• Nenhum resultado encontrado

Cobalt phthalocyanine as a biomimetic catalyst in the amperometric quantification of dipyrone using FIA

N/A
N/A
Protected

Academic year: 2017

Share "Cobalt phthalocyanine as a biomimetic catalyst in the amperometric quantification of dipyrone using FIA"

Copied!
7
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Talanta

jo u r n al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / t a l a n t a

Cobalt

phthalocyanine

as

a

biomimetic

catalyst

in

the

amperometric

quantification

of

dipyrone

using

FIA

Ana

Carolina

Boni

a

,

Ademar

Wong

a

,

Rosa

Amália

Fireman

Dutra

b

,

Maria

Del

Pilar

Taboada

Sotomayor

a,∗

aDepartmentofAnalyticalChemistry,InstituteofChemistry,StateUniversityofSãoPaulo(UNESP),14801-970Araraquara,SP,Brazil bLaboratoryofDiagnosticResearch(LAPED),UniversityofPernambuco,50100-130Recife,PE,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received6April2011

Receivedinrevisedform6July2011 Accepted9July2011

Available online 20 July 2011

Keywords: Biomimeticcatalyst Cobaltphthalocyanine Dipyrone

Flowinjectionsystem

a

b

s

t

r

a

c

t

Abiomimeticsensorforthedeterminationofdipyronewaspreparedbymodifyingcarbonpastewith cobaltphthalocyanine(CoPc),andusedasanamperometricdetectorinaflowinjectionanalysis(FIA) sys-tem.TheresultsofcyclicvoltammetryexperimentssuggestedthatCoPcbehavedasabiomimeticcatalyst intheelectrocatalyticoxidationofdipyrone,whichinvolvedthetransferofoneelectron.Theoptimized FIAprocedureemployedaflowrateof1.5mLmin−1,a75

␮Lsampleloop,a0.1molL−1phosphatebuffer

carriersolutionatpH7.0andamperometricdetectionatapotentialof0.3Vvs.Ag/AgCl.Underthese conditions,theproposedmethodshowedalinearresponsefordipyroneconcentrationsintherange 5.0×10−6–6.3×10−3molL−1.Selectivityandinterferencestudieswerecarriedoutinordertovalidate

thesystemforusewithpharmaceuticalandenvironmentalsamples.Inadditiontobeing environmen-tallyfriendly,theproposedmethodisasensitiveandselectiveanalyticaltoolforthedeterminationof dipyrone.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Greaterpublicawarenesshasresultedinheightenedinterest intheenvironmentalimpactscausedbythepresenceofindustrial wastesanddomesticsewageinriversandotheraquaticsystems. Dischargesofuntreatedindustrialeffluentscontaminatenatural waters, which can render them unsuitable for use, cause dis-easeand even destroy entireecosystems [1–3]. Pharmaceutical drugsexcretedbyhumansandlivestockcanreachwaterbodies indischargesfromsourcesincludingineffectivesewagetreatment plants.

Manymethodsareavailableforthemeasurementof environ-mentalpollutants.Mostoftheseinvolvecollectionofthematerial tobeanalyzedanditsretrievaltoalaboratoryinordertoconduct therequiredanalyses.Degradationofthesamplecanoccurduring transport,affectingtheanalyticalresults.Itisthereforedesirableto developmethodologiesthatenablemeasurementstobeperformed

insitu,and thatprovide rapidand reliablereal-timeresponses. Portableflowinjectionanalysis(FIA)systemsemploying electro-chemicalsensors[4,5]canbedevelopedforthispurpose,andoffer

Correspondingauthorat:IQ/CArUNESP,RuaProf.FranciscoDegniS/N, Qui-tandinha,Araraquara14800-900,Brazil.Tel.:+551633019620;

fax:+551633019692.

E-mailaddress:mpilar@iq.unesp.br(M.D.P.T.Sotomayor).

advantages includingexcellent sensitivity aswellas speed and reproducibility.

Biomimeticsensors[6,7]areaclassofelectrochemical detec-tors thatare preparedbythe modificationofelectrodes [8–12] withmetal complexes thathave similar chemical structuresas the activesites of oxide-reductase enzymes.Such sensors pos-sesscharacteristicsthatmakethemmoredurableandstablethan theiranaloguesconstructedusingenzymes,includinghigh stabil-ityovertimeaswellaswithdrasticchangesofpHandtemperature (whichcoulddenatureenzymes).Theyarecheap,simpleto manu-factureandmayevenbedisposable(asinthecaseofscreen-printed electrodes).Biomimeticsensorsaremoresensitive,comparedto enzymaticbiosensors,duetoasmallerdiffusionbarrierandgreater electrontransferbetweenthebiomimeticcomplexandthe ana-lyte[6,7].Thisnewandincreasinglypopularclassofsensorshas beenusedfortheidentificationandquantificationofvariousdrugs [13–17],andhasalsobeencoupledtoflowsystems[18,19].

Amongtheoxide-reductaseenzymesthathavebeenfrequently imitated are theP450, which have a common activesite, pro-toporphyrin IX (orprotoheminIX, aniron porphyrin) [20].The reasontomimictheP450enzymes,ofwhichapproximately450 differenttypesarecurrentlyknown[21],is thattheseenzymes catalyzeawiderangeofchemicalreactionsinorganisms, produc-ingmetabolitesthatarephysiologicallyessentialorbeneficialto them.Inaddition,hydroxylation,oxidationandreductionreactions candegradexenobioticsincludingdrugs,pesticidesandendocrine disruptorssuchassynthetichormonesandsunscreens[20,21].

(2)

N

N

N

N

N

Co

N

N

Fig.1.Chemicalstructureofcobaltphthalocyanine.

Table1

Typesofelectrodesmodifiedwithcobaltphthalocyaninethathavebeenreported forthedeterminationofrelevantanalytes.

Typeofelectrode Analyte Carbonpaste Hydrazine[24]

Carbonpaste Guanine[25]

Glassycarbon Dopamine[26]

Screen-printed Thiocholine[27]

Screen-printed Citricacid[28]

Pyrolyticgraphite Glutathione[29]

Boron-dopeddiamond Hydrogenperoxide[30]

AlthoughalloftheP450enzymescontainacommonactivesite, namelytheironporphyrincomplex,theselectivityofeachP450isa consequenceofthechemicalenvironmentsurroundingthehemin group[20].Asaresult,compoundsderivedfromphthalocyanines andporphyrinsofiron[13,18,19,22,23],orothermetalssuchas manganese[14],nickel[15]andcopper[17],havebeen success-fullyusedintheconstructionofbiomimeticchemicalsensorsfora varietyofanalyticalpurposes.

Sensorsbasedonelectrodesmodifiedwithcobalt phthalocya-nine(Fig.1)havealsobeenreportedintheliteraturefordifferent analytesandapplications,usingelectrodematerialssuchascarbon paste[24,25]orboron-dopeddiamond[30](Table1).Thesedevices havebeenshowntobechemicallyandmechanicallystable, how-evernotallofthemeitherpresentelectrocatalyticbehavior[26] orgiveresponsesatveryhighpotentials[25].These characteris-ticsareessentialinbiomimeticsensorsinordertoachieveahigh degreeofsensitivityandselectivity.

Dipyrone(Fig.2)isadrugthatiswidelyused,notonlyinBrazil butalsoinothercountriesincludingFrance,Germany,Hungary, Israel,Spain,Swedenand a numberof developingnations. It is stilloneofthemostpopularandpowerfulanalgesics[31]. How-ever,theuseofdipyronewasabolishedmore thanthirty years agointheUnitedStatesofAmerica,duetoitscontroversialeffect [32]onbonemarrowfunction.Itsusagehasbeenassociatedwith aplasticanemiaandagranulocytosis[32–34].Despiteitspossible

O

H

O

O

N

N

N

S

CH

3

CH

3

C

H

3

O

Na

+

Fig.2. Chemicalstructureofdipyrone.

ronments.Itisthereforeevidentthattherecontinuestobeaneed foranalyticalmethodsabletoquantifydipyroneinvariousdifferent matrices.

This work describes the development of a sensor prepared withcobalt (II)phthalocyanine [CoPc], used as a P450enzyme biomimeticcatalyst in thesensitiveand selective detectionsof dipyrone.Theobjectivewastodevelopananalyticaltoolthatwas faster,cheaperandmorereliablethanexistingtechniques.

2. Experimental

2.1. Chemicalsandsolutions

All the chemicals used were analytical or HPLC grade. Cobalt (II) phthalocyanine [CoPc], dipyrone, mineral oil and graphite powder were purchased from Sigma–Aldrich. NaH2PO4 and NaOH were purchased from Synth-Brazil. TRIS [tris(hydroxymethyl)aminomethane], HEPES [4-(2-hydroxyethyl)piperazine-1-ethanesulfonicacid]andPIPES[saltof sodium 1,4-piperazinediethanesulfonate] buffers were obtained fromMerck.Methanolandphosphoricacidwerepurchasedfrom Ecibra-Brazil. Thedipyrone and buffersolutions wereprepared withwaterpurified usingaMilli-Q(Direct-0.3)system,andpH wasmeasuredusingaThermoScientificpHmeter(Orion3Star Benchtop)fittedwithaglasselectrode.

2.2. Biomimeticsensorconstruction

Themodifiedpastewaspreparedbyhomogenizing12.5mgof CoPcwith87.5mgofgraphitepowderand1.0mLof0.1molL−1 phosphatebuffersolution(atpH7.0).Thematerialobtainedwas driedatroomtemperature,and thenmixedwithmineraloilto obtainahomogenouspaste.Thepastewasplacedintothecavityof aglasstube(4mminternaldiameter,1mmdepth),andaplatinum slidewasinsertedforelectricalcontactwiththepaste.The influ-enceoftheamountofCoPcemployedinpastepreparationonthe responseofthesensorwasevaluatedusingthreedifferentpastes, preparedwithweightpercentagesofCoPcvaryingfrom7.5%to 20.0%.

2.3. Electrochemicalmeasurementsandflowmanifold

Thecyclicvoltammetryexperimentswereconductedatroom temperatureinaconventionalthree-electrodecell,withthe mod-ified carbon pasteelectrode used as theworkingelectrode. An Ag/AgCl(KClsat)electrodeanda platinumwirewereusedasthe referenceandcounterelectrodes,respectively.Themeasurements wereperformedusingaPalmSensepotentiostat(PalmInstruments BV,TheNetherlands),whichwasinterfacedwithamicrocomputer runningPSLite(v.1.7.3)software(PalmInstrumentsBV)forcontrol ofpotentialandacquisitionofdata.

(3)

85 (2011) 2067–2073 2069

WE

AE

RE KClsat

Outlet

Carrier

Sample

Waste

L

Pump

L

Fig.3.Schematicdiagramoftheflowinjectionsystemwithamperometricdetection.L:sampleloop;WE:workingelectrode(biomimeticsensor);AE:auxiliaryelectrode (platinum);RE:homemadereferenceelectrode(Ag/AgCl(KClsat)).

2.4. HPLCanalyses

ChromatographicanalyseswereperformedusingaShimadzu Model20Aliquidchromatograph,coupledtoanSPD-20AUV/Vis detector,a SIL-20Aautosamplerand a DGU-20A5 degasser.The chromatographysystemwascontrolledbyamicrocomputer.AC8 column(250mm×4.6mm,Shim-PackCLCODS)waspositioned insideaShimadzuCTO-10ASoveninordertomaintainaconstant temperature.

Theprocedureemployedwasinaccordancewiththereference methodforthequantificationofdipyrone[36].Themobilephase wascomposedofamixtureof280mLofmethanoland720mLof 0.1molL−1NaH2PO4,atpH7.0.Theflowratewas1.0mLmin−1and thesampleinjectionvolumewas10␮L.Thedetectionwavelength was254nm.

2.5. Applicationofthebiomimeticsensorusingthe pharmaceuticalformulations

Dipyrone was quantified in four commercial samples using the external standards procedure. Samples of two commercial solutions(1and 2inTable5)wereanalyzedafterdilutionwith deionizedwater,withoutanyadditionaltreatment.Twosamples oftablets(3and4inTable5)werepreparedforanalysisbygrinding andhomogenizinginamortar,afterwhichaportionofthe mate-rialwasweighedoutanddissolvedindeionizedwater.Thesolution wasfilteredinordertoremoveanyinsolublesubstancespresentin thetablets.

2.6. Applicationofthebiomimeticsensorforanalysisofaquatic samples

FivewatersamplesfromriversinSãoPauloState(Brazil)were enrichedwithdipyroneattwoconcentrationlevels(9.76×10−5

and 3.00×10−4molL−1)and then analyzedusing theproposed sensorinordertoevaluatetheinfluenceofthematrixonrecoveries. TheenrichedsampleswerealsoanalyzedusingtheHPLCreference method[36],inordertodeterminethenominalconcentrationsof dipyroneinthesamples.Alloftheriverwatersampleswerefiltered priortoenrichmentinordertoremoveanyinsolublesubstances present.

3. Resultsanddiscussion

3.1. Electrochemicalandbiomimeticcharacteristicsofthesensor

Cyclicvoltammetryexperiments(usingascanfrom0to450mV

vs.Ag/AgCl,atascanrateof20mVs−1)werecarriedoutinorder toevaluatetheeffectof[CoPc]ontheresponseofthesensorto dipyrone.Theresults(Fig.4)showedthatthepeakcorresponding totheoxidationofcobalt(II)inthecomplexdisappearedinthe presenceofdipyrone,atapotentialof250mVvs.Ag/AgCl(Fig.4, curvea).Atthesametime,ahighcurrentintensityanodicpeakwas obtained,withouttheappearanceofanycathodicpeak,showing thatdipyronewasirreversiblyoxidizedonthesensorsurfaceata potentialof340mVvs.Ag/AgCl(Fig.4,curveb).Theresponseprofile ofthesensorwasasexpectedforanenzymaticcatalysisprocessin whichanincreaseofcurrentoccursinonlyonedirection(either oxidationorreduction)[23].

Experiments were performed using different scan rates in ordertodeterminewhethertheoxidation ofdipyronewasdue toanelectrocatalyticprocess.Theresultsobtainedareshownin Figs.5–7.

Incyclicvoltammetry,itisknownthatwhenthereaction kinet-icsarecontrolledbydiffusionofthespeciesfromthebulksolution totheelectrode surface,thepeak currentisproportionaltothe squarerootofthescanrate,inagreementwiththeRandles–Sevcík equation[37,38].Cyclicvoltammogramswerethereforeobtained

Table2

ParametersevaluatedduringtheoptimizationofthebiomimeticsensorfordipyronedeterminationusingtheFIAsystem.

Parameter Value

Amountofthecomplexinthepaste(%,w/w) 7.5 12.5a 20.0

Buffer(electrolyte) PHOSPHATEa HEPES PIPES TRIS

BufferpH 6.0 6.5 7.0a 7.5 8.0 8.5

Appliedpotential(mVvs.Ag/AgCl) 200 250 300a 350 400

(4)

0.0 0.1 0.2 0.3 0.4 0.5 -1

0 1 2 3

i (µA)

b

a

Potential vs Ag/AgCl (V)

250 mV

Fig.4. Catalyticprofilefordipyroneoxidationontheproposedsensorbasedon carbonpastemodifiedwithcobaltphthalocyanine:(A)0.1molL−1phosphatebuffer

solution(pH7.0);(B)buffersolutioncontaining1.4× 10−3molL−1ofdipyrone.

atdifferentscanrates(Fig.5)inordertoinvestigatewhetherthe dipyroneoxidationprocesswascontrolledbymasstransport.The graphshowninFig.5insetwasplottedusingthese voltammo-grams.Thestraightlinefitindicatedthattheprocesswascontrolled bydiffusion.

Theexistenceofanelectrocatalyticprocesswasconfirmedby plottingthescanrate-normalizedcurrent(i·−1/2)againstthescan rate().Theformofthecurveobtained(Fig.6)indicatedthatthe oxidationofdipyroneoccurredbyelectrocatalysis,andinvolved anelectrochemicalprocesscoupledwithachemicalstep[39].In addition,alinearrelationshipwasobtainedbetweentheanodic peakpotential(Ep)andlog(Fig.7),indicativeofaproportional electrontransferflowintheelectrode.

Using the information obtained from the linear regression (shownintheinsetofFig.5),togetherwiththetheoreticmodel describedbyAndrieuxandSavèant(Eq.(1))[40],itwaspossible tocalculateadiffusioncoefficient(D0)of5.9×10−7cm2s−1,

cor-Fig.5.Cyclicvoltammogramsrecordedatdifferentscanrates:(a)0.010Vs−1;(b)

0.020Vs−1;(c)0.050Vs−1;(d)0.100Vs−1and(e)0.200Vs−1.Theinsetshowsthe

linearprofileofthevariationofthecurrent(i)asafunctionofthesquarerootof thescanrate(1/2).Measurementswerecarriedoutin0.1molL−1phosphatebuffer

solution(atpH7.0)containing5.0× 10−4molL−1ofdipyrone.

Fig.6.Atypicalcatalyticelectrooxidationprofile.A5.0×10−4molL−1solutionof

dipyronewaselectrooxidizedbythecobalt(II)compleximmobilizedonthecarbon paste.Measurementswerecarriedoutin0.1molL−1phosphatebuffersolution(at

pH7.0),usedastheelectrolyte.

respondingtotheaveragediffusionofdipyroneanditsoxidation productsduringthecatalyticprocess.

ip=0.496FACSD10/2

F

RT

1/2

1/2 (1)

In Eq. (1), CS is the dipyrone concentration (5.0×10−7molcm−3), D

0 is the diffusion coefficient of dipy-rone,FistheFaradayconstant,R=8.31447Jmol−1K−1,T=298K andA=0.126cm2.Thedipyronediffusioncoefficientcould there-forebeobtainedfromtheslope(×10−6)ofthelineshowninFig.5 insetandthefactor0.496FACSD01/2F1/2(RT)

−1/2 .

Assumingthattheelectrocatalyticoxidationofdipyroneisan irreversibleprocess,theRandles–Sevcíkrelationship(Eq.(2))can beusedtodeterminethenumberofelectronsinvolved.

jp=(2.99×105)n[(1−˛)na]1/2D10/2CS1/2 (2)

InEq.(2),jp=ip/A=114.6␮Acm−2V−1/2s1/2,nisthetotal num-berofelectronsinvolved in thereaction,˛is thecoefficientof electrontransfer,narepresentsthenumberofelectronsinvolvedin thedeterminingstep,D0(cm2s−1)isthediffusioncoefficientofthe

Fig.7.Linearvariationoftheoxidationpotential(Ep)vs.log.Scanswerecarried

(5)

85 (2011) 2067–2073 2071

Fig.8. Lineweaver–Burkplotforcatalyzeddipyroneelectrooxidationonthe CoPc-basedsensor.Thefirst25pointsareshowninthefigureinset.Measurementswere carriedoutin0.1molL−1phosphatebuffersolution(atpH7.0),applyingapotential

of340mVvs.Ag/AgCl.

electroactivespecies,CS(molcm−3)isthedipyroneconcentration and

isthescanrate.

Inordertoestimatethevalueofn,itisfirstnecessaryto cal-culatethevalueof(1−˛)na.Incatalyticorirreversiblesystems, an approximate calculation is based on the linear relationship betweentheanodicpeakpotential(Ep)andlog

(Fig.7).The rela-tionshipbetweentheslopeofFig.7andthefactor(1−˛)na(Eq. (3))gaveavalueof0.83.

0.03536= 1.15RT

[(1−˛)na]F (3)

Aftercalculating thevalueof(1−˛)na,usingEq.(2)andthe previouslyestimateddipyronediffusioncoefficient,itwaspossible tocalculatethenumberofelectronsinvolvedinthecatalytic elec-trooxidationofdipyroneonthesurfaceoftheCoPc-basedsensor. Thevalueobtainedwas1.09,whichwascloseto1×e−.

In order to explore whether the behavior of the proposed sensorwassimilartothatofenzymatic biosensors,itsresponse was monitored until the concentration reached the saturation region.The results obtainedshowed a hyperbolic profile, indi-cating that the cobalt compound in the carbon paste followed theMichaelis–Mentenkineticmodel.TheLineweaver–Burkgraph (Fig.8)enabledcalculationoftheapparentMichaelis–Menten con-stant(KMMapp).Avalueof4.4×10−4molL−1indicatedstrongaffinity betweenthecobalt complexand thedipyrone substrate.These resultsalsostronglysuggestthatthedetectorpossessedthe char-acteristicsofabiomimeticsensor.

Basedonthefindingsdescribedabove,itwaspossibleto pro-poseaplausiblemechanismforthesensorresponse(Fig.9).Inthis mechanism,Co3+iselectrochemicallygeneratedontheelectrode surface(electrochemicalstep),andisthespeciesresponsiblefor theoxidationofdipyrone(chemicalstep).Afterthereductionof theCo3+ion,thecurrentrequiredforitsre-oxidationwillbe pro-portionaltotheconcentrationoftheanalyteinthestandardsor samples.

3.2. CouplingofthebiomimeticsensortotheFIAsystem

Followingconfirmation,usingbatchmodevoltammetry,that thesensorpossessedgenuinebiomimeticcharacteristics,itwas coupledtoaflowinjectionanalysissystem.Optimizationofthe sys-teminvolvedconsiderationofthefollowingparameters:(i)amount

Fig.9. Proposedmechanismforthesensorresponse,basedonexperimental evi-dence.Dip:dipyrone;red:reduceddipyrone;ox:oxidizeddipyrone.

Table3

Selectivityofthebiomimeticsensor.Theslopesoftheanalyticalcurveswereused tocalculatetheresponseforeachcompound,relativetotheresponseobtainedfor dipyrone.

Drug Relativeresponse(%) Dipyrone 100.0

Captopril 14.5

4-AAP 12.5

Ascorbicacid 11.0 Paracetamol 3.2

ofcomplexinthepaste;(ii)appliedamperometricpotential;(iii) composition,concentrationandpHofthecarrierbuffersolution (electrolyte).TheseparametersaresummarizedinTable2,with theselectedvaluesindicatedinboldtype.

Flow rate optimization (Fig. 10) employed a range of 0.7–2.1mLmin−1.Aflowrateof1.5mLmin−1wasselectedsince thisprovidedthebestcompromisebetweenanalysisfrequencyand sensitivity.Theinjectionvolumewasinvestigatedusingloop vol-umesof25,50,75and100␮L(Fig.8).Thesignalincreasedwith

Fig.10.InfluenceoftheparametersintheproposedFIAsystem:(a)effectofinjected samplevolume(Vi)ontheresponsetodipyrone,usingaflowrateof1.5mLmin−1;

(b)effectofflowrateontheresponsetodipyrone,usingaViof50␮L.The experi-mentswerecarriedoutwithacarriersolutionof0.1molL−1phosphatebufferatpH

7.0,andapplyingapotentialof300mVvs.Ag/AgCl(KClsat).Theerrorbarscorrespond

(6)

Fig.11.FIAsignals obtainedforthebiomimetic sensorunderoptimizedflow conditionsfordifferentdipyroneconcentrations.[Dipyrone]:a=5.0× 10−5molL−1;

b=9.5 × 10−4molL−1; c=3.9× 10−3molL−1, d=1.5× 10−3molL−1;

e=3.0 × 10−3molL−1; f=5.0 × 10−2molL−1; g=6.25× 10−3molL−1. Left inset:

Thethreelowerdipyroneconcentrations.Rightinset:Typicalanalyticalcurvesfor increasinganddecreasingdipyroneconcentrations.

increasingVi,reachingamaximumat100␮L.However,avolume of75␮Lwasselectedsincethisprovidedgoodsensitivitywithout undulyaffectingthefrequencyofsampling.

3.3. AnalyticalcharacteristicsoftheFIAsystem

Acalibrationcurve(Fig.11)wasgeneratedaftertheFIAsystem parametershadbeenoptimized.Nomemoryeffectswereobserved, andlinearfitswereobtainedforbothincreasinganddecreasing concentrationsofdipyrone(Eqs.(4)and(5),respectively).

i/␮A=−0.09(±0.07)+16062(±647)[Dipyrone]/mol L−1

(R=0.9960,n=7) (4)

i/␮A=1.5(±0.1)+15876(±407)[Dipyrone]/molL−1

(R=0.9987,n=7) (5)

Thelimitsofdetectionandquantificationwere1.5×10−5and 4.5×10−5molL−1,respectively,calculatedaccordingtoIUPAC rec-ommendations[41]fromthestandarddeviationoftenseparate measurementsoftheblank.

Therepeatabilityofthesensor wasinvestigated usingseven consecutiveinjectionsof2.5×10−3molL−1dipyronesolution,for whicharelativestandard deviation(RSD)of0.5%wasobtained. Undertheconditionsemployed,thesensorcouldbeoperatedatan analyticalfrequencyof36injectionsperhour.Thebetween-sensor reproducibilitywas2.5%,calculated astheRSDoftheanalytical curvesforsixseparatesensors.Itshouldbepointedoutthat excel-lentreproducibilityintheconstructionofthesensorswasachieved duetotheeaseofpreparationofthemodifiedcarbonpaste.

3.4. Selectivityandinterferencestudies

Goodselectivityisoneofthemostdesirablecharacteristicsof analyticaltechniques.Hence,inadditiontodipyrone,theresponse ofthesensorwastestedusingsixteenotherdrugs:acetylsalicylic acid,4-aminoantipyrine(4-AAP),amitriptyline,ascorbicacid, cap-topril,chloramphenicol,ciprofloxacin,clarithromycin,diclofenac, ketoprofen,naproxen,paracetamol,piroxicam,prednisone,

raniti-Interferent Relativeresponse(%)

Caffeine 102

Cellulose 102

Lactose 100

Magnesiumstearate 99 Stearicacid 102 Sodiumbisulfite 103 Sodiumphosphate 101

dineandtenoxicam.Table3liststhosedrugstowhichthesensor showeda response. The response to4-AAP was12.5%, relative totheresponse to dipyrone,but this wasexpected because 4-aminoantipyrineisoneoftheactivemetabolitesofdipyroneand hasasimilarchemicalstructure.Unlikeothersensorsbasedon car-bonpaste,thepresentsensorgaveasmallsignalforascorbicacid (11.0%).Theresultsindicatedthattheproposedsensorwashighly selective,asexpectedforadevicedesignedtomimicanenzymatic biosensor.

Theinterference studywasperformedconsidering themain applicationofthesensortobeinanalysesofcommercial phar-maceuticalformulations.Table4showstherelativeresponses(%) obtainedinthepresenceofeachinterferingsubstance(atan inter-ferent/analytemolarratioof10:1),comparedtotheresponsefor dipyronealone.Theresultsindicatedthatthesensordidnot suf-ferfrominterferences due tothepresenceof thesesubstances. Matrixinterferencesarethereforenotexpectedtooccurinanalyses involvingthisclassofsubstance.

3.5. Sensorapplication

Theapplicationoftheproposedsensorwastestedusingtwo differenttypesofsample.Thefirstinvolvedfourcommercial phar-maceutical formulations. The second employed water samples collectedfromfiveriversinSãoPauloState,whichwereenriched withdipyroneattwoconcentrationlevelsinordertodemonstrate theapplicabilityoftheproposedFIAsystemtoenvironmental sam-ples.

Table5showstheresultsobtainedforthecommercial formu-lations.TheconcentrationsweredeterminedusingtheFIAsystem, andthencompared withtheresultsobtainedbythe chromato-graphicreferencemethod.Therewerenosignificantdifferences betweenthetwotechniques(ataconfidencelevelof95%).

UsingtheFIAtechnique,theaverageerrorfortheriverwater analyseswas1.2%,relativetotheHPLCreferencemethod(Table6). Theresultsindicate that dipyronewasalwayspresent inthese rivers,sincethemeasuredconcentrationsexceededthoseexpected fromknowledgeoftheamountsofdipyroneaddedtothewater samples.

Table5

Determinationofdipyroneinpharmaceuticalformulationsusingthebiomimetic sensorFIAtechniqueandthechromatographicreferencemethod.

Sample Dipyroneamount Error(%) Declaredvalue Reference

method(HPLC)

Proposedmethod

1 500a 438.0 435.0± 16.5c 0.7

2 50a 52.0 49.5± 0.7c 3.8

3 300b 296.4 297.0± 8.6c 0.3

4 500b 520.0 535.0± 5.6c 2.9

amgL−1.

bmgtablet−1.

(7)

85 (2011) 2067–2073 2073

Table6

Comparisonbetweenthevaluesobtainedfordipyroneinwaterfromrivers,using theproposedFIAsystemandthereferencemethod.Thesampleswereenrichedat twoconcentrationlevels(9.76× 10−5and3.00× 10−4molL−1).

River Measuredconcentration(molL−1) Error(%)

HPLCmethod ProposedFIAmethoda

TietêriverattheUsina daBarraclub

9.8× 10−5 9.9× 10−5± 2.6× 10−6 1.0

3.4× 10−4 3.4× 10−4± 1.4× 10−5 0.0

JacaréGuac¸ú 9.9× 10−5 1.0× 10−4± 4.2× 10−6 1.0

3.4× 10−4 3.2× 10−4± 1.1× 10−5 5.9

Jaú 1.2× 10−4 1.2× 10−4± 3.6× 10−6 0.0

3.0× 10−4 3.0× 10−4± 7.2× 10−6 0.0

JacaréPepira 1.0×10−4 9.9×10−5± 3.5× 10−6 1.0

3.3×10−4 3.2×10−4± 1.2× 10−5 3.0

Tietêriverbythebridge inBarraBonitacity

1.0× 10−4 1.0× 10−4± 3.5× 10−6 0.0

3.6× 10−4 3.6× 10−4± 1.1× 10−5 0.0

aStandarddeviationfor3replicates.

4. Conclusions

Thispaperpresentsanalternativeandenvironmentallyfriendly methodologyforthedeterminationofdipyrone,usingaflow injec-tionsystemwithamperometricdetectionbasedonabiomimetic sensormodified withtheCoPccomplex.ThenewFIAsystemis fast,sensitiveandinexpensive,andcanbeusedfortheanalysisof dipyroneinmediaincludingpharmaceuticaldrugformulationsand riverwatersamples.

Acknowledgements

Theauthorsgratefullyacknowledgethefinancialsupport pro-vided by the São Paulo State Research Foundation (FAPESP, processes2008/00303-5and2009/04598-2).

References

[1]T.A.Ternes,M.Stumpf,J.Mueller,K.Haberer,R.D.Wilken,M.Servos,Sci.Total Environ.225(1999)81–90.

[2]M.E.Balmer,H.R.Buser,M.D.Muller,T.Poiger,Environ.Sci.Technol.39(2005) 953–962.

[3]M.Schlumpf,B.Cotton,M.Conscience,V.Haller,B.Steinmann,W. Lichten-steiger,Environ.HealthPerspect.109(2001)239–244.

[4]J. Ruzicka,E.H. Hansen,FlowInjectionAnalysis, JohnWiley, NewYork, 1988.

[5]B.F.Reis,M.F.Giné,E.A.M.Kronka,Quim.Nova12(1989)82–91. [6]M.D.P.T.Sotomayor,L.T.Kubota,Quim.Nova25(2002)123–128.

[7]M.D.P.T.Sotomayor,A.A.Tanaka,R.S.Freire,L.T.Kubota,C.A.Grimes,in:e.c. Dickey,M.V.Pishko(Eds.),EncyclopediaofSensors,AmericanScientific Pub-lishers,California,2006,pp.195–209.

[8]P.R.Moses,L.Wier,R.W.Murray,Anal.Chem.47(1975)1882–1886. [9]J.A.Cox,M.E.Tess,T.E.Cummings,Rev.Anal.Chem.15(1996)173–223. [10]M.A.T.Gilmartin,J.P.Hart,Analyst120(1995)1029–1045.

[11]K.Kalcher,J.M.Kauffmann,J.Wang,I.Svancara,K.Vytras,C.Neuhold,Z.Yang, Electroanalysis7(1995)5–22.

[12]J.Wang,Electroanalysis3(1991)255–259.

[13] I.V.Batista,M.R.V.Lanza,I.L.T.Dias,S.M.C.N.Tanaka,A.A.Tanaka,M.D.P.T. Sotomayor,Analyst133(2008)1692–1699.

[14] W.J.R.Santos,A.L.Sousa,F.S.Damos,S.M.C.N.Tanaka,L.T.Kubota,A.A.Tanaka, M.D.P.T.Sotomayor,J.Braz.Chem.Soc.20(2009)1180–1187.

[15] L.F.Moreira,M.R.V.Lanza,A.A.Tanaka,M.D.P.T.Sotomayor,Analyst134(2009) 1453–1461.

[16] A.C.Boni,M.D.P.T.Sotomayor,M.R.V.Lanza,S.M.C.N.Tanaka,A.A.Tanaka,J. Braz.Chem.Soc.21(2010)1377–1383.

[17] D.F.Gobatto,A.Wong,M.R.V.Lanza,M.D.P.T.Sotomayor,OpenChem.Biomed. MethodsJ.3(2010)98–107.

[18] M.C.Q.Oliveira,M.R.V.Lanza,A.A.Tanaka,M.D.P.T.Sotomayor,Anal.Methods 2(2010)507–512.

[19]A.Wong,M.R.V.Lanza,M.D.P.T.Sotomayor,Comb.Chem.HighThroughput Screen.13(2010)666–674.

[20]M. Sono, M.P. Roach, E.D. Coulter, J.H. Dawson, Chem. Rev. 96 (1996) 2841–2888.

[21]A.S.Kalgutkar,R.S.Obach,T.S.Maurer,Curr.DrugMetab.8(2007)407–447. [22]F.S.Damos,M.D.P.T.Sotomayor,L.T.Kubota,S.M.C.N.Tanaka,A.A.Tanaka,

Ana-lyst128(2003)255–259.

[23]A.Sigoli,M.D.P.T.Sotomayor,M.R.V.Lanza,A.A.Tanaka,L.T.Kubota,J.Braz. Chem.Soc19(2008)734–743.

[24]C.D.C.Conceic¸ão,R.C.Faria,O.Fatibello-Filho,A.A.Tanaka,Anal.Lett.41(2008) 1010–1021.

[25]I.Balan,I.G.David,V.David,A.-I.Stoica,C.Mihailciuc,I.Stamatin,A.A.Ciucu,J. Electroanal.Chem.654(2011)8–12.

[26]F.C.Moraes,M.F.Cabral,S.A.S.Machado,L.H.Mascaro,Electroanalysis20(2008) 851–857.

[27]E.Jubete,K.Zelechowsk,O.A.Loaiza,P.J.Lamas,E.Ochoteco,K.D.Farmer,K.P. Roberts,J.F.Biernat,Electrochim.Acta56(2011)3988–3995.

[28]K.C. Honeychurch, L. Gilbert, J.P. Hart,Anal. Bioanal. Chem. 396 (2010) 3103–3111.

[29]N.Sehlotho,S.Griveau,T.Nyokong,F. Bedioui,Electroanalysis19(2007) 103–106.

[30]T.Kondo,A.Tamura,T.Kawai,J.Electrochem.Soc.156(2009)145–150. [31] F.A.Fehintola,Afr.J.Med.Sci.34(2005)403–405.

[32] P.Danieli,M.B.Leal,Rev.Bras.Farm.84(2003)17–20. [33]I.M.Bense ˜nor,Rev.Paul.Med.119(2001)190–191. [34]V.J.Dorr,J.Cook.South.Med.J.89(1996)612–614.

[35] F.H.Bergamin,J.X.Medeiros,B.F.Reis,E.A.G.Zaggatto,Anal.Chim.Acta101 (1978)9–16.

[36]BritishPharmacopoeia,MentalHealthAct1,2007. [37]J.E.B.Randles,Trans.FaradaySoc.44(1948)327–338. [38] A.Sevcík,Collect.Czech.Chem.Commun.13(1948)349–377.

[39] A.J.Bard,L.Faulkner,ElectrochemicalMethods:Fundamentalsand Applica-tions,2nded.,Wiley,NewYork,2001.

Referências

Documentos relacionados

we believe that any change in policy and practice regarding those who are affected by the broader punitive system in British society has to take the element of symbolic

A.; Amperometric determination of 4-chloraniline in commercial chlorhexidine solutions using a multi-walled carbon nanotube modified electrode.. A.; Electrochemical detection

The proposed FIA-MPA method using the bare BDD working electrode showed some advantages compared to other reported methods for CO quantification in pharmaceutical formulation

The present work presents the development of a sensitive and selective amperometric sensor for the determination of hydrazine (HZ) in pharmaceutical formulations using a glassy

The construction of an amperometric sensor for phenolic compounds using a carbon paste electrode modified with manganese phthalocyanine and histidine is reported.. The sensor

In this study, amperometric cholesterol enzyme electrode based on poly( o -phenylenediamine) film was prepared for the determination of total cholesterol content in serum samples.

In this study, an electrochemical method is proposed using flow injection analysis and amperometric detection with screen-printed carbon electrodes for morpholine determination to

Based on this oxidation process, a FIA method with amperometric detection was developed for chlorhexidine determination in different commercial samples. The proposed method is