisonstesttoaccessdifferences ineachpoint.*Representsasignificantdifference(p<0.05)forinteractionhandling×observationsessionintheallgraphics,n=9inallgroups.

NH=p<0.05 and H=p<0.01) but the handled group (data not show)exhibitsadifferentdailypatterncomparedtonon-handled group(datanotshow).

3.1.3. Lickingpup(BodyandAnogenital)

Weobservedatrendinthelickingbehaviorinthenon-handled group(Dickey–Fuller=−2.29, Lag order=3, p=0.45)and also in thehandledgroup(Dickey–Fuller=−2.33,Lagorder=3,p=0.44). Althoughtherewasobservedatrendinbothgroups,thedamsof thenon-handledgroup(Fig.1B)showmorecomplextrend (poly-nomial)themthehandledgroupthatexhibitsalinearreduction oflickingacrossthefirst10PPDs(Fig.1D).Therewasnoseasonal pattern detectedacrossthe 4 dailyobservation sessionsin the non-handledgroup(Fig.1B)thereisnosignificantchangeacross theday(Fisher Gtest,p>0.05)but thehandledgroup(Fig.1D) exhibitsadifferentdailypatternwithanabruptincreasein lick-inginthesessionimmediatelyafterhandlinggroup(FisherGtest, p<0.01).

3.1.4. Nest-buildingbehavior

Weobservedatrendinthetimenest-buildingbehaviorinthe non-handledgroup(Dickey–Fuller=−3.29,Lagorder=3,p=0.08) andalsointhehandledgroup(Dickey–Fuller=−3.03,Lagorder=3, p=0.16). Dams showed a natural decrease in the time spent buildingthenestacrossthefirst10PPDs,butthisdecreasewas lesspronouncedinthedamsfromthehandledgroup(datanot show) compared to the non-handled group (data not show). Therewas also a seasonal pattern across the4 daily observa-tion sessions in both groups (Fisher G test, NH=p<0.01 and

H=p<0.001)but thehandledgroup(datanot show) exhibitsa differentdailypatterncomparedtonon-handledgroupwithan abruptincreaseinthesessionimmediatelyafterhandling(datanot show).

3.2. Maternalbehavioracross4dailyobservationsessions 3.2.1. Nursingbehavior

Damsshowedanaturalreductioninthepatternofthe nurs-ingbehavioracrossthe4dailyobservationsessions(maineffect observationsessionWaldchi-square(3,14)=132.05p<0.001),but

thisreductionwasmorepronouncedinthedamsfromthehandled group(maineffecthandlingWaldchi-square(1,16)=6.81,p<0.01)

especiallyintheobservationsessionsimmediatelyafter (Bonfer-ronimultiplecomparisonstestp<0.05)and3hafterthehandling procedure(Bonferronimultiplecomparisonstestp<0.01) (Inter-actionhandling×observationsessionWaldchi-square(3,14)=2.68

p<0.05)(Fig.2A). 3.2.2. Motheroffthenest

Damsshowedanaturalincreaseinthetimespentoutsidethe nestacrossthe4daily observationsessions (maineffect obser-vationsessionWaldchi-square(3,14)=230.99,p<0.001),butthis

increase was more pronounced in the dams from the handled group(maineffecthandlingWaldchi-square(1,16)=7.53,p<0.01).

The results showed significant main effects for handling and observationsessions,and therewasaninteractionbetweenthe twofactors(Interactionhandling×observationsessionWald chi-square(3,14)=23.39,p<0.001)thatshowedthattheincreaseinthe

(6)

A.R.Reisetal./BehaviouralBrainResearch265(2014)216–228 221

Fig.3. Componentsofthenursingbehaviorinthe4dailyobservationsessions:activenursing–higharched-backnursing(A),passivenursing(B)andactivenursing– lowarched-backnursing(C).Datawereexpressedmean(±SEM)andeachcomponentofthenursingbehaviorwasanalyzedusingGEEforhandlingprocedureand4daily observationsessions(before,after,3hafterand5hafterhandling)followedbyBonferronimultiplecomparisonsteststoaccessdifferencesineachpoint.*Representsa significantdifference(p<0.05)forinteractionhandling×observationsession,n=9inallgroups.

the handling procedure (Bonferroni multiple comparisons test, p<0.05)and3hafterthehandlingprocedure(Bonferronimultiple comparisonstest,p<0.001)(Fig.2B).

3.2.3. Lickingpup(BodyandAnogenital)

Whenthe distributionof thelicking behavior wasanalyzed acrossthefourdailyobservationsessions,theresultsshowedno significantmaineffectforthetreatmentand(maineffecthandling Wald chi-square (1,16)=0.73, p>0.05). Dams of handled pups

showedanincreaseinlickingbehavior(maineffectobservation session, Wald chi-square (3,14)=11.96, p<0.05 and interaction

handling×observation session Wald chi-square (3,14)=24.09,

p<0.001),butthisincreasewaslimitedtotherecordingsession immediatelyafter the handlingprocedure (Bonferronimultiple comparisonstest,p<0.01)(Fig.2C).

3.2.4. Nest-buildingbehavior

Dams showed a natural increase in nest-building behavior acrossthe4dailyobservationsessions(maineffectobservation ses-sions,Waldchi-square(3,14)=32.88p<0.001).Theresultsshowed

nomaineffectofthetreatmentalone(maineffecthandlingWald chi-square(1,16)=0.07,p>0.05),buttherewasasignificant

inter-actionbetweenthetwofactors(Interactionhandling×observation sessionWaldchi-square(3,14)=23.89p<0.001),inwhichdamsof

thehandledpupsshowedanincreaseinnest-buildingbehaviorthat waslimitedtotherecordingsession immediatelyafterthe han-dlingprocedure,whichissimilartowhatwasfoundforthelicking behavior(Bonferronimultiplecomparisonstest,p<0.05)(Fig.2D).

3.3. Activeandpassivenursingbehavioracross4daily observationsessions

3.3.1. Activenursing–higharched-backnursing

Damsshowedanaturalreductioninthepatternofthe nurs-ingbehavioracrossthe4dailyobservationsessions(maineffect observation session Waldchi-square (3,14)=67.66p<0.001) but

therewerenodifferencesbetweenthegroups(maineffecthandling

Fig.4.Percentageoftimespentinthebeddingareas(FreshandNest)intheodor preferencetestonPPD11.Datawereexpressedmean(±SEM)andanalyzedusing ANOVAforhandlingprocedure,sexandbeddingarea(FreshandNest)followedby Bonferronimultiplecomparisonsteststoaccessdifferencesineachpoint. *Repre-sentssignificantdifference(p<0.05)forthemaineffecthandlingandformaineffect sex,n=9inallgroups.

(7)

Fig.5. Timeinsecondsspentinthebeddingareas(FreshandNest)ineachsessionoftheodorpreferencetestonPPD11.Datawereexpressedmean(±SEM)andanalyzed usingGEEfortime(sessionsoftheodorpreferencetest),handlingprocedure,sexandbeddingarea(FreshandNest)followedbyBonferronimultiplecomparisonsteststo accessdifferencesineachpoint.*Representssignificantdifference(p<0.05)fortheinteractiontime×handling×sex×beddingarea,n=9inallgroups.

Waldchi-square(1,16)=1.32,p>0.05)andnointeractionbetween

thetwofactors(Interactionhandling×observationsessionWald chi-square(3,14)=2.79p>0.05)(Fig.3A).

3.3.2. Passivenursing

Therewerenodifferences in thepassive nursingacrossthe 4 daily observation sessions (main effect observation session Wald chi-square (3,14)=2,18 p>0.05), no differences between

the groups (main effect handling Wald chi-square (1,16)=3.17,

p>0.05)andnointeractionbetweenthetwofactors(Interaction

Fig.6. Timespendbythepupstoreachthenestbeddingareainthenestodor preferencetestonPPD11.*Representssignificantdifference(p<0.05)forthemain effecthandling,n=8inallgroups.

handling×observation session Wald chi-square (3,14)=3.35

p>0.05)(Fig.3B).

3.3.3. Activenursing–lowarched-backnursing

Dams showeda natural reduction in thepattern ofthe low arched-back nursing across the 4 daily observation sessions (main effectobservation session Wald chi-square(3,14)=101.26

p<0.001),butthisreductionwasmorepronouncedinthedams fromthehandledgroup(maineffect handlingWaldchi-square

(1,16)=6.01,p<0.05)especiallyintheobservationsessions

imme-diatelyafter(Bonferronimultiplecomparisonstestp<0.05)and 3hafterthehandlingprocedure(Bonferronimultiplecomparisons testp<0.01)(Interactionhandling×observationsessionWald chi-square(3,14)=7.96p<0.05)(Fig.3C).

3.4. Nestodorpreferencetest

3.4.1. Percentageoftimespentovertheareas

There were no main differences between the pups of both groupsinthenestodorpreferencetestwhenthepercentageofthe totaltime(sumofthe5trials)wasanalyzed.Maleandfemalepups ofbothgroupsappearedtoshowpreferenceforthesideofthenest bedding(MaineffecthandlingF(1,34)=0.01p>0.05;maineffectsex

F(1,34)=3.02p>0.05;maineffectarea–FreshorNestBeddingArea

–F(1,34)=45.25p<0.0001).

There was a difference between male and female pups in thetimespentoverthearea(Interactionsex×areaF(1,34)=6.18

(8)

A.R.Reisetal./BehaviouralBrainResearch265(2014)216–228 223

Fig.7. WesternblotanalysisofmalepupsolfactorybulbafterthehandlingprocedureonPPD7.CREB(A),pCREB(B),andBDNFlevels(C)intheolfactorybulbofmalepups wereexpressedasmean±S.E.M.andanalyzedusingStudentttest(AandB)orTwo-WayANOVAfollowedbytheBonferroniPost-tests(C).*Representssignificantdifference (p<0.05)comparedtocontrolgroup(non-handled);n=6inallgroups,exceptforpCREBlevelsinthehandledgroup(n=5).

didthefemalepups(Bonferronimultiplecomparisonstest,p<0.05) (Fig.4).

There were no interactions between handling×sex (F(1,34)=0.33, p>0.05) and handling×sex×area (F(1,34)=

0.02,p>0.05).

3.4.2. Timespentovertheareasineachtrialoftheodor preferencetest

Therewerenomaindifferencesbetweenthepupsofbothsex and groups in the nest odorpreference test when the time in each trialwas analyzed (Maineffect handlingWaldchi-square

(1,34)=0.02p>0.05;main effectsexWaldchi-square(1,34)=2.19

p>0.05)butthereweredifferencesbetweenthetimespentinthe beddingareas(maineffectarea–FreshorNestBeddingAreaWald chi-square(1,34)=41.58,p<0.001)andintheperformanceineach

trials(maineffecttrialWaldchi-square(1,31)=43.59,p<0.001).

Thetrialthatthepupshadtheworstperformancewasthe sec-ond(Interactionarea×trialWaldchi-square(1,31)=16.71,p<0.01).

There was a difference between male and female pups in the timespentoverthearea(Interactionsex×areaWaldchi-square

(1,34)=7.79p<0.01).Malepupsspentmoretimeinthenestbedding

areathandidthefemalepups(Bonferronimultiplecomparisons test,p<0.05),andthisresultwasclearlycausedbythelackof pref-erenceforthenestbeddingareaobservedinthefemalepupsthat werehandledintheneonatalperiod(handling×sex×area×trial

Waldchi-square(1,31)=10.59,p<0.05).Malepupsfrombothgroups

preferredthenestareainthetrial3(Bonferronimultiple com-parisonstest,NHp<0.05andHp<0.001),4(Bonferronimultiple comparisonstest,NH p<0.001andHp<0.05)and5(Bonferroni multiplecomparisonstest,NHandHp<0.001),femalepupsthe non-handledgrouppreferredthenestareainthetrials1 (Bonfer-ronimultiplecomparisonstest,p<0.05)and4(Bonferronimultiple comparisonstest,p<0.001),femalepupsofthehandledgroupdid notpreferredanysideofthemazeinthe5trialsoftheOdor Pref-erenceTest.

There were no interactions between handling×sex Wald chi-square(1,34)=1.72,p>0.05),handling×areaWaldchi-square (1,34)=0.03,p>0.05),handling×trialWaldchi-square(1,34)=2.60,

p>0.05), sex×trial Wald chi-square (1,31)=0.98, p>0.05),

han-dling×sex×area Wald chi-square (1,34)=0.11, p>0.05),

han-dling×sex×trial Wald chi-square (1,31)=5.22, p>0.05),

han-dling×area×trialWaldchi-square(1,31)=7.41,p>0.05).

3.4.3. Timetoreachthenestbeddingarea

Theresultsshowedthathandledpupsspendmoretime reach-ing the nest bedding area than the pups of the non-handled group (main effect handling F(1,28)=7.23, p<0.05; main effect

sex F(1,28)=0.31 p>0.05; interaction handling×sex F(1,28)=0.00

(9)

Fig.8. Westernblotanalysisoffemalepupsolfactorybulbafterthehandlingprocedureonpost-natalday7.CREB(A),pCREB(B),andBDNFlevels(C)intheolfactorybulb offemalepupswereexpressedasmean±S.E.M.andanalyzedusingStudentttest(AandB)orTwo-WayANOVAfollowedbytheBonferroniPost-tests(C).*Represents significantdifference(p<0.05)comparedtocontrolgroup(non-handled);n=6inallgroups.

3.4.4. Totaltimeofmovementintheodorpreferencetest

Therewere no differences between thegroups in thetotal amount of movement during the 5 trials of the Odor Prefer-enceTest(maineffecthandlingF(1,28)=2.09,p>0.05;maineffect

sex F(1,28)=0.23 p>0.05; interaction handling×sex F(1,28)=3.33

p>0.05)(datanotshow).

3.4.5. Percentageoftimespentovertheareas,timetoreachthe nestbeddingareaandthematernalbehavior

Alterationsinthematernalbehaviorcoulddisrupttheolfactory learning,andourresultsshowedthattheeffectcouldbe differ-entformaleandfemalepups.Althoughmaleandfemalepupsof thehandledgroupusedmoretimetoreachthenestbeddingarea, thisalterationwascorrelatedwiththematernallickingpatternfor malepupsofthehandledgroup(anincreaseinlickinginthe ses-sionimmediatelyafterhandlingr=0.568,p<0.05).Forthefemale pups,therewasanegativecorrelationbetweenthetimethateach pupspenttoreachthenestbeddingareaandthematernal nurs-ingpattern(r=−0.5,p<0.05)andacorrelationtendencybetween thetimespentbythepuptoreachthenestbeddingareaandthe maternaltimespentoutsidethenest(r=0.49,p=0.054).

Anassociationwasalsopresentbetweenthenestodor pref-erenceof femalepupsand thematernal behavior.Therewas a correlationbetweenthepercentageoftimethatthefemalepups spendinthenestareaandthenursingbehavior(r=0.62,p<0.01) andanegativecorrelationwiththematernaltimespentoutside thenest(r=−0.57,p<0.05).

3.5. Westernblotanalysis

3.5.1. CREBandBDNFlevelsintheOBof7-day-oldmales

There were no differences in the CREB level 30min after handling between the group submitted to repeated handling (PND1 to PND7) compared to the non-handled group in male pups (t10=0.722, p>0.05) (Fig. 4A). There were alsono

differ-encesinthepCREBlevelbetweenthegroups(t9=1.219,p=0.25)

(Fig.4B).

TheBDNFlevelwasincreasedintheRHgroupat30(Interaction handling×time F(1,10)=16.71 p<0.01) and 120min (Interaction

handling×timeF(1,10)=7.43,p<0.05)afterhandling(maineffect

handlingF(1,10)=56.99,p<0.0001).Therewasnoeffectofthetime

alone(maineffecttimeoftissuecollectionF(1,10)=0.023,p>0.05)

(Fig.4C).

3.5.2. CREBandBDNFlevelsintheOBof7-day-oldfemales

TherewerenodifferencesintheCREBlevel30minafter han-dlingbetweenthegroups(t10=0.536,p>0.05)(Fig.5A).Therewas

adecreaseinthepCREBlevelinthefemalepupsoftheRHgroup (t10=4.298,p<0.01)(Fig.5B).

TheBDNFleveldidnotdifferinanyofthegroupsat30and 120minafterhandling(maineffecthandlingF(1,10)=0.474,p>0.05;

maineffecttimeoftissuecollectionF(1,10)=0.001,p>0.05;

Inter-action handling×time F(1,10)=0.556 and F(1,10)=0.166,p>0.05)

(10)

A.R.Reisetal./BehaviouralBrainResearch265(2014)216–228 225

4. Discussion

Theresultsshowedthathandlingthepupsduringthe neona-talperiodinducescomplexchangesonmaternalbehaviorthatare not limitedtoan increase ordecrease in licking behaviorafter theintervention.Moreover,wedemonstratedthat thehandling interventionaltersCREBphosphorylationandBDNFlevelsinasex dependentwayinthepups’OB,whichcouldbeassociatedwith differentialolfactorylearningandtheodorofthenestpreference inthepups.

4.1. Neonatalhandlingandmaternalbehavior

Thisstudyshows,forthefirsttime(tothebestofourknowledge) thathandlingaltersthetrendalongthefirst10postpartumdays andtheseasonaldailypatternoflicking,nestbuilding,nursingand timespentoutsidethenest.

Studiesthathadinterventionsinthepostpartumperiodusing slightlydifferenthandlingprotocols,suchasbrief(15min)daily separationfromthepups,showedanenhancementinmother–pup interactions by provoking bursts of maternal sensory stimula-tionofthepupsimmediatelyaftertheirreturntothehomecage [7,9,52–54,56,62,63].

Inthisstudy,weexpectedtofindthesameincreaseinmaternal care,especiallyinthelickingbehavior.Indeed,ourresultsshowed anincreaseinlickingbehaviorimmediatelyafterthehandling pro-cedure,aswehadpreviouslydemonstrated[64],butthisincrease waslimitedtothatspecificperiod, whichisin agreementwith theresultsdescribedbyClaessens,Daskalakis[9].Increasedlicking behaviorcouldrepresentamaternalresponsetothe environmen-talinterventionbecausemothersofnon-handledpupsshowedan expectedstabledailypatterninthismaternalbehavior.Changesin thestabilityofthelickingpatternthatwereinducedbyhandling couldbeperceivedbytheoffspringasanenvironmentalthreat, whichcouldleadtopersistentalterationsintheirdevelopment.

One important suggestionmade by Pryce, Bettschen [65] is thattheratstraincouldaffecttheresultofthehandlingprocedure in thematernalbehavior. Using Wistar ratherthan LongEvans rats(usedinotherstudies)[6,9],theydidnotfindanincreasein lickingafterthehandlingprocedure[51].WealsousedWistarrats, butwefoundanincreaseinlickingafterthehandlingprocedure inagreementwithotherthestudiesthatalsousethisratstrain [52–54,63].Therearetwoimportantdifferencesintheprotocol ofthematernalbehaviorobservationthatcouldexplainthis dis-crepancy.Pryce,Bettschen[65]measuredtheeffectofhandlingon maternalcareduringthedarkperiod,whenratsaremoreactive, and the mothersusually spend less time in contact with their pupsincomparisontothelightperiodinwhichweperformedour observations.Moreover,westartedrecordingmaternalbehavior immediatelyafterthehandlingprocedureandtheirobservations began15minaftertheintervention.

Wealsoobservedareactiveincreaseinthenest-building behav-ior in the session immediately after handling, which was also expectedbecausethehandlingprocedurealtersthenestareaand introducesexternalunfamiliarodors thatcantriggerthemotor activecomponentsofthematernalbehavior[66,67].

In additionto differencesin thefrequency of licking, rather complexchangesinothercomponentsofthematernalbehavior werefound,whichweremorepersistentthanthelickingburst. The total frequency of nursing decreased in dams whose pups were handled compared to the non-handled pups especially in the sessions immediately and 3h after handling procedure. Moreover,damsthathadtheirspupshandledincreasedthetime spentoutsidethenest,andthischangewasnotobservedafterthe procedure,aswouldbeexpected;instead,apersistenteffecton thisbehaviorwasobservedbeforethehandlingandonlyafter3h

aftertheintervention,thisdifferencemaybeduetotheincreasein lickinginthesessionimmediatelyafterhandling,decreasingthe timeoutsidethenestinthisperiod.

Maternalbehaviorsthatinvolvemoreactivemovements(such aslickingandnestbuilding)andthematernalbehaviorsthatare morequiescent(suchasnursing)arebecontrolledbydifferentCNS regionswithoppositerelationstothedopaminergicsystem[68]. Maternalactivebehaviorsarestimulatedbydopaminergic recep-torsintheshelloftheNucleusAccumbens(NCc)[68].Incontrast, quiescentbehaviorsareinhibitedbydopaminergicreceptors,so thattheonsetofquiescentbehaviordemandsa decreaseinthe dopaminergictonuswithintheNCc[69].Thesemechanismscould beinvolvedinthedisparitylicking/nursingbehavioralsequencein handlednestsasdescribedinourstudy.

Handlingpersecanaffectdirectlythepups[12],althoughthe roleoftheoffspringinearlysocialdynamicisdifficulttoanalyze, asitisdominatedbythebehaviorofthecaregiver[70].However, pups’behaviormayplayanimportantroleintheeffectofhandling controllinginpartthematernalbehavior[71–73].Theincreasein lickingcouldbeareactionofthedamtoanincreaseinultrasonic vocalizationofthepups.Thebehaviorofthepupscouldalsoexplain thetrendofdecreasingthelickingacrossthepostpartumdays.

Neonatal handling alters the functioning of the HPA axis (Hypothalamic-Pituitary-Adrenal)inresponsetoavarietyof stress-ors[40–43]andmayalsochangethemorphologyandfunctionof brainstructures[49–51].Ifthesealterationsoccuralreadyinthe firstdaysofthepups’life[43,49,50,74,75]theymayaffectthepups’ earlybehavioralresponsetothehandlingprotocolandleadtoa differentialstimulationofthematernalbehavioracrossthe post-partumdays.Otherpossibilityisthatthemothercouldadapttothe repeatedhandlingandreducethereactivitytotheprotocolacross the10postpartumdays.Futuremeasuresofultrasonicvocalization ofthepupswilladdtothestudyintermsofbeingabletoevaluate thepup’slevelofmotivationandaffectivestatechange.

Theresultsareintriguingandleaveopenthepossibilitythat pup behavior could beplaying a major role in the changes in maternalcare.Recentworkhasemphasizedtherolethatpup moti-vationplaysintriggeringandmaintainingmaternalcareinrodents [70],infactactivenursingbehaviorthatispersistentlyalteredby thehandlingprocedure,isdirectlyaffectedbythepupsbehavior [12,65,76–78].

Basedonthenaturalsequenceofthematernalbehavior[66,67], we expectedtofind anincrease in thenursingbehavior and a decreaseinthetimespentoutsidethenestaftertheincreaseinthe motoractivecomponentsofthematernalbehavior,butwefound theopposite.Theseresultssuggestthathandlingdoesnotonlyalter maternalbehaviorbyincreasingordecreasingitsbehavioral com-ponents,butalsodesynchronizesthemother–pupinteractionsby changingthebehavioralsequence.

Stabilityofthemother–infantrelationshipisimportantforthe developmentofemotionalandcognitivefunctions;forareview, see[3].Indeed,synchronyinmother–infantinteractionsappears to bea crucial variable in humandevelopment [79] and addi-tionally for rats [80,81]. We infer that these alterations in the behavioralsequenceofthematernalcareassociatedwithchanges inthemother–pupinteractionsynchronyleadtoareductioninthe mother–pupcontact(increasedtime spentoutsidethenestand decreasednursing)andaltersthestabilityofthematernalbehavior throughouttheday(especiallylickingandnestbuilding).

Besidesthechangesintheseasonaldailypatternofnursingand time spentoutside thenest,handlingalsoaffectedthetrendof bothcomponentsofthematernalbehavior.Damsthathadtheirs pupshandledshowedareductioninthecontactwiththepupsand increasedtrendtobeoutsidethenestacrossthefirst10postpartum days.Damsofthenon-handledgroupalsoshowatrendof increas-ingthetimeoutsidethenest,butthehandlingprocedureseems

(11)

toacceleratetheseparationbetweenthemotherandthepups,as damsofthehandledgroupshowthesameamountoftimeoutside thenestinthe4PPDthandamsofthenon-handledgroupinPPD8. Thesamepatternoccurswiththenursingbehaviorbutinthe oppo-sitedirection,inwhichdamsofhandledgroupshowpracticallythe samescoreofnursingin4PPDthandamsofthenon-handledgroup inPPD8.Thesechangescouldaffecttheolfactorylearningprocess duringacriticalperiodforthebondingformationandcouldbeakey causeoflong-lastingeffectsofthisinterventiononsocialbehaviors [45,50].

4.2. Maternalbehaviorandolfactorylearningofthepups

Infant rats rapidly and naturally learn to identify, orient, approachandpreferthenestodor[22,25,27].Thenestodor pref-erencedepends onthematernalbehavior, especiallythetactile stimulationoflickingandmother–pupcontact[14,19,20,82], con-sideringthatthehandlingprocedureincreasesthelickingbehavior andthenaturaltactilestimulationofthepupsbythemother, acti-vatestheLC[82],increasesnoradrenaline(NA)levelsintheOB ofthepups[14,22]andinducesthephosphorylationofthecyclic AMPresponseelementbindingprotein(CREB)[14,27,29,83],we expectedtofindanincreaseinthelevelsofCREBphosphorylation inthepups’olfactorybulbs;however,theresultsshowednosuch increase.Infact,inhandledfemalepups,CREBphosphorylationwas evenreduced,whileinmales,weobservednosignificanteffecton PPD7.Onepossibleexplanationcouldbeanadaptationprocessto therepeatedincreasedlicking,which,aftersomedaysofthe han-dling,couldcauseareductioninthepup’sresponsetothisincrease. WehavedescribedareductioninNAintheOBonPPD7afterthe handlingprocedure[48],andthisreductioncouldleadtoalackof increaseinCREBphosphorylationafterthehandlingonPPD7.

ThefactthatonlythehandledfemalesshowadecreaseinCREB phosphorylationcouldindicatethat,inayetunknownway,females aremoresensitivetothedecreaseinmother–pupcontact than males.Indeed,thedelayinthetimespentinreachingthenestarea wascorrelatedtothenursingbehavioronlyinthefemalepups.The resultsofthenestodorpreferencetestalsoagreewiththis hypoth-esisbecausefemalepupsthathadlesscontactwiththeirsdams (decreasednursingandincreasedtimeoutsidethenest) demon-stratedlesstimeinthenestarea.Infact,whenweanalyzedthe trialsofthenestodorpreferencetest,femalepupsofthehandled groupdidnotshowanysignoflearningacrossthe5trailsin con-trastwiththemalepupsofthesamegroupandthefemalepupsof thenon-handledgroup.Astherewasanoveralldifferencebetween maleandfemalepups,itispossiblethatthetaskwasmoredifficult tofemalethanmalepups,regardlessoftheexperimentalgroup.

Differencesinthematernallickingdistributionamongthepups ofdifferentsexescanalsocontributetothiseffect.Studieshave shownthat,inrats,motherslickthemalemorethantheydothe femalepupsduetotheirdifferenturineodors[84–87],and we demonstratedthatthelickingpatternwascorrelatedtothesocial behaviorchangesinthemalepups.Alternatively,itispossiblethat earlylifeinterventionscaninducesex-changesaccordingtothe variablemeasuredlaterinlife.

Thesecorrelationalresultssuggestrelationshipsbetweenthe carebehaviorsandpup learningbutitisdifficulttoteaseapart theeffectsofhandlingversusmaternalcareontheneurochemical changes.Studiesusinganartificialmodelofmaternalbehaviorare abletodisentangletheseeffectsandareveryusefultoevaluatethe degreeofimportanceofeachvariableinthismatter[88–90].

Thebiochemicalalterations foundintherepeatedlyhandled pupsaremostlikelyassociatedwithchangesinthe monoaminer-gicsystem[48,63,91,92].Raineki,DeSouza[48]showedthatmale andfemalerepeatedlyhandledpups(PPD1–PPD7)demonstrate adecreaseinthenoradrenergictonusintheOBafterhandlingon

PPD7,butonlymaleshaveanincreaseinserotoninactivity,which couldactasacompensatorymechanisminmales.However,itis stillpoorlyunderstoodwhymaleandfemaleratpupsonPPD7 showthesedifferencesinthepCREBlevelsintheOB.

Itispossiblethat,alreadyatthis earlyage,maleandfemale pupshavedifferentresponsestoenvironmentaloradverse stim-uli[93–95].Stamatakis,Mantelas[63]showedthataprotocolof neonatalhandlinginducessexuallydimorphicchangesinthe lev-elsofhippocampal5-HT1Areceptorsinadultanimals,withmales havinganincreaseandfemalesadecrease.Inaddition,repeated neonatalhandlingincreasesBDNFlevelsintheCA4areainthe hippocampusofmaleratpups,whilefemalesshownoalteration [52,96].OurresultsintheOBareinlinewiththatstudy.Handled malepupsdidnot demonstratedifferencesinCREB phosphory-lation,buttheyhadincreasedlevelsofBDNFat30and120min aftertheinterventioncomparedtocontrolgroups.Becausethere wasnochangeintheCREBphosphorylation,itispossiblethatthe increaseinBDNFlevelsat30and120minafterthehandling proce-durecouldbecausedbyacumulativeeffectoftheincreasedlicking overthepreviousdays.Thus,theincreasedBDNFsignalinginthe OBinmalepupscouldcharacterizeapersistenteffectofthe han-dlingprocedure.AnincreaseinhippocampalBDNFisassociated withanincreaseinspatialmemoryinadultratsthatwerehandled intheneonatalperiod[52,96],andthereforeitispossiblethatthe sameeffectexistsfortheolfactorylearning.

IntheOB,nosignificantchangeintheBDNFlevelswasdetected intherepeatedlyhandledfemalepups;however,thisresultdoes notnecessarilymeanthattherewerenochangesintheBDNF lev-elsindifferentregionsofthatstructure.WeusedaWesternblot protocolwiththehomogenizationoftheentireOB,butthis struc-turehasseverallayerswithdifferentpopulationsofneurons.The useofmorphologicalanalysisthatcouldallowdifferentiationofthe layersintheOBwouldbeagoodexperimentalapproachto detect-ingmorespecificandpreciseeffectsofneonatalhandlingonthe functioningandmorphologyoftheOB.

5. Conclusions

Inconclusion, wedemonstratedthatthehandlingprocedure inducescomplexchangesincriticalcomponentsofmaternalcare. Thisstudyshows,forthefirsttime(tothebestofourknowledge), thathandlingcanchangethemother–pupinteractionsynchrony, thusalteringthebehavioralsequenceofmaternalcare,reducing themother–pups contactduringthefirst10 PPDsandchanging thedailypatternof nursing,licking behaviorandnest building. Handlinginducesaburstinlickingbehaviorimmediatelyafterthe interventionandcausesbiochemicalchangesonthepup’sbrain ina sex-specificway. Thesematernalbehavioral changes could explaintheincreaseinBDNFintheolfactorybulbofmalepups andthedecreaseinCREBphosphorylationinfemalepupsbecause differencesinthebehaviorofthepupswerecorrelatedwith differ-encesinthematernalbehaviorcomponents(alsoinasex-specific way).Thesebiochemicalchangesinthenervoussystemofthepups couldbethecauseofthesexualdifferencesshowninthenestodor preferencetest.

Althoughthefemalepupsappeartobemoreaffectedbythe handlingprocedure, malesalso have alterations in thetime to reachthenestarea,andtheincreasedlevelsofBDNFinthe olfac-torybulbcouldcontributetothelong-lastingeffectsofearlylife environmentalinterventiononthedevelopmentofthebehavioral strategiesinmales.

Conflictofinterest

(12)

A.R.Reisetal./BehaviouralBrainResearch265(2014)216–228 227

Acknowledgements

This study was supported by grants from Coordination of Improvement of Higher Education Personnel (CAPES), National Research Council of Brazil (CNPq) and FAPERGS-PRONEX (10/0018.3).

References

[1]KorosiA,BaramTZ.Thepathwaysfrommother’slovetobaby’sfuture.Frontiers inBehavioralNeuroscience2009;3:27.

[2]RiceD,BaroneJrS.Criticalperiodsofvulnerabilityforthedeveloping ner-voussystem:evidencefromhumansandanimalmodels.EnvironmentalHealth Perspectives2000;108(Suppl.3):511–33.

[3]BaramTZ,DavisEP,ObenausA,SandmanCA,SmallSL,SolodkinA,etal. Frag-mentationandunpredictabilityofearly-lifeexperienceinmentaldisorders. AmericanJournalofPsychiatry2012;169:907–15.

[4]KorosiA,NaninckEF,OomenCA,SchoutenM,KrugersH,FitzsimonsC,etal. Early-lifestressmediatedmodulationofadultneurogenesisandbehavior. BehaviouralBrainResearch2011;227(2):400–9.

[5]MirandaJK,delaOsaN,GraneroR,EzpeletaL.Maternalexperiencesof child-hoodabuseandintimatepartnerviolence:psychopathologyandfunctional impairmentinclinicalchildrenandadolescents.ChildAbuseandNeglect 2011;35:700–11.

[6]LevineS,LewisGW.Criticalperiodforeffectsofinfantileexperienceon matu-rationofstressresponse.Science(NewYork,NY)1959;129:42–3.

[7]FenoglioKA,BrunsonKL,BaramTZ.Hippocampalneuroplasticityinduced byearly-lifestress:functionalandmolecularaspects.Frontiersin Neuroen-docrinology2006;27:180–92.

[8]Avishai-Eliner S,Eghbal-AhmadiM,Tabachnik E,Brunson KL,Baram TZ. Down-regulationofhypothalamiccorticotropin-releasinghormone messen-gerribonucleicacid(mRNA)precedesearly-lifeexperience-inducedchanges in hippocampal glucocorticoid receptor mRNA. Endocrinology 2001;142: 89–97.

[9]ClaessensSE,DaskalakisNP,OitzlMS,deKloetER.Earlyhandling modu-latesoutcomeofneonataldexamethasoneexposure.HormonesandBehavior 2012;62:433–41.

[10]YoungCW,LegatesJE,FarthingBR.Prenatalandpostnatalinfluencesongrowth, prolificacyandmaternalperformanceinmice.Genetics1965;52:553–61. [11]Barnett SA, Burn J. Early stimulation and maternal behaviour. Nature

1967;213:150–2.

[12]VillescasR,Bell RW,WrightL,KufnerM.Effectofhandlingonmaternal behaviorfollowingreturnofpupstothenest.DevelopmentalPsychobiology 1977;10:323–9.

[13]BroadKD,CurleyJP,KeverneEB.Mother–infantbondingandtheevolution ofmammaliansocialrelationships.PhilosophicalTransactionsofTheRoyal SocietyofLondonSeriesB,BiologicalSciences2006;361:2199–214. [14]SullivanRM,WilsonDA.Molecularbiologyofearlyolfactorymemory.Learning

&Memory(ColdSpringHarbor,NY)2003;10:1–4.

[15]OkabeS,NagasawaM,MogiK,KikusuiT.Importanceofmother–infant commu-nicationforsocialbondformationinmammals.AnimalScienceJournal/Nihon chikusanGakkaiho2012;83:446–52.

[16]SullivanRM.Developmentalchangesinolfactorybehaviorandlimbiccircuitry. ChemicalSenses2005;30(Suppl.1):i152–3.

[17]WilsonDA,SullivanRM.Neurobiologyofassociativelearningintheneonate: earlyolfactorylearning.BehavioralandNeuralBiology1994;61:1–18. [18]Sanchez-AndradeG,KendrickKM.Themainolfactorysystemandsocial

learn-inginmammals.BehaviouralBrainResearch2009;200:323–35.

[19]KojimaS,AlbertsJR.Maternalcarecanrapidlyinduceanodor-guidedhuddling preferenceinratpups.DevelopmentalPsychobiology2009;51:95–105. [20]SullivanRM.Uniquecharacteristicsofneonatalclassicalconditioning:therole

oftheamygdalaandlocuscoeruleus.IntegrativePhysiologicalandBehavioral Science:TheOfficialJournalofthePavlovianSociety2001;36:293–307. [21]Moriceau S,Sullivan RM. Unique neural circuitryfor neonatal olfactory

learning.JournalofNeuroscience:TheOfficialJournalofTheSocietyfor Neu-roscience2004;24:1182–9.

[22]RangelS,LeonM.Earlyodorpreference trainingincreasesolfactorybulb norepinephrine. Brain Research Developmental Brain Research 1995;85: 187–91.

[23]Moriceau S,Shionoya K,JakubsK,SullivanRM. Early-lifestress disrupts attachmentlearning:theroleofamygdalacorticosterone,locusceruleus cor-ticotropinreleasinghormone,andolfactorybulbnorepinephrine.Journalof Neuroscience2009;29:15745–55.

[24]MoriceauS,RothTL,SullivanRM.Rodentmodelofinfantattachmentlearning andstress.DevelopmentalPsychobiology2010;52:651–60.

[25]MoriceauS,SullivanRM.Neurobiologyofinfantattachment.Developmental Psychobiology2005;47:230–42.

[26]RainekiC,PickenhagenA,RothTL,BabstockDM,McLeanJH,HarleyCW,etal. Theneurobiologyofinfantmaternalodorlearning.BrazilianJournalOfMedical andBiologicalResearch2010;43:914–9.

[27]McLeanJH,HarleyCW,Darby-KingA,YuanQ.pCREBintheneonateratolfactory bulbisselectivelyandtransientlyincreasedbyodorpreference-conditioned training.Learning&Memory(ColdSpringHarbor,NY)1999;6:608–18.

[28]McLeanJH,HarleyCW.Olfactorylearningintheratpup:amodelthatmay per-mitvisualizationofamammalianmemorytrace.Neuroreport2004;15:1691–7. [29]YuanQ,HarleyCW,Darby-KingA,NeveRL,McLeanJH.Earlyodorpreference learningintherat:bidirectionaleffectsofcAMPresponseelement-binding protein(CREB)andmutantCREBsupportacausalroleforphosphorylatedCREB. JournalofNeuroscience:TheOfficialJournalofTheSocietyforNeuroscience 2003;23:4760–5.

[30]ZimmerbergB,FooteHE,VanKempenTA.Olfactoryassociationlearningand brain-derivedneurotrophicfactorinananimalmodelofearlydeprivation. DevelopmentalPsychobiology2009;51:333–44.

[31]TaoX,FinkbeinerS,ArnoldDB,ShaywitzAJ,GreenbergME.Ca2+influx

reg-ulatesBDNFtranscriptionbyaCREBfamilytranscriptionfactor-dependent mechanism.Neuron1998;20:709–26.

[32]BinderDK,ScharfmanHE.Brain-derivedneurotrophicfactor.GrowthFactors 2004;22:123–31.

[33]ImamuraF,GreerCA.Dendriticbranchingofolfactorybulbmitralandtufted cells:regulationbyTrkB.PLoSONE2009;4:e6729.

[34]Chiaramello S, Dalmasso G, Bezin L, Marcel D, Jourdan F, Peretto P, etal.BDNF/TrkBinteractionregulatesmigrationofSVZprecursorcellsvia PI3-KandMAP-K signallingpathways.EuropeanJournalof Neuroscience 2007;26:1780–90.

[35]TranPV,CarlsonES,Fretham SJB,GeorgieffMK.Early-lifeirondeficiency anemiaaltersneurotrophicfactorexpressionandhippocampalneuron differ-entiationinmalerats.JournalofNutrition2008;138:2495–501.

[36]GasconE,VutskitsL,JennyB,DurbecP,KissJZ.PSA-NCAMinpostnatally gen-eratedimmatureneuronsoftheolfactorybulb:acrucialroleinregulatingp75 expressionandcellsurvival.Development2007;134:1181–90.

[37]CaoL,DhillaA,MukaiJ,BlazeskiR,LodovichiC,MasonCA,etal.Genetic mod-ulationofBDNFsignalingaffectstheoutcomeofaxonalcompetitioninvivo. CurrentBiology2007;17:911–21.

[38]MatsutaniS,YamamotoN.Brain-derivedneurotrophicfactorinducesrapid morphologicalchangesindendriticspinesofolfactorybulbgranulecellsin cul-turedslicesthroughthemodulationofglutamatergicsignaling.Neuroscience 2004;123:695–702.

[39]PadoinMJ,CadoreLP,GomesCM,BarrosHM,LucionAB.Long-lastingeffects ofneonatalstimulationonthebehavior ofrats.BehavioralNeuroscience 2001;115:1332–40.

[40]Plotsky PM, Meaney MJ.Early, postnatalexperience altershypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF con-tent and stress-induced release in adult rats. Molecular Brain Research 1993;18:195–200.

[41]LiuD,Caldji C,SharmaS,PlotskyPM,Meaney MJ.Influenceofneonatal rearingconditionsonstress-inducedadrenocorticotropinresponsesand nore-pinepherinereleaseinthehypothalamicparaventricularnucleus.Journalof Neuroendocrinology2000;12:5–12.

[42]MeaneyMJ,AitkenDH,BodnoffSR,InyLJ,SapolskyRM.Theeffectsofpostnatal handlingonthedevelopmentoftheglucocorticoidreceptorsystemsandstress recoveryintherat.ProgressinNeuro-PsychopharmacologyandBiological Psy-chiatry1985;9:731–4.

[43]MeaneyMJ,SzyfM,SecklJR.Epigeneticmechanismsofperinatalprogramming ofhypothalamic-pituitary-adrenalfunctionandhealth.TrendsinMolecular Medicine2007;13:269–77.

[44]MeaneyMJ,AitkenDH,BodnoffSR,InyLJ,TatarewiczJE,SapolskyRM.Early postnatalhandlingaltersglucocorticoidreceptorconcentrationsinselected brainregions.BehavioralNeuroscience1985;99:765–70.

[45]RainekiC,LutzML,SebbenV,RibeiroRA,LucionAB.Neonatalhandlinginduces deficitsininfantmotherpreferenceandadultpartnerpreference. Develop-mentalPsychobiology2013;55:496–507.

[46]GomesCM,FrantzPJ,SanvittoGL,Anselmo-FranciJA,LucionAB.Neonatal han-dlinginducesanovulatoryestrouscyclesinrats.BrazilianJournalOfMedical andBiologicalResearch1999;32:1239–42.

[47]RainekiC,SzawkaRE,GomesCM,LucionMK,BarpJ,Bello-KleinA,etal.Effects ofneonatalhandlingoncentralnoradrenergicandnitricoxidergicsystems andreproductiveparametersinfemalerats.Neuroendocrinology2008;87: 151–9.

[48]RainekiC,DeSouzaM,SzawkaR,LutzM,DeVasconcellosL,SanvittoG,etal. Neonatalhandlingandthematernalodorpreferenceinratpups:involvement ofmonoaminesandcyclicAMPresponseelement-bindingproteinpathwayin theolfactorybulb.Neuroscience2009;159:31–8.

[49]LucionAB,PereiraFM,WinkelmanEC,SanvittoGL,Anselmo-FranciJA.Neonatal handlingreducesthenumberofcellsinthelocuscoeruleusofrats.Behavioral Neuroscience2003;117:894–903.

[50]TodeschinAS, Winkelmann-DuarteEC,Jacob MHV,ArandaBCC,JacobsS, FernandesMC,etal.Effectsofneonatalhandlingonsocialmemory,social inter-action,andnumberofoxytocinandvasopressinneuronsinrats.Hormonesand Behavior2009;56:93–100.

[51]Winkelmann-DuarteEC,Padilha-HoffmannCB,MartinsDF,SchuhAF, Fer-nandes MC, Santin R, et al. Early-life environmental intervention may increasethe numberof neurons,astrocytes, andcellular proliferationin thehippocampusofrats.ExperimentalBrainResearch/Experimentelle Hirn-forschung/ExperimentationCerebrale2011;215:163–72.

[52]Garoflos E, Stamatakis A, Mantelas A, Philippidis H, Stylianopoulou F. Cellular mechanisms underlying an effect of early handling on pCREB and BDNFin the neonatalrat hippocampus. Brain Research 2005;1052: 187–95.

(13)

[53]GaroflosE,StamatakisA,PondikiS,ApostolouA,PhilippidisH,Stylianopoulou F.Cellularmechanismsunderlyingtheeffectofasingleexposuretoneonatal handlingonneurotrophin-3 inthebrain of1-day-oldrats.Neuroscience 2007;148:349–58.

[54]GaroflosE,StamatakisA,RafrogianniA,PondikiS,StylianopoulouF. Neona-talhandlingonthefirstpostnataldayleadstoincreasedmaternalbehavior andfoslevelsinthebrainofthenewbornrat.DevelopmentalPsychobiology 2008;50:704–13.

[55]Uriarte N, Breigeiron MK, Benetti F, Rosa XF, Lucion AB. Effects of maternalcare onthedevelopment,emotionality, andreproductive func-tions in male and female rats. Developmental Psychobiology 2007;49: 451–62.

[56]ChampagneFA,FrancisDD,MarA,MeaneyMJ.Variationsinmaternalcarein theratasamediatinginfluencefortheeffectsofenvironmentondevelopment. PhysiologyandBehavior2003;79:359–71.

[57]FrancisDD,ChampagneFA,LiuD,MeaneyMJ.Maternalcare,geneexpression, andthedevelopmentofindividualdifferencesinstressreactivity.Annalsofthe NewYorkAcademyofSciences1999;896:66–84.

[58]Liu D, Diorio J, Tannenbaum B, Caldji C, Francis D, Freedman A, etal. Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress.Science (NewYork, NY) 1997;277: 1659–62.

[59]CaldjiC,TannenbaumB,SharmaS,FrancisD,PlotskyPM,MeaneyMJ.Maternal careduringinfancyregulatesthedevelopmentofneuralsystemsmediating theexpressionoffearfulnessintherat.ProceedingsoftheNationalAcademy ofSciencesoftheUnitedStatesofAmerica1998;95:5335–40.

[60]MyersMM,BrunelliSA,SquireJM,ShindeldeckerRD,HoferMA.Maternal behaviorofSHRratsanditsrelationshiptooffspringbloodpressures. Devel-opmentalPsychobiology1989;22:29–53.

[61]SullivanRM,HolmanPJ.Transitionsinsensitiveperiodattachmentlearningin infancy:theroleofcorticosterone.NeuroscienceandBiobehavioralReviews 2010;34:835–44.

[62]BrownCP,SmothermanWP,LevineS.Interaction-inducedreductionin dif-ferentialmaternalresponsiveness:aneffectofcue-reduction orbehavior. DevelopmentalPsychobiology1977;10:273–80.

[63]StamatakisA,MantelasA,PapaioannouA,PondikiS,FameliM,Stylianopoulou F.Effectofneonatalhandlingonserotonin1Asub-typereceptorsintherat hippocampus.Neuroscience2006;140:1–11.

[64]AzevedoMSd,SouzaFLd,DonadioMVF,LucionAB,GiovenardiM. Interven-tionsintheneonatalenvironmentinratsandtheirrelationshiptobehaviorin adulthoodandmaternalbehavior.PsychologyandNeuroscience2010;3:73–8. [65]PryceCR,BettschenD,FeldonJ.Comparisonoftheeffectsofearlyhandlingand earlydeprivationonmaternalcareintherat.DevelopmentalPsychobiology 2001;38:239–51.

[66]SternJM.Maternalbehavior:sensory,hormonal,andneuraldeterminants. Psy-choendocrinology1989:105–226.

[67]SternJM,JohnsonSK.Perioralsomatosensorydeterminantsofnursingbehavior inNorwayrats.JournalofComparativePsychology1989;103:269–80. [68]CummingsJA,ClemensLG,NunezAA.Mothercounts:howeffectsof

environ-mentalcontaminantsonmaternalcarecouldaffecttheoffspringandfuture generations.FrontiersinNeuroendocrinology2010;31:440–51.

[69]KeerSE,SternJM.Dopaminereceptorblockadeinthenucleusaccumbens inhibitsmaternalretrievalandlicking,butenhancesnursingbehaviorin lac-tatingrats.PhysiologyandBehavior1999;67:659–69.

[70]Cromwell HC. Rat pup social motivation: a critical component of early psychological development. Neuroscience and Biobehavioral Reviews 2011;35:1284–90.

[71]ThomanEB,LevineS.Effectsofadrenalectomyonmaternalbehaviorinrats. DevelopmentalPsychobiology1970;3:237–44.

[72]FuertesM,SantosPL,BeeghlyM,TronickE.Morethanmaternalsensitivity shapesattachment:infantcopingandtemperament.AnnalsoftheNewYork AcademyofSciences2006;1094:292–6.

[73]SmothermanWP,BrownCP,LevineS.Maternalresponsivenessfollowing dif-ferentialpuptreatmentandmother–pupinteractions.HormonesandBehavior 1977;8:242–53.

[74]Weaver IC, Cervoni N,Champagne FA,D’AlessioAC, SharmaS,SecklJR, etal.Epigeneticprogrammingbymaternalbehavior.NatureNeuroscience 2004;7:847–54.

[75]Winkelmann-DuarteEC,TodeschinAS,FernandesMC,BittencourtLC,Pereira GA,SamiosVN,etal.Plasticchangesinducedbyneonatalhandlinginthe hypothalamusoffemalerats.BrainResearch2007;1170:20–30.

[76]SternJM,LonsteinJS.Nursingbehaviorinratsisimpairedinasmallnestbox andwithhyperthermicpups.DevelopmentalPsychobiology1996;29:101–22. [77]SternJM.Offspring-inducednurturance:animal-humanparallels.

Develop-mentalPsychobiology1997;31:19–37.

[78]SternJM,LonsteinJS.Neuralmediationofnursingandrelatedmaternal behav-iors.ProgressinBrainResearch2001;133:263–78.

[79]FeldmanR,Magori-CohenR,GaliliG,SingerM,LouzounY.Motherandinfant coordinateheartrhythmsthroughepisodesofinteractionsynchrony.Infant BehaviorandDevelopment2011;34:569–77.

[80]Tang AC, Reeb-Sutherland BC, Yang Z, Romeo RD, McEwen BS. Neona-tal novelty-induced persistentenhancement inoffspring spatial memory andthemodulatoryroleofmaternalself-stressregulation.Journalof Neu-roscience: The OfficialJournal of theSociety for Neuroscience 2011;31: 5348–52.

[81]Reeb-SutherlandBC,TangAC.Functionalspecificityinthemodulationof nov-eltyexposureeffectsbyreliabilityofmaternalcare.BehaviouralBrainResearch 2012;226:345–50.

[82]NakamuraS,KimuraF,SakaguchiT.Postnataldevelopmentofelectricalactivity inthelocusceruleus.JournalofNeurophysiology1987;58:510–24. [83]YuanQ,HarleyCW,BruceJC,Darby-KingA,McLeanJH.Isoproterenolincreases

CREBphosphorylationandolfactorynerve-evokedpotentialsinnormaland 5-HT-depletedolfactorybulbsinratpupsonlyatdosesthatproduceodor preferencelearning.Learning&Memory(ColdSpringHarbor,NY)2000;7: 413–21.

[84]OomenCA,GirardiCE,CahyadiR,VerbeekEC,KrugersH,JoelsM,etal.Opposite effectsofearlymaternaldeprivationonneurogenesisinmaleversusfemale rats.PLoSONE2009;4:e3675.

[85]MooreCL.Sexdifferencesinurinaryodorsproducedbyyounglaboratoryrats. JournalofComparativePsychology1985;99:336–41.

[86]MooreCL,JordanL,WongL.Earlyolfactoryexperience,novelty,andchoiceof sexualpartnerbymalerats.PhysiologyandBehavior1996;60:1361–7. [87]HaoY,HuangW,NielsenDA,KostenTA.Littergendercompositionandsex

affectmaternalbehaviorandDNAmethylationlevelsoftheoprm1geneinrat offspring.FrontiersinPsychiatry2011;2:21.

[88]GonzalezA,FlemingAS.Artificialrearingcauseschangesinmaternal behav-iorand c-fosexpressioninjuvenilefemalerats.BehavioralNeuroscience 2002;116:999–1013.

[89]Lovic V, Fleming AS. Artificially reared female rats show reduced pre-pulseinhibitionanddeficitsintheattentionalsetshiftingtask–reversalof effects withmaternal-likelickingstimulation.BehaviouralBrainResearch 2004;148:209–19.

[90]deMedeirosCB,FlemingAS,JohnstonCC,WalkerCD.Artificialrearingofrat pupsrevealsthebeneficialeffectsofmothercareonneonatalinflammation andadultsensitivitytopain.PediatricResearch2009;66:272–7.

[91]VicenticA,FrancisD,MoffettM,LakatosA,RoggeG,HubertGW,etal. Mater-nalseparationaltersserotonergictransporterdensitiesandserotonergic1A receptorsinratbrain.Neuroscience2006;140:355–65.

[92]PapaioannouA,DafniU,AlikaridisF,BolarisS,StylianopoulouF.Effectsof neonatalhandlingonbasalandstress-inducedmonoaminelevelsinthemale andfemaleratbrain.Neuroscience2002;114:195–206.

[93]ViverosMP,LlorenteR,Lopez-GallardoM,SuarezJ,Bermudez-SilvaF,Dela FuenteM,etal.Sex-dependentalterationsinresponsetomaternaldeprivation inrats.Psychoneuroendocrinology2009;34(Suppl.1):S217–26.

[94]Shanks N,McCormick CM,Meaney MJ.Sex differencesin hypothalamic-pituitary-adrenal responding to endotoxin challenge in the neonate: reversal by gonadectomy. Brain Research Developmental Brain Research 1994;79:260–6.

[95]McCormickCM,SmytheJW,SharmaS,MeaneyMJ.Sex-specificeffectsof pre-natalstressonhypothalamic-pituitary-adrenalresponsestostressandbrain glucocorticoidreceptordensityinadultrats.BrainResearchDevelopmental BrainResearch1995;84:55–61.

[96]Garoflos E, Panagiotaropoulos T, Pondiki S, Stamatakis A, Philippidis E, StylianopoulouF.Cellularmechanismsunderlyingtheeffectsofanearly expe-rienceoncognitiveabilitiesandaffectivestates.AnnalsofGeneralPsychiatry 2005;4:8.

Referências

Documentos relacionados

This log must identify the roles of any sub-investigator and the person(s) who will be delegated other study- related tasks; such as CRF/EDC entry. Any changes to

Além disso, o Facebook também disponibiliza várias ferramentas exclusivas como a criação de eventos, de publici- dade, fornece aos seus utilizadores milhares de jogos que podem

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

From the unique identifiers of workers and establishments, we construct a large longitudinal data base that allows us to include various types of fixed effects to examine

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

não existe emissão esp Dntânea. De acordo com essa teoria, átomos excita- dos no vácuo não irradiam. Isso nos leva à idéia de que emissão espontânea está ligada à

Por mais que a questão seja algo que a princípio seja compreensível, esta vai muito além do que estamos habituados. A situação que nos encontramos hoje impede que essa